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Abstract The paper discusses an extension of µ (or structured singular value), a
well established technique for the study of linear systems subject to structured un-
certainty, to nonlinear polynomial problems. Robustness is a multifaceted concept
in the nonlinear context, and in this work the point of view of bifurcation theory is
assumed. The latter is concerned with the study of qualitative changes of the steady-
state solutions of a nonlinear system, so-called bifurcations. The practical goal mo-
tivating the work is to assess the effect of modeling uncertainties on flutter when
considering the system as nonlinear. Flutter is a dynamic instability prompted by
an adverse coupling between aerodynamic and elastic forces. Specifically, the on-
set of flutter in nonlinear systems is generally associated with Limit Cycle Oscilla-
tions emanating from a Hopf bifurcation point. Leveraging µ and its complementary
modeling paradigm, namely Linear Fractional Transformation, this work proposes
an approach to compute margins to the occurrence of Hopf bifurcations for uncer-
tain nonlinear systems. An application to the typical section case study with linear
unsteady aerodynamic and hardening nonlinearities in the structural parameters will
be presented to demonstrate the applicability of the approach.

1 Introduction

Flutter is a self-excited instability in which aerodynamic forces on a flexible body
couple with its natural vibration modes producing an undesired and often dangerous
response of the system. Therefore, flutter analysis has been widely investigated and
there are several techniques representing the state-of-practice (e.g. p-k method) [30].
These often assume that the model representing the system is linear, and the classic
approach is to look at the smallest speed V such that the system features a pair of
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purely imaginary eigenvalues. This speed Vf is called flutter speed and is such that
for V <Vf the aeroelastic system is stable.

One of the main issues related to flutter analysis using standard techniques arises
from the sensitivity of this aeroelastic instability to small variations in parameter
and modeling assumptions [29]. In addressing this aspect, in the last decades the so-
called flutter robust analysis was proposed, which aims to quantify the gap between
the prediction of the nominal stability analysis (model without uncertainties) and the
worst-case scenario when a certain set of uncertainties is contemplated. The most
well-known approaches, building on the Linear Fractional Transoformation (LFT)
and µ framework, are those from [21] and [3]. More recent results have focused on
LFT modeling strategies tailored to aeroelastic systems [16] and applications of µ

analyses to highly coupled aeroelastic instabilities [18].
The main limitation of the aforementioned nominal and robust approaches lies

in the fact that the analyzed system must be linear. While this assumption is of-
ten deemed acceptable, modern trends in the design of aerospace structures (e.g.
increased flexibility, enhanced performance) require a more realistic description of
the system and this compels to consider cases where the linear hypothesis no longer
holds [9]. While the study of nonlinear flutter for nominal (i.e. without uncertain-
ties) systems has reached a certain degree of maturity and understanding [6, 34],
the case with uncertainties has received far less attention. Therefore, it is motivated
the interest in the research community for strategies allowing an extension of the
powerful robust flutter linear approaches to the nonlinear case.

Recent work by the authors [17] proposed an approach combining Integral
Quadratic Constraints and Describing Functions methods to address robustness of
the post-critical behaviour of an uncertain system subject to hard-nonlinearities (e.g.
freeplay, saturation). While there the focus was on the deterioration of the response
(characterized by amplitude and frequency) in the face of the uncertainties, the goal
of this work is to provide robust stability margins for polynomial systems. That is,
to provide a measure of the proximity of the nominal nonlinear system to the loss of
stability.

The main idea is to use bifurcation theory [20] to define the conditions by which
stability is lost. This technique has been amply used in the aerospace community
[22, 1] and its choice in this particular context is motivated by the fact that equilibria
of nonlinear aeroelastic systems typically exhibit loss of stability in the form of
Limit Cycle Oscillations (LCO), which can be seen as a limited amplitude flutter.
In fact, the onset of LCOs corresponds to a Hopf bifurcation point in the system
[6], since the stable branch of equilibria (corresponding to the stable configuration
of the system at low speeds) loses stability and meet a branch of periodic solutions.
Taking the cue from this, the paper proposes numerical recipes, inspired by the LFT-
µ framework, to compute margins to Hopf bifurcations. The proposed bifurcation
margins can therefore be interpreted as nonlinear analogs of the robust stability
margins used in the context of robust (linear) flutter analysis [21, 3, 16].

Note finally, that previous works in the literature looked at the problem of com-
puting perturbations to bifurcations. For example, in [7] an extension to multidimen-
sional parameter spaces of standard methods for codimension-1 bifurcations was
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proposed. The central idea to determine locally closest bifurcations is to use normal
vectors to hypersurfaces of bifurcation points. Both direct and iterative methods are
proposed, with only the former, consisting of solving the full set of equations defin-
ing the bifurcation, applicable to the Hopf case (but deemed onerous, by the authors
in [7], from a computational perspective). This approach was applied in [26] to the
analysis of static bifurcations (namely transcritical and pitchfork) in flexible satel-
lites, making however a number of simplifying assumptions, e.g., no dependence of
the equilibrium on the uncertainties, system with Hamiltonian dynamics.

The layout of the article is as follows. Sect. 2 presents a cursory overview of
the techniques employed in the work. In Sect. 3 the proposed approach to compute
stability margins is detailed, whereas in Sect. 4 its application is demonstrated via
a known case study from literature. Finally, Sect. 5 gathers the main conclusions of
the work and future directions of research.

2 Background

2.1 Bifurcation analysis and continuation methods

Bifurcation analysis studies qualitative changes in the features of a nonlinear sys-
tem (e.g. number and type of steady-state solutions) when one or more parameters
on which the dynamics depend are varied [20]. Consider an autonomous nonlinear
system of the form:

ẋ = f (x, p) (1)

where x ∈ Rnx and p ∈ R are respectively the vector of states and the bifurcation
parameter, and f : Rnx ×R→ Rnx is the vector field. In this work f is assumed to
gather polynomial functions ( f ∈ C ∞), thus the Jacobian matrix of the vector field
∇x f : Rnx ×R→ Rnx×nx , denoted here by J, is always defined.

The vector x0 is called a fixed point, or equilibrium, of the system given by (1)
corresponding to p0 if f (x0, p0) = 0. Let us denote by n0 the number of eigenvalues
of J(x0, p0) with zero real part. Then x0 is called a hyperbolic fixed point if n0 = 0,
otherwise it is called nonhyperbolic.

Bifurcations of fixed points are concerned with the loss of hyperbolicity of the
equilibrium as p is varied. Specifically, two scenarios can take place: static bifur-
cations and dynamic bifurcations. This work will focus on the latter case only, also
referred to as Hopf bifurcation, at which branches of fixed points and periodic solu-
tions meet. The Hopf bifurcation theorem, giving conditions for the occurrence of a
dynamic bifurcation in a branch of equilibria, can be stated as follows [14].

Theorem 1 Suppose that the system ẋ = f (x, p), x ∈Rnx and p ∈R has an equilib-
rium (xH , pH) at which the following properties are satisfied:

1. J(xH , pH) has a simple pair of pure imaginary eigenvalues and no other eigen-
values with zero real parts. This implies, for the implicit function theorem, that
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there is a smooth curve of equilibria (x(p), p) with x(pH) = xH . The eigenvalues
ν(p), and ν̄(p) of J(x(p)), with ν(pH)=iω0, vary smoothly with p.

2.
d

d p
(Reν(p))|p=pH

6= 0 (2)

Then there is a unique three-dimensional center manifold passing through (xH , pH)
in Rnx ×R and a smooth system of coordinates for which the Taylor expansion of
degree 3 on the center manifold is given in polar coordinates (ρ,θ) by:

ρ̇ = (l0 p+ l1ρ
2)ρ

θ̇ = ω + l2 p+ l3ρ
2 (3)

If l1 6= 0, there is a surface of periodic solutions in the center manifold which has
quadratic tangency with the eigenspace of ν(p), ν̄(p). If l1 < 0, then these periodic
solutions are stable limit cycles, while if l1 > 0, the periodic solutions are repelling.

Condition 1 of Th. 1 requires that the Jacobian of the vector field has a pair of purely
imaginary eigenvalues (and no other eigenvalues on the imaginary axis). Condition
2, also known as the transversality condition, prescribes that these eigenvalues are
not stationary with respect to p at the bifurcation. A fundamental parameter deter-
mining the dynamic behavior in the neighborhood of a Hopf point is l1, also called
first Lyapunov coefficient. Its value determines whether the Hopf bifurcation is sub-
critical or supercritical. The importance of this aspect in nonlinear flutter analysis
will be commented in Sect. 4.

The computational tool of bifurcation analysis is numerical continuation, which
provides path-following algorithms allowing to compute implicitly defined mani-
folds [20]. These schemes are based on the implicit function theorem, which guar-
antees, under the condition that J is non-singular at an initial point (x0, p0), that
there exist neighbourhoods X of x0 and P of p0 and a function g : P→ X such that
f (x, p)= 0 has the unique solution x= g(p) in X . Examples of numerical techniques
to compute the implicit manifold g are Newton-Raphson, arclength, and pseudo-
arclength continuation [13]. These are efficiently implemented in freely available
software, such as AUTO [8] and COCO [5]. The latter will be used for all the con-
tinuation analyses performed in this work.

2.2 Linear Fractional Transformation and µ analysis

Linear Fractional Transformation (LFT) is the modeling paradigm in robust control
theory for analysis and control design of uncertain systems. The central idea is to
represent the original system in terms of nominal and uncertain components. To this
aim, the unknown parts are pulled out of the system, so that the problem appears as
a nominal system subject to an artificial feedback.

Let M ∈ C(p1+p2)×(q1+q2) be a complex matrix partitioned as:
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M =

[
M11 M12
M21 M22

]
(4)

and let ∆ ∈ Cq1×p1 . The upper LFT of M with respect to ∆ is defined as the map
Fu : Cq1×p1 −→ Cp2×q2 :

Fu(M,∆) = M22 +M21∆(I−M11∆)−1M12 (5)

A crucial feature apparent in (5) is that the LFT is well posed if and only if the
inverse of (I−M11∆) exists. Otherwise, Fu(M,∆) is said to be singular.

Available toolboxes [23] allow to efficiently build up LFTs by providing the par-
titioned matrix M, which completely defines the map (5) along with the set ∆ . In
robust control this set typically gathers parametric and dynamic uncertainties affect-
ing the system [36]. A general definition for this structured uncertainty set is:

∆ = diag(δiIdi ,δ jId j ,∆Dk)

i = 1, ...,nR; j = 1, ...,nC; k = 1, ...,nD;
(6)

where the uncertainties associated with nR real scalars δi, nC complex scalars δ j,
and nD unstructured (or full) complex blocks ∆Dk are listed in diagonal format.
The identity matrices of dimension di and d j take into account the fact that scalar
uncertainties are generally repeated in ∆ when the LFT of the system is built up.

The structured singular value is a matrix function denoted by µ∆ (M), where ∆ is
a structured uncertainty set. The mathematical definition is as follows:

µ∆ (M) =

(
min
∆̂∈∆

(
σ̄(∆̂) : det(I−M∆̂) = 0

))−1

(7)

if ∃∆̂ ∈ ∆ such that det(I−M∆̂) = 0 and otherwise µ∆ (M) := 0.
Equation (7) can then be specialized to the study of the robust stability (RS) of

the system represented by Fu(M,∆). At a fixed frequency ω , the coefficient matrix
M is a complex valued matrix; in particular, M11 is known, and the RS problem can
be formulated as a µ calculation:

µ∆ (M11) =

(
min
∆̂∈∆

(κ : det(I−κM11∆̂) = 0; σ̄(∆̂)≤ 1)
)−1

(8)

where κ is a real positive scalar. For ease of calculation and interpretation, the set
∆ is norm-bounded by scaling of M without loss of generality. The result can then
be interpreted as follows: if µ∆ ≤ 1 then there is no perturbation matrix inside the
allowable set ∆ such that the determinant condition is satisfied, that is Fu(M,∆) is
well posed and thus the associated plant is robust stable within the range of uncer-
tainties considered. On the contrary, if µ∆ ≥ 1 a candidate perturbation matrix (that
belongs to the allowed set) exists which violates the well-posedness condition. In
particular, the reciprocal of µ (auxiliary notation is dropped for clarity) provides a
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measure (by means of its ‖·‖∞ norm κ) of the smallest structured uncertainty matrix
that causes instability.

The calculation of the structured singular value is an NP-hard problem [4], thus
all µ algorithms work by searching for upper and lower bounds. The upper bound
µUB provides the maximum size perturbation σ̄(∆UB) = 1/µUB for which RS is
guaranteed, whereas the lower bound µLB defines a minimum size perturbation
σ̄(∆ LB) = 1/µLB for which RS is guaranteed to be violated. Along with this in-
formation, the lower bound also provides the critical perturbation matrix ∆ LB = ∆ cr

u
determining singularity of the LFT.

Note also that µ is evaluated in general on a discretized frequency range. This
has the drawback of possibly missing critical frequencies and thus underestimat-
ing the value of µ . However, newly developed algorithms using Hamiltonian-based
techniques [31] can also guarantee the validity of results over a continuum range of
frequencies.

3 Computation of robust margins to Hopf bifurcations

3.1 Problem statement

The objective is to compute for polynomial systems margins of stable equilibria to
the closest Hopf bifurcation. The starting point is the vector field f in (1), assumed
to be subject to real parametric uncertainties denoted by:

δ = [δ1; ...;δi; ...δnδ
], δ ∈ Rnδ (9)

This description allows to handle various sources of uncertainties, for example the
lack of confidence on the values of model parameters or simplifying assumptions
underlying the model. The expression for the uncertain vector field f̃ and associated
Jacobian J̃ is:

ẋ = f̃ (x, p,δ ), f̃ : Rnx ×R×Rnδ → Rnx , f̃ ∈ C ∞ (10a)

J̃ : Rnx ×R×Rnδ → Rnx×nx (10b)

Given a Hopf bifurcation point (xH , pH) for the nominal system f , and a value of
the bifurcation parameter p̄0 associated with a stable fixed point x̄0 of f , the goal
is to determine the smallest perturbation δ̄ ∈ δ such that f̃ undergoes at p̄0 a Hopf
bifurcation. In other words, the worst-case combination of parameters in δ is sought
such that the system experiences a Hopf bifurcation.

The goal stated above requires the adoption of a metric (for the magnitude of the
perturbation) to formalize the concept of worst-case. To this aim, let us consider a
generic uncertain parameter d, with wd indicating the uncertainty level with respect
to a nominal value d0 and a range δd ∈ [−1,1] representing the normalized uncer-
tainty. Note that d0 and wd are typically fixed by the analyst based on the knowledge
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of the nominal value and dispersion of the parameter d respectively. A multiplicative
uncertain representation [36] of d is thus obtained as:

d = (1+wdδd)d0 (11)

where δd = 0 corresponds to the nominal value of d, while δd = ±1 represents a
perturbation at the extreme of the parameter range (e.g., a variation of ±20% from
d0 if wd = 0.2). Once the normalization (11) is applied to the uncertain parameters
(9), a possible scalar metric (or norm) is the largest of the absolute values of the
elements in δ . This can be equivalently expressed as σ̄(diag(δ )), i.e., the maximum
singular value of the diagonal matrix with elements of δ on the diagonal. This metric
quantifies the deviation of the uncertain parameters from their nominal values along
the direction of the parameter space where this is largest. In fact, km = σ̄(diag(δ ))
can be regarded as a robust margin from bifurcation because km ≤ 1 means that a
candidate perturbation (i.e., within the allowed range of the uncertainty set) exists
which determines a Hopf bifurcation. In the latter case, the equilibrium x̄0 of the
nominal vector field is said to be not robustly stable at p̄0. On the contrary, if km ≥ 1
then there is no perturbation inside the allowed set capable of prompting a Hopf
bifurcation. This is pictorially represented in Fig. 1, where on the x-axis is reported
the bifurcation parameter and on the y-axis the margin km (note that the case p0 < pH
where a Hopf bifurcation is encountered by increasing p is assumed here without
loss of generality). When the line km = 1 is crossed, the system is operated in a
region where Hopf bifurcations can occur in the face of the uncertainties accounted
for in the system (shaded area).

0

1

Fig. 1 Concept of robust bifurcation margins.
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3.2 Solution via nonlinear optimization

The fundamental idea behind the proposed approach is to exploit the versatility of
the LFT paradigm to compute km. Let us consider for a moment only Condition 1 of
Th. 1, which prescribes a pair of purely imaginary eigenvalues for the Jacobian. If
J̃ is interpreted as the uncertain state-matrix of the linear case, an LFT model of the
former with respect to the uncertain parameters in δ can be built up (numerically
or even analytically [24]). This would be the starting point for the application of
robust flutter analysis with µ (see for example [16] for a detailed discussion on
the derivation of LFT models for aeroelastic systems represented by state-space
models). The main difference with the linear case is that typically J̃ is also a function
of the states of the system x, and this is reflected in the proposed definition of the
LFT of the Jacobian Fu(MJ̃ ,∆J̃):

Fu(MJ̃ ,∆J̃) = Fu(Fu(M,∆),∆x) (12a)
∆J̃ = diag(∆ ,∆x) (12b)
∆ = diag(δ1Id1 , ...,δiIdi , ...,δnδ

Idn
δ
) (12c)

∆x = diag(x1Ix1 , ...,x jIx j , ...,xnx Ixnx ) (12d)

where the property that interconnections of LFTs can be rewritten as one single LFT
[23] has been used in (12a). The structured set ∆J̃ features ∆ (a particular instance
of the set in Eq. (6) where only real parameters are considered) and ∆x, which arises
when performing the LFT modeling of J̃ due to the states explicitly appearing in the
Jacobian (and for which a similar representation to the one for ∆ is employed).

Condition 1 can then be expressed as the singularity of Fu(MJ̃ ,∆J̃). Note that the
partitioned matrix MJ̃ is a function of the frequency ω of the purely imaginary eigen-
values of J̃. The standard approach in µ analysis is to select a grid of frequencies
and associate a margin to each of them. However, by leveraging the interpretation of
LFT as a realization technique [36, 23], which generalizes the realization of transfer
matrices into state-space representations to the case of rational multivariate matri-
ces, it is possible to add in the set ∆J̃ the critical frequency (corresponding to the
closest bifurcation) as an additional unknown of the problem. This ameliorates the
issue of possibly missing critical values of ω , which can represent a concrete risk
when analyzing flexible structures [11].

The discussion above paves the way for Program 1, which recasts the computa-
tion of km as a smooth nonlinear optimization problem.

Program 1

min
X

km such that


f̃ (x, p̄0,δ ) = 0 (13a)
det(I−MJ̃ 11∆J̃) = 0 (13b)
−km ≤ δi ≤ km, i = 1, ...,nδ (13c)

X = [x;δ ;ω]
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where X is the vector of optimization variables including: the states x; the uncertain
parameters δ ; and the frequency ω (the symbol ˆ will be used for solutions of the
optimization). Let us examine the constraints of the program. Eq. (13a) guarantees
that the solution (x̂, δ̂ ) corresponds to an equilibrium point for the system. Eq. (13b)
ensures that J̃ has a pair of complex eigenvalues ±ω̂ , and Eq. (13c) bounds the size
of the perturbation matrix. Off the shelf solvers can be employed to solve Program
1. Specifically, the ones available with the MATLAB routine fmincon [25] for non-
linear constrained problems are used here. Adopted algorithms included: interior
point, active set, and sqp.

3.3 General remarks

Program 1 can be regarded as a first attempt to extend the concept of µ from the
linear context to the nonlinear one. In fact, µ computes by definition the worst-case
perturbation matrix which makes an LFT ill-posed (same rationale used here) and
employs the same metric (8) as the one used to define the robust bifurcation margin
km. Indeed, it follows immediately from the definitions that km = σ̄(diag(δ )) =
σ̄(∆)

The problem formulated in (13) is thus similar to that underlying the definition
of µ (8), but with two crucial differences: constraint (13a), and the addition of ∆x
in the block ∆J̃ of the LFT. Due to these differences, available algorithms for µ

cannot be applied to compute solutions of (13), and to overcome this the idea is to
enforce singularity of the LFT by using directly the determinant condition (13b).
In [32] this is listed among the known methods for the computation of µLB, and
examples of related algorithms can be found in [15, 35]. The approaches presented
in these references, however, are limited to the case of linear systems, i.e., they
represent alternatives to well-established µ lower bounds algorithms such as the
power iteration [27] and the gain-based method [33].

An important remark is that Program 1 does not mathematically guarantee the
onset of a Hopf bifurcation because it does not take into account the transversality
condition (Condition 2 of Th. 1). Note however that this framework will be applied
to the study of aeroelastic systems where the bifurcation parameter p has a clear
physical meaning (typically the speed V ). The transversality condition is hence as-
sumed to be automatically verified because p has a great effect on the spectrum
of the Jacobian, and stationarity of the critical eigenvalues at the bifurcation point
is deemed an unlikely scenario. These considerations were thoroughly assessed by
extensive numerical campaigns using Program 1 to find worst-case perturbations.
Dedicated continuation analyses, applied to the systems perturbed with the opti-
mized vector of uncertainties δ̂ , confirmed the occurrence of a Hopf bifurcation at
the expected value of the parameter p̄0.

Another important observation on the proposed approach is that, since it is based
on nonlinear optimization, there is no guarantee that the bifurcation found is the
closest one. In other words, global minima might be missed and thus there could be
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a vector δ̄ featuring a smaller norm than δ̂ which causes a Hopf bifurcation. Lo-
cal optima are a well known issue in nonlinear optimization and, despite the large
amount of research done on this topic, no standard solution is available [12]. More-
over, this issue is also common to previous works [7, 26] that aimed at computing
closest bifurcation with different approaches.

Mitigation strategies depend on several aspects, including specific features of the
program (e.g., type of constraints, objective functions) and adopted optimization
algorithms. For this problem, the objective is to compute worst-case perturbations
quantified by means of a scalar metric, thus a possible way to account for this issue
is to estimate a guaranteed smallest magnitude of the perturbation for which the
system is stable. This is the approach taken in µ analysis, where the computation
of µLB (analog of km) is known to be prone to local minima and as a remedy upper
bounds µUB are proposed. Lower bounds on km (analogs of the upper bounds in µ

analysis) could then be a feasible approach.
A strategy which exploits the formulation of the optimization via LFT is to run

Program 1 at a given frequency, i.e., ω does not belong to the vector of optimiza-
tion variables X but is fixed a priori (this can be easily done in the LFT modeling
stage). The rationale behind this is twofold. From a mathematical point of view, the
optimization is simplified by the fact that constraint (13b) does not depend on the
frequency and this enhances the accuracy of the result. From a bifurcation perspec-
tive, fixing the frequency restricts the mechanisms by which the system can undergo
a Hopf bifurcation when subject to uncertainties, which reduces the number of fea-
sible solutions in the first place, and as a result makes it also more likely to detect
the optimal one. A value of km can be associated with each discrete frequency, and
the smallest of these values can be regarded as the most critical (similarly to what is
done in µ analysis).

4 Application to robust nonlinear flutter

The concept of robust bifurcation margins is applied to a nonlinear aeroelastic case
study with the aim to quantify the influence of parametric uncertainties on the onset
of Limit Cycle Oscillations in the system. Following the notation in Sect. 3.1, let us
denote by VH the speed at which the nominal system undergoes a Hopf bifurcation.
Given a subcritical speed V̄0 (such that V̄0 <VH corresponds to a stable equilibrium)
and the definition of a vector δ of parametric uncertainties, then the distance in
the parameter space of the equilibrium at V̄0 from the closest Hopf bifurcation is
computed by means of the robust bifurcation margin km.
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4.1 System description and linear flutter

The system, sketched in Fig. 2 and commonly referred to as typical section, consists
of a rigid airfoil with lumped springs simulating the 3 structural degrees of freedom
(DOFs): plunge h, pitch α and trailing edge flap β . The position of the elastic axis
(EA), center of gravity (CG) and aerodynamic center (AC), and the convention for
the signs of the DOFs are marked in Fig. 2.

Fig. 2 Typical section sketch.

The parameters in the model are: Kh, Kα and Kβ –respectively the plunge, pitch
and control surface stiffness; half chord distance b; dimensionless distances a, c
(from the mid-chord to respectively the elastic axis and the hinge location), and xα

and xβ (respectively, the distance from elastic axis to airfoil center of gravity and
from hinge location to control surface center of gravity); wing mass per unit span
ms; moment of inertia of the section about the elastic axis Iα ; and the moment of
inertia of the control surface about the hinge Iβ . Based on these parameters, the
structural mass Ms and stiffness Ks matrices (damping is assumed null) are defined
as:

Ms = msb2

 1 xα xβ

xα r2
α r2

β
+ xβ (c−a)

xβ r2
β
+ xβ (c−a) r2

β

 Ks =

Kh 0 0
0 Kα 0
0 0 Kβ

 (14)

where rα =
√

Iα
msb2 and rβ =

√
Iβ

msb2 are respectively the dimensionless radius of gyra-
tion of the section and of the control surface.

Theodorsen’s unsteady formulation is employed to model the aerodynamics [19].
This provides the aerodynamic operator as a transfer matrix Q representing transfer
functions between the elastic degrees of freedom and the aerodynamic load compo-
nents:

Q =

(
Mncs̄2 +

(
Bnc +C(s̄)R1 ·S2

)
s̄+Knc +C(s̄)R1 ·S1

)
(15)
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where s̄ = sb
V (s is the Laplace variable) and Mnc, Bnc, Knc, R1, S1, S2 are real co-

efficients matrices depending on the dimensionless distances a and c [19]. Since Q
has a non-rational dependence on s, a rational approximation is computed via the
Minimum State method [19]:

Q≈ A2s̄2 +A1s̄+A0 + D̄


1

s̄+γ1
... 0

...
. . .

...
0 ... 1

s̄+γna

 Ēs̄ (16)

A2, A1 and A0 are real coefficient matrices modelling the quasi-steady contribution
to the aerodynamic loads; D̄ and Ē are real coefficient matrices capturing, with
the lag roots γi, the memory effect of the wake, which results in a phase shift and
magnitude change with respect to the instantaneous loads. The aerodynamic rational
approximation entails the addition of augmented states xa equal in number to the
number of roots na.

By defining the vector of structural states xs = [ h
b ;α;β ], the system can then be

described in matrix form as:

ẋ =

ẋs
ẍs
ẋa

=

 0 I 0
−M−1K −M−1B M−1D

0 Ē R

xs
ẋs
xa

= A x (17)

where (ρ∞ is the air density):

M = Ms−
1
2

ρ∞b2A2

B =−1
2

ρ∞bVA1

K = Ks−
1
2

ρ∞V 2A0

R =

−
V
b γ1 0 0

0
. . . 0

0 0 −V
b γna


D =

1
2

ρ∞V 2D̄

(18)

M, B and K are respectively the aeroelastic inertial, damping and stiffness matrices.
They include the structural terms (respectively Ms and Ks from Eq. 14) plus the
aerodynamic quasi-steady matrices Ai. The parameters defining the structural model
and the geometry are provided in Table 1. The total size nx is 9 (6 structural and
3 aerodynamic). The interested reader is referred to [16] for further details on the
aeroelastic modeling of this system, including a discussion on different aerodynamic
approximations and their impact on robust flutter analysis.

Linear flutter of this case study (both with and without uncertainties) was inves-
tigated in [16]. Nominal flutter analysis revealed that the system exhibits a flutter
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Extension of µ for nonlinear robust flutter analysis 13

Table 1 Parameters of the linear typical section case study [19].

Parameter Value Parameter Value

b 1 m rα 0.497

a -0.4 Kh = KL
h 3.85 ·105 N

c 0.6 Kα = KL
α 3.85 ·105 N

xα 0.2 Kβ 8.66 ·104 N

mw 153.94 kg
m ch 0 Ns

rβ 0.0791 cα 0 Ns

S 2m2 cβ 0 Ns

xβ -0.025 ρ 1.225 kg
m3

mechanism featured by a merging of the plunge and pitch frequencies (binary flut-
ter) just before the instability occurs at the flutter speed Vf =302.7 m

s with a flutter
frequency ω f = 70.7 rad

s . µ-based robust linear flutter analysis was then performed
to investigate the effect of different combinations of parametric uncertainties at the
subcritical speed V = 270 m

s <Vf . The analysis taking into account perturbations in
the coefficients of the structural matrices is briefly commented here. The uncertainty
definition consists of a range of variation of 10% from the nominal value for the co-
efficients Ms11 , Ms22 , Kα and of 5% for Ms12 (note that the mass matrix is symmetric,
hence Ms21 is affected by the same uncertainty) and Kh (14). The resulting structured
uncertainty set is:

∆ = diag(δKα ,δKh,δMs11,δMs12I2,δMs22) (19)

In Fig. 3 the upper µUB (UB) and lower µLB (LB) bounds of the structured singular
value µ are shown. The balanced form algorithm was used to compute µUB, whereas
for µLB the gain-based algorithm [33] was employed (both from the Robust Control
Toolbox in MATLAB R2015b [2]). Since the values of the bounds are very close, the
actual value of µ is well predicted. In particular it can be concluded from this plot
that the system is not robustly stable within the allowed uncertainty range because
the peak value is µ ∼= 1.38 (at ω ∼= 72 rad

s ). Therefore, the system is flutter-free only
for structural uncertainties up to approximately 70% (≈ 1

1.38 ) of the assumed size.
Due to the accurate estimation of the lower bound, it is also possible to extract the

smallest perturbation matrix ∆ cr
u capable of causing instability, which corresponds

to the peak in Fig. 3:

∆
cr
u =diag(δKα ,δKh,δMs11,δMs12I2,δMs22)

=diag(−0.7213,0.6460,−0.7245,0.7245I2,0.71)
(20)

From examining the signs and values of the above worst-combination it is noted that
the structural parameters have opposite perturbations if grouped according to the
affected degrees of freedom (i.e. plunge and pitch). Specifically, the plunge equilib-
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Fig. 3 Robust linear analysis with µ for the case of structural uncertainties.

rium sees a reduction in Ms11 and an increase in Kh, while the pitch equilibrium sees
an increase in Ms22 and a reduction in Kα . This corresponds to getting the plunge
and pitch natural frequencies closer, which is known to be detrimental in systems
prone to binary flutter.

4.2 Nonlinear problem definition and nominal analysis

Nonlinearities in the structural parameters are considered in this work. Specifically,
hardening cubic stiffness terms for the plunge and pitch degrees of freedom are
assumed, and the matrix Ks is rewritten accordingly:

Ks = KL
s +KNL

s =

KL
h 0 0

0 KL
α 0

0 0 Kβ

+
KNL

h KL
h

( h
b

)2 0 0
0 KNL

α KL
α α2 0

0 0 0

 (21)

where the linear KL
s and nonlinear KNL

s structural stiffness matrices have been intro-
duced. As per usual practice [6], the coefficients of the nonlinear terms are assumed
proportional to the corresponding linear ones (which are those defined in Table 1)
through the coefficients KNL

h and KNL
α .

When the nonlinear stiffness matrix Ks (21) is used in (18) to define the aeroe-
lastic matrix K, the dynamics are given in the form of the generic vector field (1),
and thus the following description holds:
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ẋ = f (x,V ) = A L(V )x+ f NL(x,V )

J(x,V ) = A L(V )+∇x f NL(x,V )
(22)

where:

A L =

 0 I 0
−M−1

[
KL

s − 1
2 ρ∞V 2A0

]
−M−1B M−1D

0 E R

 ; f NL =

 0 0 0
−M−1KNL

s 0 0
0 0 0

x;

(23)
In the above definition, the bifurcation parameter p is the speed V (which is a typical
choice for flutter analysis), but other options could also be considered.

Numerical continuation can thus be applied to (22) after having specified the
value of the trim state xt . Two trim conditions are considered to show the different
effect on the results. The first corresponds to a zero trim state, i.e., xt = 0, whereas
the second has a non-zero value αt = 1◦ for the angle of attack of the section. This is
physically motivated by the fact that the section is generating positive lift to coun-
terbalance gravitational forces directed downwards. More refined descriptions for
xt could consider a dependence of αt on speed or the presence of a predeformed
shape (with non-zero values for h and β ), but this is not done here since the present
description is sufficient to illustrate the role played by xt .

In order to present an overview of the possible nonlinear responses of the system,
four scenarios are considered. These arise from considering, for each trim state xt ,
two possible stiffness cases (with only plunge nonlinear stiffness, i.e. KNL

α = 0, and
with only pitch nonlinear stiffness, i.e. KNL

h = 0). The results are presented in Tab.
2, where, for each scenario (s#, with # = 1, ...,4), the speed VH at which the Hopf
bifurcation occurs, the frequency of the associated imaginary eigenvalues ωH , and
the type of bifurcation (sub for subcritical and super for supercritical) are reported.
The latter refers to the fact that in general two situations can arise at VH when the
system undergoes a Hopf bifurcation. If the bifurcation is supercritical, then for V >
VH a stable LCO exists featured by an amplitude gradually increasing with speed V
(benign LCO). Moreover, the phenomenon is reversible and by reducing the speed
below VH the stable branch of equilibria is recovered. Viceversa, if the bifurcation
is subcritical, then for V <VH an unstable LCO exists and this often transitions into
a stable one featured by higher amplitudes. This is a far more dangerous scenario
since the system will suddenly jump to this LCO branch for V slightly larger than
VH , and the absence of oscillations cannot be recovered by simply decreasing V ,
because of hysteresis [34, 10].

Fig. 4 shows the corresponding bifurcation diagrams with V on the x-axis and
the normalized plunge DOF h

b on the y-axis (in case of branches of LCO, this is the
maximum value over a period). The usual convention of representing stable steady-
states (equilibria and LCOs) with solid line and unstable ones with dashed line is
adopted in here.

The first important observation from Fig. 4 is that when xt = 0 the branch of
equilibria is x= 0 regardless of V . This implies that J =A L, and thus the occurrence
of the Hopf bifurcation is independent of the nonlinear terms. This is in accordance
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16 Andrea Iannelli, Mark Lowenberg, Andrés Marcos

Table 2 Hopf bifurcations of the nominal system for different combinations of nonlinearities and
trim states.

s# KNL
h KNL

α xt VH ωH type

1 100 0 0 302.7 m
s 70 rad

s sub

2 0 100 0 302.7 m
s 70 rad

s super

3 100 0 αt = 1◦ 288.2 m
s 75 rad

s sub

4 0 100 αt = 1◦ 303.7 m
s 70 rad

s super
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Fig. 4 Bifurcation diagram of the nominal system for different combinations of nonlinearities and
trim states.

with the results from Tab. 2, where for s1 and s2 it holds VH =Vf and ωH = ω f , i.e.,
the results of the linear case [16] are retrieved. Nonlinear terms however do have an
effect on the type of bifurcation (indeed s1 is subcritical whereas s2 is supercritical).

When αt = 1◦, it can be seen that the branch of equilibria has a non-zero (speed
dependent) value. Moreover, different values of VH and ωH are registered depending
on the nonlinearity affecting the system. This is due to the fact that the linearization
of the Jacobian is now affected by the nonlinear term of the vector field f NL, thus
there is an effect from the type of nonlinearity on the onset of the Hopf bifurcation.
A consequence of the nonlinear terms is thus also that different values of αt (in
general xt ) will correspond to different VH . This behaviour is not surprising since the
dependence of flutter speed on the angle of attack is a known feature of nonlinear
flutter [28].

Another important trend, independently of the trim state, is that a subcritical
bifurcation occurs for the cases of plunge nonlinearity, whereas for the case of pitch
nonlinearity the bifurcation is supercritical. This aspect is in agreement with the
discussion in [6], where the concept of intermittent flutter based on the instantaneous
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natural frequencies of the underlying linear system is used to qualitatively explain
the mechanisms prompting different LCOs.

4.3 Nonlinear flutter robust margins

The initial step to compute robust bifurcation margins is the definition of the nom-
inal system and of the uncertainty set. The former is described by the vector field
(22) analyzed in Sect. 4.2, while for the latter the set (19) consisting of 5 struc-
tural parameters is considered. It is then possible to provide an expression for the
uncertain vector field as:

ẋ = f̃ (x,V,δ ) = ˜A L(V,δ )x+ f̃ NL(x,V,δ ) (24a)

J̃(x,V,δ ) = ˜A L(V,δ )+∇x f̃ NL(x,V,δ ) (24b)

The speed V will be fixed to a value V̄0 associated with a stable equilibrium. In order
to allow for a comparison with the linear robust analysis performed in Sect. 4.1,
V̄0 = 270 m

s is selected. Note that this is smaller than all the Hopf bifurcation speeds
VH for the nominal nonlinear system (Tab. 2), hence it is a valid choice according to
the discussion in Sect. 3.1.

All the cases reported in Tab. 2 are considered and Program 1 is applied with an
initialization provided by the nominal values of the unknowns. Results are reported
in Tab. 3 in terms of the robust stability margin km, frequency ω̂ of the imaginary
eigenvalues at V̄0, and type of Hopf bifurcation (as predicted by the continuation
solver employed to analyse the perturbed system).

Table 3 Robust bifurcation margins at V̄0 = 270 m
s for different combinations of nonlinearities and

trim states.

case km ω̂ type

1 0.73 71.5 rad
s sub

2 0.73 71.5 rad
s super

3 0.47 75 rad
s sub

4 0.73 71.6 rad
s super

Note that the xt = 0 cases, s1 and s2, present identical robust margins and fre-
quencies. Recall that for these scenarios the branch of equilibria x = 0 was found
in the nominal cases (Fig. 4), and observe (from Eq. (23) and the definition of the
uncertainties) that f̃ NL(0, ·, ·) = 0, that is, x = 0 are also equilibria of the uncertain
vector field. Therefore, ∇x f̃ NL ≡ 0 and the determination of km is equivalent to the
problem solved by µ in the linear case, i.e., finding the smallest perturbation matrix
such that ˜A L is neutrally stable. Hence, the margin km can not depend on the non-
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linear terms. This is an interesting result, which complements the discussion in Sect.
4.2 concerning the effect of xt on nonlinear flutter. While the role played by xt on
(nominal) nonlinear flutter is better understood, its effect on robustness is relatively
unexplored and should be considered when making the simplifying assumption of
zero trim states [34]. Note also that the margin km for these two scenarios is within
less than 1% from the maximum singular value of the absolute magnitude of the per-
turbation matrix in (20). This is very important, since µLB and µUB were shown to
be close around the peak of Fig. 3, indicating that at least for this case, the proposed
Program 1 is able to detect the global minimum of the optimization. The vector δ̂

found by the optimizer is:

δ̂ =[KL
α ;KL

h ;Ms11 ;Ms12 ;Ms22 ]

=[−0.7328;0.7328;−0.7328;0.5027;0.7328]
(25)

Note that this vector features the same sign-grouping as those in (20), thus
the same physical mechanism of instability commented before is predicted by the
solver. It is also worth remarking that Program 1 has the frequency ω as decision
variable, whereas µ was applied at discrete frequencies (Fig. 3) because this is the
available implementation for the standard algorithms [2].

Finally, with respect to the cases with xt 6= 0, s3 and s4, note that these cannot
be analyzed with µ because J̃ is now also a function of the nonlinear terms due to
non zero values for the equilibria (which are in turn a function of the uncertainties).
The results using Program 1 show that for both a Hopf bifurcation can occur within
the allowed range of uncertainties since km < 1 in Tab. 3. Also, note that the values
of km are consistent with the analyses in Tab. 2, for which s3 presented a smaller
VH than s4. Thus, since V̄ = 270 m

s is closer to the nominal bifurcation speeds for
s3, it is also expected that this scenario will have a smaller bifurcation margin. An-
other important information available from Tab. 3 is that the predicted worst-case
Hopf bifurcations are of the same nature (subcritical or supercritical) as the corre-
sponding ones in nominal conditions. That is, the considered set of uncertainties can
determine a Hopf bifurcation at smaller speeds but are not able to change the type
of bifurcation.

5 Conclusions and future work

This work investigates a methodology inspired by the robust control techniques µ

and LFT to study the effect of parametric uncertainties on the stability of polynomial
nonlinear systems. The approach is formulated in the framework of bifurcation the-
ory and thus aims to quantify (by means of robust bifurcation margins) the distance
of a nominally stable uncertain system from qualitative changes in its steady-state
behaviour. To the best of the authors’ knowledge, this is the first time that the con-
cept of structured singular value is used in the context of worst-case bifurcations.
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The determination of the bifurcation margins is posed as a nonlinear smooth
optimization problem which can be solved with off the shelf algorithms. The ap-
proach is then applied to a standard case study from the aeroelastic literature. A
numerical example is first introduced with an overview on nominal and robust lin-
ear flutter analysis, and then distinctive features of the nonlinear flutter problem are
commented. Notably, for the case of zero trim state the proposed approach is able
to reproduce results obtained with µ analysis standard algorithms, whereas for the
case of non-zero trim state (where µ analysis can no longer be applied) new results,
verified via numerical continuation, are obtained.

Future work will tackle theoretical and practical aspects of this formulation. With
regard to the former, the enforcement of the transversality condition to formally
guarantee that the Hopf theorem is satisfied and a more rigorous strategy to amelio-
rate the issue of local minima will be addressed. As for the latter, the effect of the
uncertainties in changing the type of Hopf bifurcation (subcritical or supercritical)
experienced by the system will be further explored. This was not observed in the
present set of results, where nominal and robust analyses pointed at the same mech-
anisms, but will be examined in more detail by performing analyses with different
combinations of uncertain parameters.
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