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Abstract Within the near future a high rise of automatic flights of unmanned aerial
vehicles beyond visual line of sight is expected. In order to efficiently coordinate
these flights, unmanned traffic management systems will require precise information
about the planned trajectories. This paper introduces an approach for using time
annotated non-uniform B-Splines to represent the 4D trajectory of a UAV. First, it
depicts the mathematical requirements for spline based representations that evolve
from the dynamic constraints of hybrid aircraft, i.e. UAVs that are able to hover as
well as to fly airborne at high speed. We then present a 4D representation by using
time as primary parameter of splines. This imposes additional restrictions on the
modeling of the used splines. In this paper we show how to fulfill these restrictions
for various cases, such as straight line segments under a given acceleration or turns
at constant airspeed.

1 Introduction

Until recently, automatic flights of unmanned aerial vehicles (UAVs) beyond vi-
sual line of sight (BVLOS) have been highly restricted, resulting in very few BV-
LOS operations. However, recent changes in aviation regulations in combination
with current work of the Joint Authorities for Rulemaking on Unmanned Systems
(JARUS), especially SORA [6], lead the way for permission procedures of routine
UAV operations even outside the operator’s line of sight. As this is expected to sig-
nificantly increase the number of unmanned flights, sufficient technical means have
to be developed in order to avoid collisions and efficiently coordinate these flights.

Different stakeholders have published blueprints about their understanding of an
unmanned traffic management system (UTM) [1, 13]. A common point in these is
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the need for 4D trajectories, i.e. a representation of the UAV’s path over time. The
usage of 4D trajectories allows smaller separation limits compared to the current
ATM situation where information is only available about the aircraft’s path itself,
i.e. the 3D representation. This results in bigger uncertainty of collision predictions
as the future trajectory of the aircraft has to be estimated based on its current speed.
To account for this uncertainty, ATMs have to apply high separation limits.

It has to be expected that unmanned aircraft operated beyond visual line of sight
will be required to submit a trajectory for the entire flight, i.e. until landing, for ap-
proval to the UTM. The reason why trajectories have to be planned until landing is
obvious: Assumed aircraft would plan their trajectories for a part of the remaining
flight only, they could enter a state in which a safe flight to the desired landing site
can no longer be performed. This can happen if e.g. a section of the remaining path
that had not yet been provided to the UTM has been reserved for another UAV in the
meantime. The only way to prevent this would be to reserve the corridor to the land-
ing site for a superfluously large amount of time. By providing the entire trajectory
even before start, the UTM can ensure a safe flight without the need for trajectory
replanning in-flight, apart from reacting to other intruders not communicating with
the UTM.

Fig. 1 UAV Controller Cascade

To enable UAVs to perform reasonable trajectory planning, we propose the fol-
lowing general layout of a UAV controller, which has been adapted from [2], see
Figure 1. The cascade is input abstract mission goals such as examination of an area
or hovering over a specific point of interest. This set of goals is then sorted by a mis-
sion planner, possibly omitting some of the goals, e.g. due to insufficient remaining
energy. Next, a path is calculated that connects and fulfills the given mission goals.
This path consists of straight line segments, circular turn segments and hover phases.
Additional to the 3D geometry, each element is annotated with a desired speed, or
duration in case of hovering. The trajectory planner then generates a 4D trajectory
for this path that allows for the UAV’s dynamic constraints, e.g. its maximum accel-
eration. This generated trajectory gets transmitted to the UTM where it is checked
for collisions with other trajectories that have already been registered. It is only after
after a successful UTM approval that the trajectory gets passed on to the trajectory
controller.

Nevertheless, even assuming a feasible trajectory has been determined and ap-
proved by the UTM, various reasons can render a recalculation necessary, including
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a change of mission goals, detection of previously unknown obstacles or change
in wind conditions causing the trajectory to break the UAV’s dynamic constraints.
While an update of mission goals doesn’t obligatory require an immediate recalcu-
lation of the trajectory as it still guarantees a safe flight, the other two circumstances
most certainly do. Therefore, a deterministic approach has to be chosen for the tra-
jectory planner in order to guarantee definite computation time limits.

Existing work on 4D trajectory planning mainly focused on waypoint based ap-
proaches [3, 5]. For this approach a sequence of time—position pairs with strictly
increasing time values is calculated based on a given path. While this enables easy
determination of the UAV’s position for any point in time included in the sequence,
the exact position for any other point in time depends on the exact implementation
of the UAV’s controller. Therefore, the interval between two consecutive points in
time in the sequence has to be relatively small to prevent high uncertainties. This in
turn leads to an inefficiently high number of waypoints.

Additionally, the determination of other details of the trajectory can become a
complex problem. For example, the exact velocity at a given point isn’t unambigu-
ously defined by the progress of waypoints. The most simple approach to determine
the correct velocity would be to assign to each waypoint the velocity vector obtained
from dividing the spatial distance to the next waypoint by the respective time inter-
val. However, this would lead to piece-wise constant velocities with jumps at the
transition from one segment to the next. As this would require infinite accelerations,
this approach is obviously not feasible. Therefore, a trajectory controller has to im-
plement a quite complex functionality in order to generate a steady velocity curve
that is consistent with the given trajectory.

For 3D applications, B-Splines have been used to continuously represent a de-
sired path [8, 9]. As B-Splines of degree p create piece-wise defined, p times dif-
ferentiable polynomials, smooth acceleration curves can be obtained easily. Nev-
ertheless, the exact position after a given time or distance cannot be determined
analytical. Therefore, different approaches have been followed in order to generate
continuous 4D trajectories. In order to coordinate cooperating UAVs [4] introduces
an additional mapping which translates a point in mission time to the correspond-
ing curve parameter. However, for this approach Pythogorean Hodograph Bézier
curves have been used to represent the individual paths of the cooperating UAVs.
This leads to redundant information compared to the use of B-Splines as the bound-
ary conditions at the transition between trajectory segments have to be represented
by parameters of both segments, thus increasing the complexity of the optimization
problem. In contrast, time annotated B-Splines have been used in [7] to precisely de-
scribe a look-at trajectory for a camera shot as well as the corresponding trajectory
of the quadrocopter to which the camera is attached.

However, all of the mentioned approaches require the solution of an optimization
problem in order to determine the desired trajectory. As it is impossible to guarantee
feasible results after a given time for these algorithms we will present a deterministic
approach for trajectory calculation assuming a previously planned path is available.

The remainder of this paper is structured as follows: First, we will analyze the
dynamic constraints that arise from flight mechanics of unmanned aircraft. Consid-
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ering these constraints, we introduce a mathematical representation of 4D trajecto-
ries based on non-uniformal B-Splines. We will then present how the convex hull
property of B-Splines can be used to implement an efficient algorithm that checks
for collisions of two given trajectories. The main part of this paper consists of our
trajectory planning approach which allows to deterministically calculate an appro-
priate B-Spline for an input path.

2 Dynamic Constraints of Aircraft Trajectories

For a trajectory representation to be able to accurately reproduce the trajectory of
an aircraft, it has to obey the relevant dynamic constraints arising from the aircraft’s
flight mechanics. In order to provide a representation suitable for trajectories of any
kind of UAV, we will perform this analysis on tiltwing aircraft: A tiltwing aircraft is
a hybrid aircraft which is able to hover like a multirotor as well as to fly wing-borne
during cruise flight [12]. The transition between those two flight states is achieved
by rotating its wing around the aircraft’s lateral axis: During cruise flight, the aircraft
resembles a fixed-wing aircraft resulting in lift being generated by the wing while
the main propulsion system is used to compensate for the aircraft’s drag. In order to
decrease the desired airspeed, the wing is slowly rotated until the main propellers’
thrust points upwards. At this point, thrust is used to counter the gravitational force
and no force is applied in horizontal direction, so the aircraft hovers with an airspeed
Va = 0.

During transition between cruise and hover flight, the rotation of the main wing
also alters the direction of the moments of torque produced by the aircraft’s ailerons
as well as by differential thrust. While in cruise flight the ailerons produce a moment
around the roll axis and differential thrust creates a yaw moment, this attribution is
swapped during transition resulting in differential thrust producing a roll moment
whereas the ailerons are used to produce a yaw moment in hover flight. Addition-
ally, as the horizontal airspeed decreases during transition, so does the aileron’s
effectiveness. Therefore, a tail propeller is needed to stabilize the aircraft around the
pitch axis during low speed flight.

As the thrust vector always lies inside the aircraft’s symmetry plane, no direct
force can be applied in lateral direction. Instead, the aircraft has to tilt its lift vector
by rolling. Even assuming negligible short time constants for control surface deflec-
tions, a specific bank angle cannot be attained immediately as the roll rate is limited
by various factors. Additionally, in hover flight no direct force can be applied in
forward direction as the thrust points upwards. Therefore, the aircraft has to pitch
in order to produce a longitudinal acceleration. Again, even assuming instantaneous
change of the tail propeller’s thrust, having a limited maximum pitch rate prevents
abrupt changes of longitudinal acceleration during low-speed flight.
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3 4D Trajectory Representation

With the aircraft’s acceleration being the second derivative of its position with re-
spect to time, requiring steadiness for acceleration implies the need for the aircraft’s
trajectory being three times continuously differentiable. One way to represent three
times differentiable functions is by using B-Splines of third degree.

3.1 Non-Uniformal B-Splines

A B-Spline of degree p with k segments is defined by a knot vector T and a set of
control points P:

T =
{

τ0 = . . .= τp,τp+1, . . . ,τp+k = . . .= τ2p+k ∈ N
}

(1)

P =
{

Pi ∈ R3, 0≤ i≤ p+ k−1
}

(2)

The knots have to be monotonically increasing, i.e. τi ≤ τi+1, with the additional
restriction τi < τi+p+1.

Using the knot vector, so called B-Spline basis functions N j
i (u) can be defined:

N0
i (u) =

{
1 for τi ≤ u < τi+1
0 else (3)

N j
i (u) =

u− τi

τi+ j− τi
N j−1

i (u)+
τi+ j+1−u

τi+ j+1− τi+1
N j−1

i+1 (u) (4)

The position can then be calculated by weighting each control point with its respec-
tive basis function:

x(u) =
p+k−1

∑
i=0

N p
i (u)Pi . (5)

Looking at (4) some properties of B-Splines can be seen [11]:

1. The N j
i (u) form piece-wise polynomials of degree j. Therefore, x(u) can also be

represented by piece-wise defined polynomials of degree p.
2. N j

i (u) is non-zero only for τi ≤ u < τi+ j+1. Together with (5) this implies that
changing Pi impacts the spline in this parameter range only. This property is
called local support of the control points.

3. It can be proven that 0 ≤ N j
i (u) ≤ 1 and ∑

2p+k− j−1
i=0 N j

i (u) = 1. Therefore, each
point x(u) lies inside the convex hull for the p+1 control points Pi, τi−p ≤ u <
τi+1. Figure 2 displays a B-Spline of third degree with five segments illustrated
by different line styles. Also, the corresponding control points and the convex
hull for all control points effective during the second segment are drawn.
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Fig. 2 Third Degree B-Spline Consisting of Five Segments Displayed With Control Points and
Convex Hull for Second Segment.

3.2 Time Annotated B-Splines

Using the derivatives

N′ ji (u) =
p

τi+ j− τi
N j−1

i (u)− p
τi+ j+1− τi+1

N j−1
i+1 (u) and (6)

N′′ ji (u) =
p

τi+ j− τi
N′ j−1

i (u)− p
τi+ j+1− τi+1

N′ j−1
i+1 (u) (7)

the (non-normalized) vectors denoting the tangent and curvature at x(u) can be cal-
culated by

x′(u) =
p+k−1

∑
i=0

N′pi (u)Pi . (8)

x′′(u) =
p+k−1

∑
i=0

N′′pi (u)Pi . (9)

Multiplying these with du/dt and d2u/dt2, respectively, one actually gets correct
velocity and acceleration vectors. However, u(t) cannot easily be represented by an
analytic function in general. Different approaches have therefore been proposed in
order to link position and time of a given B-Spline based path.

Reference [8] assumes a constant speed of the controlled UAV and uses the
curvature of the spline to determine the appropriate lateral acceleration. For this
approach a feasible path has to be assumed, i.e. the maximum allowed curvature
is constant for the whole path, depending only on the desired constant speed. In
contrast, [9] presented a controller concept for an unmanned helicopter. With heli-
copters being able to decelerate even to a full stop in air, this approach determines
the current velocity command by analyzing the upcoming speed limits due to high
curvatures.

However, in both cases the actual position cannot be determined efficiently for
a given point in time: Even using the constant speed approach, the entire trajectory
has to be integrated in order to identify the position for a given traveled distance or
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interval. Considering the second approach where the speed is unknown a priori, the
controller has to be simulated in order to determine the time—position mapping.
Moreover, even if a suitable time—position mapping can be obtained, disturbances
during flight will likely result in unpredictable time deviations as the proposed con-
trollers don’t know of any time annotation. For example, in the first variant the
controller won’t reduce the speed below the planned value following an unintended
brief excess of speed. Hence, the aircraft will remain ahead of the predicted position
for the rest of the flight.

In order to enable the design of a controller that is able to track the trajectory even
w.r.t. time, the position has to be defined as a function over time. Using B-Splines
as introduced above, this can be achieved by interpreting knots as points in time,
leading to an implicit definition of velocity and acceleration:

x(t) =
p+k−1

∑
i=0

N p
i (t)Pi (10)

v(t) =
p+k−1

∑
i=0

N′pi (t)Pi (11)

a(t) =
p+k−1

∑
i=0

N′′pi (t)Pi (12)

3.3 Trajectory Collision Checking

One central property of B-Splines is each segment completely lying inside the con-
vex hull of the p+ 1 control points that are active for the particular segment. In
conjunction with the knot values representing points in time this allows efficient
collision checking of two trajectories as sketched in Algorithm 1:

Each segment i of trajectory A is valid between τA
i and τA

i+1 for p ≤ i < p+ k.
Therefore, the algorithm first determines jlow and jhigh so that the corresponding
segments of trajectory B are valid at τA

i − tguard and τA
i+1 + tguard , respectively. tguard

denotes the separation in time between two UAVs that is enforced by the UTM. For
each pair of i and j ∈ [ jlow, jhigh] the convex hulls of the according segments are
then examined for intersection. CREATEBOUNDINGBOX is expected to construct
the minimal bounding box containing all given control points, expanding the edges
by a certain length to the outside allowing for the required spatial separation of
UAVs.

It is only if two bounding boxes intersect that the comparatively expensive func-
tion ENSURESEPARATION gets called. This function still has to discretize the cor-
responding segments and perform pairwise distance calculations as is the case for
waypoint based approaches. However, using B-Splines this expensive function has
to be evaluated for few segments only, as most trajectory pairs can be expected to
have little areas of intersection, if any.
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Algorithm 1 Collision Checking of Trajectories A and B
procedure COLLISIONCHECK(T A, PA, T B, PB) . Returns true if trajectories collide

kA← length of T A−2p−1
kB← length of T B−2p−1
jlow← p
jhigh← p
for i← p to (kA + p) do

while τB
jlow+1 ≤ (τA

i − tguard) do . Find jlow so τB
jlow
≤ τA

i − tguard < τB
jlow+1

jlow← jlow +1
if jlow ≥ (kB + p) then . Beyond end of trajectory b

return false
while τB

jhigh+1 ≤ (τA
i+1 + tguard) and jhigh < (kB + p) do . Find proper jhigh

jhigh← jhigh +1
BoxA← CREATEBOUNDINGBOX(PA

i−p, . . . , PA
i )

for j← jlow to jhigh do
BoxB← CREATEBOUNDINGBOX(PB

j−p, . . . , PB
j )

if CHECKINTERSECTION(BoxA, BoxB) then
if not ENSURESEPARATION(T A, PA, T B, PB, i, j) then

return true

4 Flight Trajectory Planning Algorithm

In the last section we have shown how time annotated B-Splines can be used to
precisely describe an aircraft’s trajectory. Additionally we have pointed out an effi-
cient approach to check for collisions between two given trajectories. This simplicity
comes at a cost though: In general, determining appropriate knots and control points
for a given geometric layout is a complex optimization problem [10, 11]. However,
as has been pointed out in Section 1 the expected need for in-flight trajectory re-
planning requires a deterministic approach.

From (1) and (2) it can be seen that k+1 distinct knots and k+ p control points are
required for a spline with k segments. As stated above, each segment p≤ i < p+ k
is valid for τi ≤ t < τi+1 and depends on p+1 control points {Pi−p, . . . , Pi} only.

Therefore, it seems reasonable to follow an iterative approach in which τi+1 and
Pi are determined based on τi and {Pi−p, . . . , Pi−1} only. For the first segment,
i = p, sufficient values for {τ0 = . . . = τp} and {P0, . . . , Pp−1} have to be deter-
mined, of course. The knots are obviously defined as the point in time at which the
trajectory is supposed to start. Using the initial conditions for position, velocity and
acceleration, according control points can be calculated as evaluating a B-Spline at
t = τ0 yields the following correlations:

Copyright by the author(s) and/or respective owners. Published with authorisation by CEAS.



Flight Planning Using Time Annotated B-Splines for Safe Airspace Integration 9

x(τ0) = P0 (13)

v(τ0) =
3

τp+1− τp
(P1−P0) (14)

⇔ P1 = x(τ0)+
τp+1− τp

3
v(τ0) (15)

a(τ0) =
6

τp+1− τp

(
P0−P1

τp+1− τp
+

P2−P1

τp+2− τp

)
(16)

⇔ P2 = x(τ0)+
(τp+1− τp)+(τp+2− τp)

3
v(τ0)

+
(τp+1− τp)(τp+2− τp)

6
a(τ0) (17)

Additionally, it can be shown that for B-Splines of degree three the derivative of
acceleration, jerk ji, is constant for each segment, so Pi can be determined using

Pi = Pi−1 +∆3(τi)∆2(τi)

[
∆1(τi) ji

6
+

Pi−3−Pi−2

∆3(τi−2)∆2(τi−1)

+
Pi−1−Pi−2

∆3(τi−1)∆2(τi−1)
+

Pi−1−Pi−2

∆3(τi−1)∆2(τi)

]
(18)

with∆d(τi) = τi+d− τi .

Hence, the problem shifts to splitting the trajectory into reasonable spline segments
for which then appropriate ji and ∆1(τi) have to be determined.

Adapting [2], we assume a path to be a sequence of straight line segments, turns
and hovering phases. The sequence is built so that each line segment is followed
by a non-straight element and vice versa. Additionally, we require the acceleration
to be zero at every transition between two elements. Hence, it seems reasonable to
examine these different kinds of path elements separately.

4.1 Hover Phase

A hover phase is defined as an interval during which the aircraft’s ground speed and
acceleration both are constantly zero. This directly implies jhover = 0 and obviously
∆ thover equals the desired hover duration.

4.2 Turn Elements

We assume turn elements to be defined by a radius and both velocity vectors at start
and end. In this paper, we require all turns to begin and end with unaccelerated and
identical speed, i.e.
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astart = aend = 0 and (19)
Vstart =Vend . (20)

Obviously, a turn cannot be realized by a single segment, as (19) would require a
zero jerk. This would result in a constant acceleration of zero for the whole segment,
so the velocity couldn’t be transformed accordingly.

For a two-segment approach, it can be shown that assuming symmetric seg-
ments, i.e. ∆ t1 = ∆ t2 and v junction ||(vstart + vend), the speed varies strongly dur-
ing the turn, reaching its minimum Vjunction = ||vstart + vend ||/2 at half turn, e.g.
Vjunction =Vstart/

√
2 for a turn of 90 degrees.

Therefore, a three-segment approach is used. It seems reasonable to interpret the
three segments as discrete phases of bank angle incrementation, flight at constant
bank angle, and bank angle decrementation. Additionally, we will assume a sym-
metric layout of the turn, thereby requiring

∆ t3 = ∆ t1 . (21)

For the following considerations, we use the vectors as depicted in Figure 3:

vi,n =
vi

||vi||
(22)

n =
v1×v4

||v1×v4||
(23)

ri = n×vi,n (24)

Fig. 3 Relevant Vectors for Turn Calculations

Here, vi,n denotes the normalized velocity vector with i being 1 to 3 at the begin-
ning of the first to third segment, respectively, and 4 at the end of the last segment.
Therefore, v1 = vstart and v4 = vend . n is the normal vector of the plane spanned by
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v1 and v4. This vector is used to calculate the normalized vector ri that is perpen-
dicular to vi inside the plane and points to the inside of the turn. We can then write
the jerk vectors using vi,n and ri:

j1 = j1,t v1,n + j1,r r1 (25)
j3 = j3,t v4,n + j3,r r4 (26)

(27)

With these definitions, considering (19) and (21), the velocity and acceleration
vectors at start and end of the middle segment are

v2 =

(
V1 + j1,t

∆ t2
1

2

)
v1,n + j1,r

∆ t2
1

2
r1 (28)

v3 =

(
V4 + j3,t

∆ t2
1

2

)
v4,n + j3,r

∆ t2
1

2
r4 (29)

a2 = ( j1,tv1,n + j1,rr1)∆ t1 (30)
a3 =−( j3,tv4,n + j3,rr4)∆ t1 (31)

Due to the posed symmetry requirement, we expect V2 =V3 as well as A2 = A3. The
previous equations combined with (20) lead to

j1,t = j3,t and (32)
| j1,r|= | j3,r| (33)

As we expect the acceleration vectors to point to the inside of the turn, i.e. in direc-
tion of ri, from (30), (31) and (33)

j1,r > 0 ∧ j3,r < 0 (34)
⇒ j3,r =− j1,r (35)

can be concluded.
For the second segment, sufficient jerk and duration have to be calculated in order

to transfer v2 and a2 to v3 and a3, respectively:

j2 =
a3−a2

∆ t2
(36)

v3 = v2 +a2∆ t2 +
j2

2
∆ t2

2 (37)

⇔ ∆ t2 =
2V1 (v4,n−v1,n)

[ j1,r (r1 + r4)− j1,t (v4,n−v1,n)]∆ t1
−∆ t1 (38)

This leaves ∆ t1 and j1 being the only unknown variables. Recalling the interpre-
tation of the turn’s first spline segment as phase of building up bank angle, ∆ t1 and j1
can be determined based on the maximum allowed lateral acceleration for this turn,
ar,max, and its rate of change, jr,max. Assuming j1,r to be sufficiently perpendicular
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12 Nicolai Voget, Johannes Krimphove and Dieter Moormann

to the velocity vector during the entire segment,

j1,r = jr,max and (39)

∆ t1 =
ar,max

j1,r
(40)

can be concluded. As we want the speed to remain as constant as possible during
the entire turn, by requiring V2

!
=V1 (28) can be transformed to

4V1 j1,t +
(

j2
1,t + j2

1,r
)

∆ t2
1

!
= 0 (41)

⇒ j1,t =−
2

∆ t2
1

V1 +

√
4

∆ t4
1

V 2
1 − j2

1,r . (42)

Examining the above equations one might note the absence of positional con-
straints. However, since a turn cannot resemble a perfect circular segment due to the
requirement of steady transitions from and to the adjacent line segments, forcing
exact positions for a given turn geometry a priori seems unreasonable. Instead, we
propose to delay the exact determination of start and end point of the turn until after
the calculation of the turn’s jerks and intervals. Therefore, a turn is constructed with
the calculated values starting from the intersection of incoming and outgoing line
segments, see Figure 4. As the endpoint won’t reside on the outgoing line segment,
the whole turn is then moved along the first line segment.

Fig. 4 Determining Start and End Position of Turn Element

Starting with v1, x1 gets propagated according to the calculated jerk—interval
sequence, eventually ending in x4. The distance of x4 to the second line can be
calculated as l = (x4−x1) ·r4. Also, moving any point one unit along v1,n increases
its distance to the second line by dl = v1,n ·r4. Therefore, correct starting and ending
points can be obtained by
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xstart = x1−v1,n
(x4−x1) · r4

v1,n · r4
(43)

xend = x4−v1,n
(x4−x1) · r4

v1,n · r4
. (44)

The previous equations can be used to create turn elements with nearly constant
ground speed and yaw rate. In presence of wind, though, airspeed, yaw rate and
commanded bank angle vary significantly. However, in many cases keeping airspeed
and bank angle constant is supposed to be more important than the exact shape of a
turn. As the calculations of the turn segments’ intervals and jerks depend on veloc-
ity vectors and the maximum allowed lateral acceleration only, turns with constant
airspeed can be calculated easily:

1. Determine the desired maximum lateral acceleration from the maximum allowed
bank angle: ar,max = tan(Φmax)g.

2. Calculate starting and ending velocities expressed both with reference to air and
earth, va,1 and va,4 as well as vk,1 and vk,4: Using desired airspeed Va, estimated
wind velocity vw and normalized direction vectors of the path at start and end of
the turn, d1 and d4, Figure 5 yields

vw,i,t = vw ·di (45)

|va,i,r|= |vw,i,r|=
√

V 2
w − (vw ·di)

2 (46)

va,i,t =

√
V 2

a −|va,i,r|2 =
√

V 2
a −V 2

w +(vw ·di)
2 (47)

vk,i = (va,i,t + vw,i,t)di (48)
va,i = vk,i−vw . (49)

Fig. 5 Velocity Vectors Under
Wind

3. Evaluate (21) to (42) with va,1, va,4 and ar,max to receive jerks and intervals.
4. Determine starting and ending point of the turn according to (43) and (44) using

vk,1 and vk,4.
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4.3 Straight Line Segments

Because the exact start position of a turn element can only be determined after
the calculation of the turn’s spline segments it seems reasonable to postpone the
calculation of line segment parameters until after the processing of the succeeding
turn element. Using velocity and position of the end of the previous turn as well as
the start of the following turn, the geometric constraints of a straight line segment
are completely given. Using the previously discussed algorithm to calculate turns
it is guaranteed that both velocities are parallel to each other as well as to the line
connecting both points.

Analog to the turn algorithm, a straight line segment can be split into separate
spline segments of constant jerk each: In order to transform the velocity from Vstart
to Vend an acceleration first has to be built up from 0 to±Amax. For the following, we
assume the maximum applicable jerk and acceleration both being constant over the
whole speed range and equal in positive and negative direction. After a segment of
constant acceleration, it has to be decreased to A = 0 again. We assume the straight
line segment not to be shorter than the distance needed for this speed change. If
the straight line segment is even longer, an additional spline segment with constant
speed is inserted. In order to minimize the time needed for the straight line segment,
this constant speed spline segment is the last segment for Vstart < Vend and the first
segment otherwise. As Figure 6 shows, the second case equals the reflection of the
first, therefore the first case is examined:

max

0

+Jmax

max

0

+A max

Vmin

Vmax

t 0 t 1 t 2 t 3 t 4

Xstart

Xend

max

0

+Jmax

max

0

+A max

Vmin

Vmax

t 0 t 1 t 2 t 3 t 4

Xstart

Xend

Fig. 6 From Top to Bottom: Jerk, Acceleration, Speed and Position For Straight Line Spline Seg-
ments. Straight Line Segment With Vstart <Vend on the Left, Vstart >Vend on the Right.
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∆ t1 = ∆ t3 =
Amax

Jmax
(50)

∆ t2 =
Vmax−Vmin

Amax
−∆ t1 (51)

For small speed differences, Vmax−Vmin < ∆ t1 Amax, ∆ t2 would become negative.
To prevent this, forcing ∆ t2 to be zero for this case leads to

∆ t1 = ∆ t3 = min
(√

Vmax−Vmin

Jmax
,

Amax

Jmax

)
. (52)

The distance covered during this time can be calculated as

∆X =Vmin (2∆ t1 +∆ t2)+ Jmax∆ t1

(
∆ t2

1 +
3
2

∆ t1∆ t2 +
1
2

∆ t2
2

)
, (53)

therefore the duration of the additional constant speed segment with Vmax has to be

∆ t4 =
Xend−Xstart −∆X

Vmax
. (54)

4.4 Sample Trajectory

To prove the applicability of the previously presented algorithms, a sample trajec-
tory has been created which is displayed in Figure 7 and Figure 8.

The trajectory begins in the lower left corner with a hover phase lasting 3 sec-
onds. In order to compensate for a wind of 5 m/s blowing in negative x direction, the
aerodynamic velocity has to be 5 m/s in positive x direction. Following, the aircraft
accelerates in positive x direction up to an airspeed of 25 m/s. During the succeeding
turn the airspeed is held at 25 m/s while the ground speed increases from 20 m/s to
23 m/s due to the wind changing from headwind to crosswind. After a subsequent
straight line segment with constant speed another turn follows, this time designed for
constant ground speed. Therefore, the airspeed decreases to approximately 20.3 m/s
as the wind’s effect changes towards tailwind.

5 Conclusion

In this paper we demonstrated how time annotated non-uniformal B-Splines can be
used to precisely represent the entire trajectory of a UAV. Forming a function of
position over time, this model allows calculating a UAV’s position precisely for any
given point in time, thereby enabling UTMs smaller separation limits.

To understand the dynamic constraints that have to be fulfilled in order to ac-
curately describe a trajectory, we first analyzed relevant UAV flight mechanics. In
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Fig. 7 Sample Trajectory Calculated With the Presented Algorithms
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Fig. 8 Speed, Lateral and Longitudinal Acceleration for Sample Trajectory. Both With Reference
to Ground and Wind. Turn Segments Shaded.

the following section, B-Splines have been expanded by interpreting their knot val-
ues as points in time, thereby transforming the B-Spline to a function over time.
This transformation enables direct calculation of velocity and acceleration for any
point in time. Following, we showed how the convex hull property of time annotated
B-Splines allows an efficient trajectory collision detection algorithm.

As B-Splines are difficult to calculate for a given set of geometric constraints,
the main part of this paper concentrated on finding appropriate B-Spline parame-
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ters for an input path. In order to guarantee a quick reaction to changes, e.g. due
to the detection of an obstacle, a deterministic approach had to be used. Assum-
ing the input path to consist of a sequence of hover phases, turns, and straight line
segments connecting the former two, equations were presented to determine appro-
priate interval—jerk sequences for these different path elements.

The presented algorithms were finally validated by analyzing a created sample
trajectory. Due to the iterative structure of the proposed method, the computation
time required to generate a trajectory for a given input path is extremely low: Using
a Raspberry Pi Zero W which features a 1 GHz single-core ARM CPU with 512 MB
RAM, the calculation of a trajectory for a path of 1201 straight line segments con-
nected by 800 turns and 400 hover points resulting in 9594 B-spline segments takes
less than 60 ms.
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