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Abstract Cluster flight is one of the key technologies that are required to enable the
deployment of distributed space systems. Through the concept of cluster flight, a
large monolithic structure can be replaced with multiple smaller spacecraft, permit-
ting to overcome physical limitations and improve mission performance. To ensure
a safe relative motion between several objects that fly in proximity, the guidance
and control algorithm must be designed in order to be scalable, autonomous, and
responsive. A technique to meet these requirements by employing the method of
the artificial potentials is presented in this paper. For a cluster of spacecraft that
are distributed in the along-track direction in a leader-follower manner, the relative
distances can be altered by focusing and adjusting the mean motion of the space-
craft. An artificial-potential-based approach can be used to evaluate corrections of
the semi-major axes by only reacting on the current configuration, with no need to
perform trajectory predictions.

1 Introduction

Over the last two decades the idea of deploying a cluster of objects that fly in prox-
imity gained much popularity thanks to the benefits that it could offer; especially if
it is considered as an alternative to the use of a single large structure. The mission
could profit in several ways from a fractionated architecture: flexibility and redun-
dancy could be augmented, costs and risks could be reduced, physical limitations
like launch mass or launch volume could be overcome. One of the main challenges
that stand in the way of the implementation of the cluster concept, is the availability
of guidance and control algorithms that can ensure a safe relative motion between
the objects of the cluster. In the field of formation flight relative motion is already
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widely investigated. The spacecraft in a formation are usually required to maintain
a precise relative geometry, with the consequence that the relative distances are al-
lowed to vary in narrow ranges with respect to nominal values. In a cluster, on the
other hand, only minimum and maximum distance constraints (DC) are imposed, to
prevent modules from drifting away or from colliding. The different control effort
in the two scenarios is self-evident, and for this reason the attention of researchers
started to be drawn towards the design of long-term passive distance-bounded orbits
(see e.g., [3, 12, 13, 17, 18, 20]), as well as towards new cluster-based approaches to
perform orbital corrections aimed at satisfying the distance requirements (see e.g.,
[7, 10, 19, 20]).

To correctly deal with multiple objects and their relative motion, the employed
algorithms must be highly responsive and able to work autonomously, such that the
safety of the cluster does not entirely depend on the ground stations. A powerful tool
that presents the desired features of autonomy and responsiveness and that is already
largely used to study problems involving relative motion between several objects, is
the method of the artificial potential fields (APF). Through the definition of attrac-
tive and repulsive behaviors, this method can enforce obstacle avoidance and steer
the system towards a goal configuration, by only reacting on the current positions.
In the space domain the APF method has many potential applications, such as ren-
dezvous maneuvers [2, 11], or (re-)configuration of multiple spacecraft [8, 9, 15,
16], but its use is still significantly limited, due to the complexity of the equations
of motion that describe orbital-mechanics-based problems. Space research involv-
ing this method is nowadays restricted to small-sized relative motion problems, in
which the simplified Hill-Clohessy-Wiltshire model could be used.

For the work presented in this paper the APF method has been applied to the
cluster keeping problem, and a control technique is proposed to evaluate the orbital
corrections that are required by the spacecraft to keep their relative distance con-
straints satisfied. Both small- and large- sized clusters are considered, leading to the
need for dropping distance-related simplified assumptions and developing a general
cluster keeping approach.

The paper opens with the problem statement, which is introduced in Section 2.
Section 3 presents the APF method and describes its application to the cluster keep-
ing problem. Mission scenarios used to test the proposed technique are briefly out-
lined in Section 4. Section 5 presents a sample case scenario to show the application
of the method. Section 6 reports the results of the numerical simulations and dis-
cusses the method performance. Section 7 finally summarizes the conclusions.

2 Problem Statement

For the problem of the cluster keeping treated in this paper, a group of N spacecraft
flying in proximity in a low Earth orbit (LEO) scenario is considered. The initial
distribution of the spacecraft is assumed to be obtained from the technique of the
delayed elements, which has been originally described by De Bruijn and Gill [3]
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and resembles a leader-follower distribution, as the spacecraft are arranged in the
along-track direction. The along-track direction is defined in the local-vertical-local-
horizontal (LVLH) frame. This reference frame is typically used in coordinated-
flight-based problems to better show the relative motion with respect to a reference
point (RP). The origin of the frame is placed in the reference point, the xy-plane
is coincident with its orbital plane, and the x-axis is parallel to its position vector
(positive outwards). The radial, along-track, and cross-track directions are defined
by the x-, y-, and z-axis.

Given a lower boundary Dmin and an upper boundary Dmax for the relative dis-
tances, the selected configuration technique permits to identify relative orbits that
are invariant to the perturbations and that naturally satisfy the desired DC. Con-
sider a spacecraft A, a reference time t0, and a 6x1 vector œ(t0) of classical Ke-
plerian elements that expresses the state of A at t0. The vector œ is defined as
œ = (a e i Ω ω M)T , where a is the semi-major axis, e the eccentricity, i the in-
clination, Ω the right ascension of the ascending node (RAAN), ω the argument of
perigee, and M the mean anomaly. The distance between A and a second spacecraft
B can remain bounded over time if the initial state of B is defined as

œB(t0) = œA(t0)+
∫ t0+τ

t0
œ̇Adt (1)

where œ̇A denotes the rates of the orbital elements of A, and τ represents the time
delay between the passage of A and B through the same positions. As this work
focuses on spacecraft in LEO, the rates œ̇ take the gravitational potential, as well as
the drag, into account.

For a cluster of N objects, the design process has to deal with Np = 0.5N(N−1)
pairs of spacecraft, thus the management of the distance constraints can become
extremely complex as N grows. The conducted work, however, could benefit from
several simplifications that derive from the along-track distribution of the spacecraft.
First of all, by exploiting Kepler’s second law and by approximating the distance d
between A and B with the arc of trajectory traveled in τ , a correspondence between
separation distance d and time difference τ can be identified

T : d→ τ. (2)

Equation (2) permits to transform the distance boundaries [Dmin Dmax] into time
boundaries [τmin τmax], leading to an orbit design that is based on a scalar parameter
|τ| ∈ [τmin τmax]. The use of the absolute value |τ| derives from the fact that the time
difference τ can be positive or negative depending on whether B is located in front
of or behind A in the along-track direction.

A second simplification can be obtained by using a reference point to define the
center of the cluster and to design the initial states of all the spacecraft through
Eq. (1). In this way, the initial configuration problem consists in identifying the
delay τ for each object, and can be simplified considering that the minimum distance
constraints need to be satisfied only for neighboring spacecraft, whilst the maximum
distance constraints only between the spacecraft and the center of the cluster. For
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a better understanding, consider the sample scenario given in Fig. 1. The cluster

RP orbit

RP

Dmax

Dmax

s1

s2

s3
s4Dmin

−τmax τmax

0 ττ1 τ2 τ4τ3

Fig. 1: Sample scenario with N = 4 spacecraft and their distribution in a 1-D space.

counts N = 4 satellites si, for i = 1,2, ...,N, and is centered on a reference point RP,
where the origin of the τ reference frame (τ = 0) is set. Given two generic objects
[si s j], the distance constraints

di < Dmax (3)

d j < Dmax (4)

di/ j > Dmin (5)

can be expressed in the one-dimensional space as

|τi|< τmax (6)

|τ j|< τmax (7)

|τi/ j|> τmin, (8)

where di and d j are the distances of si and s j from the RP, di/ j the distance between
si and s j, τi and τ j are the time differences between si and the RP and between s j
and the RP, and τi/ j is the time difference between si and s j.

An initial configuration defined by satisfying Eqs. (6) to (8) complies with the
desired DC at the initial time, but might still need orbital corrections at future times
t > t0. With reference to the invariance to perturbations of the relative orbits that
derives from the use of Eq. (1), the validity of this condition might require addi-
tional constraints, depending on the involved perturbations. For example, when the
gravitational potential is taken into account the invariance is guaranteed with no lim-
itations, but in the presence of the drag it requires the spacecraft to have the same
ballistic coefficient. Since it is unlikely that this requirement is satisfied by all the
objects of a cluster, for the considered scenario the application of Eq. (1) can still
greatly reduce the differential perturbations, but over time a slow drift of the relative
distances should be expected and cluster keeping strategies should be implemented.
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In addition, since the reference point is not influenced by the atmospheric drag,
it does not experience the orbital decay that affects the spacecraft. As a result the
spacecraft drift from the RP and over time require corrective maneuvers to remain
close to it. This difference could be removed by including a fictitious drag effect also
on the evolution of the reference point, but by adjusting the motion of the spacecraft
to follow the ideal RP, the orbital decay of the entire cluster is already counteracted.

Two satellites that are initialized through the technique of the delayed elements
have the same mean motion and keep their distance approximately constant over
time (small drift derive from the atmospheric drag, as previously explained). One
simple way to alter their distance is by providing a differential semi-major axis,
since the resultant differential mean motion would cause one satellite to move faster
than the other. A positive distance rate, for example, can be obtained by lowering
the orbit of the front satellite and/or raising the orbit of the rear satellite; a negative
distance rate, on the contrary, requires that the rear satellite is moved into a lower
orbit and/or that the front satellite is moved into a higher orbit (the terms front and
rear refer to the position of the satellites in the along-track direction). Also, the
larger the differential semi-major axis, the larger the differential mean motion and
the faster the distance change between the objects for a given time interval.

The cluster keeping technique proposed in this work aims at controlling the
along-track distances between the spacecraft by changing their semi-major axes,
which in turn alter their mean motions. The required changes are evaluated by ex-
ploiting the method of the artificial potentials, as described in the next section.

3 APF-based Cluster Keeping

For the introduction of the artificial potentials technique, a group of N objects that
move in a p-dimensional Euclidean space can be considered. The motion of the
generic i-th object is influenced by the others according to

ẋi =
N

∑
j=1, j 6=i

F(xi−x j), (9)

where xi ∈ Rp is the position vector of the object, ẋi is its velocity vector, and F is
a function that represents its interaction with the other objects. Given a mathemati-
cally differentiable function U that can be conceptually associated with the energy
of the system, by employing its negative gradient as function F , the system can
be steered towards a less energetic configuration. The design of the potential U , or
equivalently of the function F , consists in identifying proper expressions for these
functions, such that the least energetic configuration is also the desired configura-
tion. In general, the function U and F are composed of two terms

U =UA +UR

F =−∇U =−∇UA−∇UR = FA +FR,
(10)
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that represent an attractive and a repulsive behaviour, and can be distinguished by
the subscripts A and R, respectively. The first term allows the aggregation of the
objects, the second prevents collisions between them. A further insight into the APF
technique and the properties of the functions U and F can be found, e.g., in [5, 6].

In this work, the peculiar distribution of the spacecraft permits to approximate
their distance d with their along-track separation |∆y|

d ≈ |∆y|, (11)

where ∆y is their relative position in the along-track direction. This means that the
scalar variable y replaces the vectorial variable x in Eq. (9), and that the problem can
be studied in a one-dimensional space. Equation (9) can then be transformed into

ẏi = FA(∆yi)+
N

∑
j=1, j 6=i

FR(∆yi/ j), (12)

where ∆yi is the relative along-track position of i with respect to the RP, and ∆yi/ j
is the relative along-track position of i with respect to j. Note that ∆yi = yi, since
the RP is located at y = 0. As it can be seen, the total artificial force that influences
the motion of the generic object i has only one attractive contribution, but N − 1
repulsive ones. This trivially derives from the use of the reference point to identify
the center of the cluster. To prevent an object from drifting away, it is sufficient
to limit its distance from the center, thus the attractive contribution only needs to
depend on the separation |yi|. On the contrary, the object i could theoretically collide
with any other object j, thus the repulsive force must consist of N−1 contributions.

The attraction and the repulsion have been modeled such that the generated ar-
tificial forces have a distance-dependent magnitude that increases monotonically as
the distances approach their boundary values. To obtain this behaviour, the attractive
and repulsive contributions UA and UR have been built upon exponential terms as

UA = k1,A

(
e−k2,A|∆y|+ ek2,A|∆y|

)
(13)

UR = k1,R
e−k2,R|∆y|

∆y2 , (14)

leading in turn to the following expressions for the negative gradients FA and FR

FA =−∇UA = k1,Ak2,A
∆y
|∆y|

(
e−k2,A|∆y|− ek2,A|∆y|

)
(15)

FR =−∇UR = k1,R
e−k2,R|∆y|

∆y3 (2+ k2,R|∆y|) , (16)

where the coefficients k1,A, k2,A, k1,R, and k2,R, are tuning parameters. Figure 2 shows
the shape of the functions U and F . Note that this is only a qualitative representation
of the four functions. In Figs. 2a and 2c, the origin of the frame ∆y = 0 represents
the location of the reference point, while in Figs. 2b and 2d it refers to the location
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Fig. 2: Representation of the U and F functions.

of the object j with respect to which the object i of interest computes its reaction.
For example, for the configuration shown in Fig. 1, the attractive and repulsive con-
tributions of the functions U and F are given in Figs. 3 and 4. In Fig. 3, the term

s1 s2RP s3 s4

UA

UR,1

UR,2

UR,3

UR,4

Fig. 3: Potentials U for a sample scenario
with N = 4 spacecraft.

s1 s2RP s3 s4

FA

FR,1

FR,2

FR,3

FR,4

Fig. 4: Functions F for a sample scenario
with N = 4 spacecraft.

UA refers to the attraction to the center, while the term UR,i represents the repul-
sion associated with the spacecraft si. The same notation is used in Fig. 4 for the
contributions to the function F .

To connect the APF method and the U and F functions with the cluster keeping
problem and the control of the relative distances, consider a simple 1-D problem
with two objects A and B separated by a distance d, moving at the same speed,
and with one chasing the other. A variation of the distance ∆d in a time interval ∆ t
can be interpreted as the relative velocity between the objects and can be obtained
by providing a ∆v = ∆d

∆ t to one of the objects (the direction of the application and
the recipient object determines the sign of the distance variation). This simple sit-
uation represents an approximation of what happens in the scenario treated in this
work, with a cluster of spacecraft distributed in a leader-follower fashion. Given
two objects with differential mean motion ∆n, within a time interval ∆ t their mean
anomaly separation changes by an amount ∆M = ∆n∆ t, with a corresponding dis-
tance separation d ≈ a∆M. From the combination of these equations, a relationship
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between the distance rate ḋ and the differential mean motion can be obtained as

ḋ = a∆n, (17)

and since the term ḋ is provided by Eq. (12), Eq. (17) can be used to evaluate the
differential mean motion ∆n. Eventually, the semi-major axis difference can be re-
covered from the definition of the differential mean motion

∆n =

√
µ

(a+∆a)3 −
√

µ
a
, (18)

where µ is the gravitational parameter of the Earth.
The equivalence between the distance rate ḋ and the ∆v impulse is the basis

for the tuning process. In general, since four coefficients need to be determined
(k1,A,k2,A,k1,R,k2,R), the problem requires four boundary conditions

FA,1 = FA(∆y = |∆y1,A|)
FA,2 = FA(∆y = |∆y2,A|)
FR,1 = FR(∆y = |∆y1,R|)
FR,2 = FR(∆y = |∆y2,R|),

(19a)
(19b)
(19c)
(19d)

where the terms FA,1, FA,2, FR,1, and FR,2, denote known values of the functions FA
and FR at |∆y1,A|, |∆y2,A|, |∆y1,R|, and |∆y2,R|. For example, it can be assumed that
the functions F are negligible at distances very far from the boundaries

min(|FA|) = |FA (∆y = 0)| ≈ 0 (20)

min(|FR|) = |FR (|∆y|= 2Dmax)| ≈ 0 (21)

and have their maximum magnitude in correspondence of the distance boundaries

max(|FA|) = |FA (|∆y|= Dmax)| (22)

max(|FR|) = |FR (|∆y|= Dmin)|. (23)

To perform realistic simulations, however, a minimum providable ∆v related to the
minimum impulse bit of the spacecraft propulsion system can be used, thus Eqs. (20)
and (21) can be replaced with

min(|FA|) = |FA (|∆y∗A|)| (24)

min(|FR|) = |FR (|∆y∗R|)|, (25)

where the parameters ∆y∗ denote the distances at which the functions F assume
the minimum value. For the maximum values instead, it does not make sense to re-
fer to the maximum providable ∆v, because the propulsion system can be activated
and fire for long time intervals. The determination of the upper boundary for the
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functions F becomes then a part of the tuning process and is selected as the mini-
mum value that can ensure the satisfaction of the constraint β = |Fmax|

|Fmin| > 1, where
Fmax = max(|FA|) = max(|FR|) and Fmin = min(|FA|) = min(|FR|).

To obtain a control scheme that involves sparse maneuvers and does not require
the spacecraft to perform corrections continuously, the values y∗A and y∗R are chosen
close to the distance boundaries. Consider the sample scenario given in Fig. 1 and
suppose that at a given time t the spacecraft are equally spaced as pictured in Fig. 5
with the relative distance deq given by

−ymax ymax yy1 y2 y4y3y = 0

deq

deq

deq

deq

2

deq

2

Fig. 5: Sample scenario of N = 4 equally spaced spacecraft.

deq =
2Dmax

N
. (26)

This configuration represents an equilibrium for the cluster and no spacecraft are
supposed to maneuver. This means that to avoid continuous corrections it is required
to tune the potentials by choosing |∆y∗A|>

deq
2 and |∆y∗R|< deq, so that the spacecraft

motion can be influenced only in proximity of the high potential regions.
Figure 6 gives a qualitative representation of the attractive potential UA (it would

correspond to Fig. 2a, but for simplicity only the right branch is shown). Together

d

UA

UA,max

Dmax

UA,min

d∗Adeq,A

∆A,of f ∆A,on

Fig. 6: Tuning of the attraction.

d

UR

UR,max

Dmin

UR,min

d∗R deq,R

∆R,of f∆R,on

Fig. 7: Tuning of the repulsion.

with the distance boundary Dmax, the figure includes also the distance d∗A, which
represents the separation |y∗A|, and the distance deq,A, which is defined as

deq,A = Dmax−
deq

2
, (27)

and represents the attractive-equilibrium distance, i.e. the distance between the two
most external spacecraft and the center of the cluster when the spacecraft are equally
spaced. With reference to Fig. 5 for example, the deq,A would be associated with the
objects n.1 and n.4. Since the function F must be equal to Fmin for d = d∗A and
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negligible for d = deq,A, it must hold deq,A < d∗A, and the selection of

d∗A = deq,A +αA(Dmax−deq,A) (28)

with 0 < αA < 1 is the key for preventing the control from being constantly on. The
larger the parameter αA, the wider the region of inactivity ∆A,of f = d∗A− deq,A. On
the other hand, a large αA involves a steep attractive potential UA, with the conse-
quence that the force FA grows quickly from its minimum to its maximum value.
As opposite to the region of inactivity, a region of activity with width ∆A,on can be
identified as the range of distances that provide a non-negligible contribution FA.

In a similar way, Fig. 7 can be considered for the repulsive potential, with the
repulsive-equilibrium distance deq,R defined as

deq,R = deq. (29)

The region of inactivity has a width ∆R,of f = deq,R−d∗R, for which it holds

d∗R = Dmin +αR(deq,R−Dmin) (30)

with 0 < αR < 1. Note that the effects of αR and αA are opposed, since the larger
the αR, the smaller the region of inactivity ∆R,of f .

An insight into the behaviour that is tried to be achieved through the applica-
tion of the APF technique is given in Fig. 8. A group of four objects moving in a

t = t0s1 s2 s3 s4

t = t1s1 s2 s3 s4

d∗A

t = t2s1 s2 s3 s4

d∗R

y
Dmax−Dmax 0

Fig. 8: Qualitative evolution of the cluster behaviour.

one-dimensional space is considered at three subsequent times t0 < t1 < t2. At the
initial time t0 they are deployed in a configuration that satisfies a set of minimum
and maximum distance constraints, and over time they move from the left to the
right at a constant pace (this represents the orbital decay the spacecraft would be
subject to). At time t1 the object s4 reaches a distance d∗A from the origin, thus the
smallest available impulse is provided in the negative direction to invert its motion
and prevent it from reaching the border at y = Dmax. The distance between s4 and
s3 starts to shrink and when at time t2 it reaches the value d∗R, it induces s4 and s3
to fire in the positive and in the negative direction, respectively. A cascade effect is
generated and over time all the objects perform small corrections.
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It should be taken into account that an applied correction does not have an imme-
diate effect, and the direction of the motion is altered with a delay up to one orbital
period. This difference between the two frameworks derives from the employed
control scheme, which is based on the Gauss Variational Equations [1]. To obtain a
semi-major axis adjustment while leaving the other orbital elements unchanged, the
correction must consists of two separate control actions, one at the perigee and one
at the apogee of the orbit (see e.g., [4, 14]). Consider the situation at time t2 of the
given example applied to a cluster, i.e. with satellites s3 and s4 reaching a separa-
tion d∗R, but assume that s4 has not completed yet its first maneuver started at time
t1. It is not recommended to let the two satellites evaluate a maneuver to increase
their separation because the object s4 is not moving on its official orbit, but on a
transfer orbit, thus a misleading maneuver would be computed. It is instead more
appropriate to wait until the completion of the on-going maneuver of s4, and only
then compute the new maneuver to adjust the distance d3/4. In this case, however, a
larger consumption is expected, because by the time the two satellites start the new
computation, they will have reduced their distance below the value d∗R, so that the
impulses returned by the APF will be larger than the minimum. Since the potentials
have been built with the goal to provide larger impulses as the distances get closer to
the boundaries, in general this delayed computation is not an issue, but it can become
problematic depending on the specific set of inputs of the problem. The smaller the
difference between the distances d∗ and the correspondent distance boundary (Dmin
or Dmax), the steeper the functions F , with an increase of the chances that the cluster
keeping procedures fail.

Another aspect that needs to be considered is the differential consumption. In
the one-dimensional example given through Fig. 8, it has been assumed that each
object gives the same contribution when attempting to correct a relative behaviour,
because for any pair of objects the reciprocal repulsion has always the same in-
tensity and opposite direction. For a single correction, an equal consumption con-
cerns the two involved objects, but on the overall the total consumption becomes
unbalanced, because the shift of the cluster (due to the orbital decay) in the positive
along-track direction induces the front object to perform more corrections than its
follower, which performs more corrections than its follower, and so on. To contrast
this behaviour Eq. (12) is modified into

ẏi = FA(∆yi)+
N

∑
j=1, j 6=i

gi/ jFR(∆yi/ j), (31)

where the gains gi/ j alter the contribution of the repulsion according to the remain-
ing fuel masses. The gains are not based on the consumed mass because the satellites
of the cluster are assumed to be heterogeneous, thus it is better to let those with more
fuel perform more maneuvers rather than to enforce an equal consumption. Consider
two objects A and B with the first having more fuel on board than the second. At
any time, they exert on each other an equal repulsion, but by using Eq. (31), when
they perform a maneuver to adjust their relative motion, A applies a correction larger
than B, to compensate for the fact that B has a less fuel left on board.
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Suppose now that the two objects are moving away from each other but it results
dA/B < d∗R. This situation occurs, for example, right after the spacecraft apply a
correction, because their distance requires some time to increase and to reach the
inactivity region. In this case, there is no need for any of the spacecraft to perform
an additional maneuver, but if the APF were only based on distances and masses,
according to these information the algorithm would identify the need to increase the
separation and would compute a new maneuver. To prevent such new computation,
the direction of the relative motion, through the differential mean motion, is included
into the evaluation of the gains gi/ j and Eq. (31) is further modified into

ẏi = gi/0FA(∆yi)+
N

∑
j=1, j 6=i

gi/ jFR(∆yi/ j), (32)

where the gain gi/0 weights the attractive contribution by taking the motion of the
spacecraft i with respect to the center into account.

4 Mission Scenarios

Different mission scenarios have been used to test the proposed method, which aims
at performing cluster keeping for 50 days. All the performed simulations assumed
a reference point with initial state œ(t0) as defined in Table 1, and a force field that
encompasses the drag and the gravitational potential up to the term J6. The distance

Table 1: Initial state of the reference point.

Element Value Units
semi-major axis - a 7000.92 km

eccentricity - e 0.01
inclination - i 50.99 deg
RAAN - Ω 11.48 deg

argument of perigee - ω 19.12 deg
mean anomaly - M 21.00 deg

requirements and the number, initial distribution, and ballistic coefficients, of the
satellites have been instead diversified among the simulations.

In each test, the initial configuration consists of randomly distributed spacecraft,
with initial states obtained by applying Eqs. (1) and (6) to (8), to ensure that the
distance constraints are satisfied. Two sets of distance boundaries have been used, a
tight one [Dmin,0 Dmax,0] for the definition of the initial configuration, and a relaxed
one [Dmin Dmax] for the operational phase. The two sets are connected through

Dmin = Dmin,0(1−∆min) (33)

Dmax = Dmax,0(1+∆max), (34)

where the terms [∆min ∆max] express the percentage differences.
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Artificial-Potentials-Based Cluster Keeping 13

In the performed tests the proposed APF-based technique is applied to small
sized clusters, for which Table 2 summarizes the configuration constraints (column
DC0), and the operational ones (column DCop). A graphic representation of the

Table 2: Distance constraints.

Constraints DC0 [km] DCop [km] ∆ [%]

Dmin 1
0.75
0.50

25
50

Dmax 5
6.25
7.50

25
50

distance constraints is given instead in Fig. 9, which also introduces some codes
to divide the entire pool of tests in smaller groups. The square at the bottom right

Fig. 9 Graphic representation
of the distance constraints,
along with the codes used to
distinguish the various groups
of tests.
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corner highlights the set of configuration distances, while the four squares at the top
left corner show the four sets of operational constraints and the code associated with
the corresponding group of tests.

Concerning the activity/inactivity regions of the potentials, the values [0.25 0.5]
have been tested for the parameter αA, the values [0.5 0.75] for the parameter αR.

Finally, as for the number N of spacecraft, clusters populated by 4, 6, 8, and 10
objects have been considered.

5 Reference Scenario

In this section a sample scenario is considered, to convey the idea of how the cluster
evolves over time when the APF technique is applied. The inputs and parameters
used in the test are outlined in Table 3. The cluster is initialized as depicted in

Table 3: Inputs and parameters for the sample case of cluster keeping.

Input Value Parameter Value
N 6 αA 0.5

[Dmin,0 Dmax,0] [1 km 5 km] αR 0.5
[Dmin Dmax] [0.5 km 7.5 km] β 25.89

Fig. 10, where an Earth-centered inertial frame is used. The solid and the dashed
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Fig. 10: Initial distribution of a sample test with N = 6 spacecraft.

lines denote the orbit of the RP and its position vector, respectively. The evolution
of the relative distances can be observed in Figs. 11 and 12, the former showing
the distances between the spacecraft and the center of the cluster, the latter display-
ing the distances between neighboring spacecraft. In both figures, together with the
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Fig. 11: Time evolution of the distances between the spacecraft and the RP.
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Fig. 12: Time evolution of the distances between neighboring spacecraft.

distances of interest, also the distance boundaries are reported, to give the reader a
clear overview of the potentials activity regions. In Fig. 11, for which the distances
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have been expressed in terms of the along-track coordinate y, it can be seen that the
attraction significantly affects only the motion of the object s1, since this is the only
one exceeding the distance d∗A from the center of the cluster. From Fig. 12, on the
other hand, it can be noticed that all the spacecraft perceive repulsive contributions,
as all the distances between neighboring objects decrease below the value d∗R, thus
entering the activity region of the repulsive potentials. For the correct interpretation
of this figure, recall that the distance between the objects si and s j is denoted as di/ j.

Because of the drift of the cluster in the along-track direction caused by the or-
bital decay, a differential consumption can be observed with a ∆v budget that de-
creases from the front to the rear of the cluster. The trend of the consumed mass
over time is reported in Fig. 13 (it is worth mentioning that without the introduction
of the gains gi/ j, the differential consumption would have been much more severe).
Note that although the consumption trends increase monotonically, the thrust is not
continuous. The figure refers to a time frame of 50 days, in which the satisfaction of
the distance constraints is ensured through many frequent small impulsive actions.
The black line represents an estimation of the mass consumption that would be re-
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Fig. 13: Time evolution of the mass consumption.

quired to correct the effect of the drag. On average, the real recorded consumption
is larger, but it is worth mentioning that the estimation is obtained by exploiting the
analytical definition of the drag force, meaning that it entirely neglects the effect of
the orbital decay, which is responsible for the drift of the mean anomalies and, in
turn, of the cluster.

6 Simulation Results

This section summarizes the results obtained from the entire pool of simulations to
give a general overview of the method behaviour.

In the first step it will be focused on the success of the method application and on
how this can be related to the tuning parameters [αA αR β ], with the concept of suc-
cess being associated with the satisfaction of the distance constraints. By assuming
that the distance boundaries can be relaxed and that small violations can be tolerated,
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Fig. 14 Success rate of the
cluster keeping as a function
of the number of spacecraft.
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an overview of the success rate as a function of the cluster density is given through
Fig. 14, in which three thresholds ε have been used to identify acceptable violations.
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Fig. 15: Success rate of the cluster
keeping as a function of the ratio β .

The circular markers refer to the stricter con-
ditions, in which no violations of the distance
boundaries are accepted (ε = 0%), while the di-
amonds and the triangles represent the success
rates that would be obtained if violations up to
10% and 20%, respectively, could be tolerated.
Note that even some of the triangular data re-
main below the 100% success rate, meaning that
the entire pool contains also tests in which vio-
lations larger than 20% have been experienced
(these tests are not further investigated and are
associated with the failure of the method). Apart
from the trivial result that larger tolerances in-
volve higher success rates, what is interesting to
see is that no significant difference exists between
the trend of the diamonds and of the triangles,
which means that if a violation occurs, it is either
very small (the method is successful and the vi-
olations are within reasonable tolerance) or very
large (the method fails). Concerning the cluster
density, one would expect that a reduction in this
parameter would increase the success rates, be-
cause a larger spacing between the objects in-
volves wider regions of activity of the potentials,
and thus flatter profiles of the F functions. This
behaviour, however, is confirmed only when the
number N of spacecraft is limited to the range [6
10], because for sparse clusters the low value of
N requires large values of the ratio β , which in-
creases the chances that too large corrections are
performed and, in turn, that the method fails.

Figure 15 shows how the success rate changes
with the value of the ratio β ; all the results refer
to the use of the largest tolerance ε = 20%. The
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lowest success rates are obtained in correspondence of the smallest and the largest
values of β , with the worst results returned for β < 4. Small values of β produce
profiles of the functions F that are too flat (the values Fmin and Fmax are very similar
to each other), leading to a weak dependence from the distance. All the corrections
provide ∆v very similar to each other, and this does not always guarantee the sat-
isfaction of the distance constraints. Large values of β correspond instead to large
values of Fmax and steep profiles of F , which can involve too large corrections and
excessive semi-major axis differences. Since in each test the employed value of β
was also its minimum allowed value βmin (smaller values would not yield the desired
shape for the attractive and repulsive contributions UA and UR), when the profile of
F is too flat, it can be assumed β > βmin to reduce the chances that the method fails.
On the contrary, in the case of steep profiles, it is not possible to adjust the value of
β , because its reduction would not produce the desired shape. In these cases, one
has to tweak the definition itself of the ratio β by changing the distance boundaries
[Dmin Dmax] and/or the parameters [αA αR] that influence its evaluation.

As next step for the inspection of the method, the effect of the parameters αA
and αR on the success rate has been considered. These parameters are responsible
for the width of the activity/inactivity regions of the potentials and, together with
the ratio β , for the steepness of the functions F . By applying the tolerance ε = 20%
to identify the successful tests, the failure rate is approximately equal to 7%, with
Fig. 16 showing how this rate can be divided according to the employed values of
αA and αR. As expected, the smaller the activity region (large αA, small αR), the

Fig. 16 Failure rate associated
with different [αA αR] sets.
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steeper the functions profiles, and the higher the chances that the method fails.
Figures 17 and 18 show the ∆v budget and the number of control actions Na re-

quired for the cluster keeping; each marker refer to an entire cluster, i.e. the depicted
∆v and Na are averaged over the entire population of spacecraft. None of the param-
eters change significantly with the set of operational constraints (for a given number
N of spacecraft), but they both increase with the population of the cluster (for a
given set of constraints), since the reduced relative separations require corrective
maneuvers more frequently.

Finally, Figs. 19 and 20 focus on the violations of the minimum and maximum
DC, showing how their frequency varies with their intensity, which is expressed
in percentage terms with respect to the distance boundaries Dmin and Dmax. The
recorded violations of the minimum distance boundary are spread in almost the en-
tire range 0-20%, but an increase in their size corresponds to a reduction in their
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Fig. 17: ∆v budget expressed as a function of
the distance constraints ([A B C D]) and the

number N of spacecraft (10 = , 8 = , 6 = ,
4 = ).
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Fig. 18: Number of control actions expressed
as a function of the distance constraints ([A B
C D]) and the number N of spacecraft (10 = ,

8 = , 6 = , 4 = ).
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Fig. 19: Frequency vs intensity of the minimum distance constraints violations. Different colors
refer to different numbers N of spacecraft (10 = , 8 = , 6 = , 4 = ).
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Fig. 20: Frequency vs intensity of the maximum distance constraints violations. Different colors
refer to different numbers N of spacecraft (10 = , 8 = , 6 = , 4 = ).
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frequency, with large violations occurring only sporadically. In addition, the expe-
rienced violations decrease with the number of spacecraft N, and for the sparsest
clusters (N = 4 and N = 6) they even reduce to zero. This behaviour was already
anticipated, and can be attributed to the fact that an increase of the cluster density
involves smaller relative separations, leading thus to higher chances for a violation
to occur.

For what concerns the violations of the maximum distance constraints, it must be
recalled that they relate only to the first spacecraft of the chain, due to the drift of the
cluster in the positive along-track direction caused by the orbital decay. Once again
an inverse relationship exists between the frequency and the size of the violations,
but this time they are less severe and remain always below 6% of the Dmax bound-
ary; as a matter of fact, with reference to the unsuccessful tests, in the majority of
the cases the APF application failed because the minimum distance boundary was
critically violated, not the maximum distance boundary.

7 Conclusions

An artificial-potentials-based technique is proposed to perform cluster keeping. To
guarantee a safe relative motion, the loose distance constraints and the large number
of spacecraft that characterize a cluster scenario require new procedures, with re-
spect to what is typically done in a formation. The control scheme does not have to
maintain a precise relative configuration, but can simply react on the current one and
modify it, if needed, while ensuring that the desired distance constraints remain sat-
isfied. At the same time, to properly deal with the large amount of involved objects,
the cluster keeping scheme should be autonomous and scalable. These features can
be found in the technique of the artificial potentials, which can provide a simple and
reactive guidance and control scheme, as it is only based on the current positions.

The proposed technique is tailored for clusters of spacecraft distributed in the
along-track direction, so that their relative motion can be properly altered by just
adjusting their semi-major axes, and in turn their mean motions. Through the use
of the artificial potentials, the orbital corrections can be based on the sole current
distance between the objects, and no orbital propagation or optimization schemes
are required, paving the way for the on-board applicability of the algorithm. The
proposed technique is not only real-time capable, but takes also the features of the
propulsion system into account, thus including realistic limitations on the orbital
corrections that can be performed by the spacecraft.

The provided results show the effectiveness of the proposed strategy.
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