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Air Data Virtual Sensor: a Data-Driven
Approach to Identify Flight Test Data Suitable
for the Learning Process

Alberto Brandl, Angelo Lerro, Manuela Battipede, Piero Gili

Abstract Governments and main stakeholders from all over the world will make
available huge funds to develop a greener aviation. To this aim, important updates
are expected in the next years in aerodynamics, A/C configuration, propulsion and
onboard systems. In addition, the next advent of the UAVs civil operability, and pos-
sible complexity deriving from high level of redundancy, is pushing the aerospace
community towards the use of new technologies for a smarter A/C system inte-
gration. As far as avionics is concerned, the trend shows that the new avionic
paradigms, e.g. Fly by Wire and distributed avionics that are successfully applied on
large passenger aircraft (e.g. Airbus A380), will be commonly used even on smaller
aircraft. The digital revolution experienced in last decades will be crucial to achieve
a smarter integration of onboard systems. Air Data Systems will be updated, the
most are still based on pneumatic probes or vanes, in order to enable beneficial
avionic integration. In recent years, several studies were conducted for a smarter
sensor fusion to be used to provide alternate sources of air data with the aim to de-
tect ADS faults avoiding common modes and to provide analytical redundancy. The
present work is part of the Smart-ADAHRS project that is born aiming to design a
simplex complete air data system partially based on virtual sensors. The main ob-
jective of the aforementioned project is to provide an innovative ADS with a lighter
configuration (some sensors are replaced by virtual ones) assuring the same perfor-
mance and reliability of commons ADS. At the moment, the authors are involved
to correlate flight test, obtained with a flying demonstrator on an ULM aircraft, and
simulated environment performance. The virtual sensors are based on neural net-
work techniques and, therefore, the learning process is crucial to obtain suitable
performance. Moreover, using real flight data introduced new uncertainties to the
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training data set that required a pre-processing of the training data. The present
work describes the approach used to extract quasi-steady and quasi-symmetric data
from the entire flight data record. The main objective of the tool is to avoid com-
mon issues in MLP training (e.g. local minima) and to promote a more uniform
distribution of the training data set inside the n-dimension domain where the neural
networks are defined.

1 Introduction

The more electrical aircraft is one of the most challenging objectives of the avia-
tion industry and its suppliers. A lot of researches are conducted in order to bring
significant innovation onboard aircraft with the main aim to increase performance
and safety, to reduce fuel consumption and emissions [12, 6]. Both industrial play-
ers and governments from all over the world are very sensitive to the latter topics,
and many funds and effort have been, and will be, available in next years to achieve
well defined goals. For example, in Europe, the European Parliament has allocated
a huge budget to help the transition towards a greener and safer aviation [13]. A
helpful resource to get those goals, is the advent of digital revolution. The more rel-
evant role of avionics in flight control and management have pushed aircraft tech-
nology towards new limits. Fly by wire, distributed architectures, are only two of
the main results achieved by the aerospace community that are certified to fly in our
skies. Novel architectures, such as the FBW, are successfully applied to large (Air-
bus A380) or military aircraft (Leonardo M-346) and will be the new standard for
civil aviation and small aircraft transport (SAT) communities in next years [24, 11].
An example is the H2020 - Clean Sky 2 (under SYS ITD area with Grant Agreement
number 821140) project MIDAS.

The novel avionic standards involve the entire A/C architecture and each line
replaceable unit (LRU) because, in order to fully exploit benefits from digital avion-
ics, a smarter integration of all A/C subsystems is needed. Within this scenario, Air
Data Systems (ADS) need to be updated for an advantageous integration into mod-
ern digital avionic systems. In fact, ADS applications are still based on different
probes and vanes (used as direct sources of air data: static pressure, angle of at-
tack, etc.) that are installed externally on the A/C fuselage, connected to a central
Air Data Unit (ADU) to provide the necessary information to the pilots (or a flight
control computer).

From this point of view, it is clear that ADS is one of those avionic systems to be
involved in the digital avionic updates and the integration of classical ADS LRUs
(e.g. probes and vanes) within the modern FBW architecture is not the smartest
way. In fact, in order to overcome the drawback to connect probes and vanes to
ADUs pneumatically and then ADU to the Flight Control Computer (FCC), many
recent large FBW A/C are equipped with integrated probes which are based on a
probe (or a vane) combined with its own transducer/s. In this latter case, the single
air data LRU can be digitally connected to the FCC. As well known, ADS system
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should be replicated independently in order to achieve the reliability requirements
of applicable category standards (e.g. CS23, CS25): triplex ADS is a standard for
civil aviation. At the moment of the present work, there is not yet a well-defined
standard for unmanned aircraft. Most likely, UAVs will satisfy very strict require-
ments in terms of safety and reliability that could even bring to a quadruplex ADS
architecture.

Within this perimeter, analytical redundancy, or virtual sensor, has become a
more familiar concept in recent years, because the avionic background is today ma-
ture to welcome such innovations [9, 20]. This approach enables the replacement
of physical ADS probes and/or vanes (used for redundant purposes) with virtual
ones with consequent benefits in terms of weight, power consumption, reliability,
maintainability and emissions. The advent of distributed networks (A380, A400M,
A350, B787, etc.) has been seen as a significant booster for a better exploitation of
onboard data to be used, for instance, as part of a redundant Flight Control System
architecture. In fact, following the analytical redundancy approach, some innovative
techniques are used to virtually synthesise air data sensors [2, 22]. A redundant ADS
with some LRUs based on virtual sensors can lead to several benefits when guaran-
teeing the same performance. Firstly, the whole ADS safety level is improved. The
redundant ADS based on virtual sensors provide some quantities not fully related
to the air environment that is affected by external agents (e.g. ice, dust, sand, etc.).
This is crucial to overcome some issues related to common failure modes or in-
correct failure diagnosis of modern ADS [10, 19]. The second aspect is related to
simplification of the whole ADS architecture. Redundancy aspect is quite easy to be
treated on large passenger aircraft where there are no particular limitations for air
data sensor installation on the fuselage and cable/tube displacement inside the fuse-
lage. Whereas, the same operation can become very challenging when the fuselage
dimensions reduce (business aircraft, SAT or unmanned). Other benefits are related
to improved fuselage aerodynamics, lower power consumption (mainly for de-icing
purposes) and emissions of ADS architectures based on virtual sensors.

In this scenario, the current research puts its roots. In fact, the aim of the current
project, named Smart-ADAHRS (Smart-Air Data, Attitude and Heading Reference
System), is to provide the same flight parameters with a lighter impact on the ADS
architecture [18, 4] but at the same time guaranteeing the same level of performance
of common ADS [8]. The present work describes a helpful tool suitable for a smarter
design of virtual sensors based on Machine Learning.

2 Background

From a general point of view, a common simplex ADS provides some data to pilots
or automatic control system needed for the correct piloting, control and navigation
purposes. The complete air data set is made up of the following direct measure-
ments:

e Dynamic pressure for airspeed indication
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Static pressure for barometric altitude and vertical aircraft separation
Air temperature for true air speed calculation

Angle of attack for stall indication

Angle of sideslip for navigation purposes

The Smart-ADAHRS aims to provide an innovative air data system partially
based on virtual sensors. In particular, the proposed ADS solution is based on direct
measure of dynamic pressure, static pressure and temperature while the aerody-
namic angles are estimated as an indirect measure by means of data fusion between
measured air data available and inertial data as described in [15]. Virtual sensors
are based on neural network techniques, as presented in previous works [5, 16].
The core of the Smart-ADAHRS project relies in exploitation of available data from
independent sources to provide an estimation of the aerodynamic angles, angle of
attack () and angle of sideslip ().

According to the Universal Approximation Theorem, a Multilayer Perceptron
(MLP) is able to uniformly approximate any function inside the [0; 1]" hypercube.
The key-to-success to design an accurate MLP, obviously, is the training data set
used for the learning process. The training stage, based on flight data, therefore, is
crucial for the correct learning process of the virtual sensors.

For this work, flight data collection is the result of a collaboration between dif-
ferent entities. The Smart-ADAHRS technological demonstrator was developed by
Politecnico di Torino and AeroSmart S.r.I. and it is able to record all the input signals
needed by the MLP. Target values (AOA and AOS) are measured by the Flight Test
Instrumentation (FTT) developed by the Politecnico di Milano [14], which manages
the flight test campaign of the ULM. The test aircraft is the G-70 from Ing. Nando
Groppo S.r.l. [1].

In previous works, it emerged that the training data set needs some pre-processing
manipulations in order to avoid common learning issues [17]. The local minima ef-
fects is mitigated with several techniques, e.g. splitting flight data, re-training with
different initial values, a quasi-uniform hypercube distribution is beneficial. The
latter is obtained by means of dedicated flight test campaign, with dedicated ma-
noeuvres able to cover most of the flight envelope and exciting the aircrafts natural
modes. Moreover, the quasi-uniform distribution of flight data inside the hypercube
is beneficial to avoid that the MLP minimise the mean error mainly in local area
rather than on the entire hypercube. It was noted that the ULMs flight data collected
are more numerous during dynamic rather than steady flight conditions.

The present research aims to present an academic tool able to automatically ex-
tract those manoeuvres from the entire flight records that are needed for the best
MLP training. The main aim of this approach is to limit the flight test requirements
for VS training and to populate the learning data set with the following quasi-steady
flight conditions:

e Horizontal uniform flight
e Glide path at constant vertical speed
e Turn at different rates
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The objective of the present work is to present the score assignment tool perfor-
mance able to enrich the training data set with quasi-static data when the majority
of flight data is related to dynamic conditions.

3 Methodology

This section describes the method applied to find the stationary and quasi-stationary
points in a generic flight data collection. A key aspect of this analysis is the defini-
tion of quasi-stationary and quasi-symmetric flight condition.

Loosely speaking, ideal longitudinal equilibrium conditions are rarely obtained
in flight test, due to residual variation of the flight parameters and the noise act-
ing on them. The analysis is based on dedicated test points and the assumption of
validity of the measurement grounds on experience, FTI performance, atmospheric
and meteorological reasons. Relaxing the contraints on the flight parameters, that is
with the assumption that a slight deviation from the ideal value can be accepted, it
is possible to define the guasi-stationary and quasi-symmetric flight conditions. In
case of this particular Machine Learning data analysis, it is not specifically required
a perfect longitudinal equilibrium. Hence, this method provides a set of data cor-
responding to flight conditions close to the ideal longitudinal equilibrium, without
any analysis of the dataset and without planning dedicated manoeuvers.

The main procedure is based on the assignation of a value called score to a given
instant. The maximum score is given to symmetric and stationary equilibrium flight
condition so that it is possible to select the desired instant observing this value.
Actually, the score is not assigned directly to the n-dimensional vector associated to
the flight condition but a score is firstly assigned independently to the various flight
parameters and eventually the final score is obtained from the signal scores (e.g. the
average). See Algorithm 1 for details.

At the beginning, the signals are divided in non-overlapping time windows. The
length of the time windows is constant and it has been taken as 5 s. The length of the
time-window is obtained as a trade-off between finding an actual stationary point
and the efficiency of the algorithm. In fact, longer time window will bring to a more
reliable evaluation of the flight condition whereas shorter time window will bring to
extra points in the final result. Afterwards, some statistics of the signal during each
time window are evaluated. Because of this statistical analysis, the original sampling
frequency of the signal can have an important influence on the final result. In fact,
the number of elements in each subdivision must be sufficiently high such that the
sample estimators are statistically valid. In this work, original sampling period is
about 0.05 second, corresponding to 100 elements per interval, which is sufficiently
high. The original sampling period comes from the sampling frequency of the FTI.
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Algorithm 1: Quasi-Stationary and Quasi-Symmetric flight conditions de-
tection algorithm

Data: Flight data

Result: Set of quasi-symmetric and quasi-stationary flight conditions

1 Partitioning in 5 s-long time windows;
2 foreach time-window do

3 foreach signal do
4 Evaluation of the statistics of the signal during the time-window;
5 Assign a score to each signal;
6 end
7 FinalScore = average(signal scores at the current time-window);
8 if FinalScore > threshold then
9 | Store as valid time-window
10 end
11 end

For each interval sample mean, sample standard deviation and the deviation be-
tween the minimum and maximum values covered by the signal inside the sample
are calculated. A score is hence assigned to each interval depending on the descrip-
tive values calculated beforehand. The decision on which statistics consider for the
score assignment grounds on the type of signal evaluated. In some cases, the score
depends on how much the sample mean is close to a given value. For instance, the
angular rates must be zero in stationary conditions. In other cases, when the interest
falls in observing a constant signal, the sample standard deviation or the maximum
deviation drives the score assignment. For instance, the closer the maximum devia-
tion of the impact pressure is to zero, the higher is the assigned score.

The rules governing the score assignment to a given sample has not a unique so-
lution. In this paper, a piecewise linear function is implemented but, according to the
authors, several other possibilities exist. To enhance the score assignment, the stan-
dard deviation of the sample is always accounted in this work. This helps to increase
the score of the stable sample with respect to sample affected by high variability. See
Sect. 3.1 for the complete description of the score assignment process.

When every signal has been sampled and the signal score has been assigned,
the final sample score is evaluated as the mean of the scores among the signals. A
weighted mean could be implemented here. However, it implies the definition of
which signal is considered the most important during this evaluation and without
this consideration a weighted mean cannot be implemented.

Once the scores have been obtained, the selection of the stationary and quasi-
stationary points can be carried out. This procedure involves the definition of a min-
imum score threshold necessary to pick or not a sample, given the scores assigned
to each sample. The previous steps are applied equally to each flight test. For this
reason, the scores are comparable among different flights. However, it has been
observed that a normalization procedure greatly simplifies the decision process. In
fact, subtle differences exist between quasi-stationary and quasi-symmetric condi-

Copyright by the author(s) and/or respective owners. Published with authorisation by CEAS.



Air Data Virtual Sensor: a Data-Driven Approach to Identify Suitable Flight Test Data 7

tions. To better explain this, it must be recalled that this method can obtain a set
of points on the flight envelope slightly relaxing the trim condition constraints. In
some cases, very low time derivatives and deviations can be observed. However, the
attitude could be too much asymmetric to be neglected. At the same time, a slightly
more symmetric flight condition but corresponding to higher deviation on the mea-
sures than the previous case can be considered valid. The problem of defining when
a flight condition is quasi-symmetric and quasi-stationary is obviously ill-posed.
This paper shows that it can be converted on the problem of defining a threshold on
the score, that unfortunately fails to be a metric. Moreover, if the score is normal-
ized, the equivalence between asymmetry and stationarity in the score space seems
to be well faced. At the time of writing this paper, this effect does not have any
mathematical justification. However, as said before, a good accordance with flight
test measurement has been observed with this procedure.

3.1 The score assignment process

This subsection shows more details on how a sample of a signal has been related
to a scalar value. This step is crucial for the effective functioning of the algorithm.
Two different solutions have been applied.

Mathematically speaking, given a signal x; = x; () it is possible to extract a sam-
ple x; [n] = E [x; (¢)] with (n — 1)#; <t < nt,. Various statistics 0 of the sample x; [n]

can be measured. Eventually, the score s is assigned to the n-th sample based on the
corresponding 6 (n) as in the following relation:

s=s(0(n))=s(n) (1)

The first approach on the functional form for s is obviously linear. The triangle
function can be generally defined as in Eq. 2. An example can be seen in Fig. 1.

1— B for x| <
A (x) = Xth or |x| Xih (2)
0 for |x| > x;,

Setting s = A (6 (x[n])) a first evaluation of the sample score can be obtained.
For instance, if the g, signal is considered, the maximum acceptable Ag. during 5s

Fig. 1 Example of triangle ! | Y >
function A = A (x) ~Xth
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can be set to 100 Pa. In this case, if the maximum deviation is higher than Ag, then a
null score will be assigned. At the same time, if the maximum deviation is between
0Pa and 100 Pa, then a proportional score will be assigned to that given sample.

However, it has been found that extending the previous analysis to more than one
single statistic brings to higher coefficient of determination with respect to using
only one statistic.

Eq. 2 can be modified considering similarities to a triangulation problem. In fact,
it is possible to take advantage of the first order Lagrange basis to model the score
function.

Given x1,x2,y1,y2 € R with x| < xp and y; < y; it is possible to identify four
regions as reported in Fig. 3.

Let P € R? a point belonging to the Oxy space, it is possible to write

P > Y5y X2 Xp

PeZ) & x<xy , Per e (y<yn , 3)
Y <Ym Yp > Vs
X 2> X X < Xy

PEX = y>y, , PEZ S Cy>ym 4
yp < Ys3 yp <Ys,

Defining s; (x) = ; (x) s.t.

AS
1}..
X

/A -
Fig. 2 Generalization of the
score function using the First F
Order Lagrange basis y

YA

Fig. 3 Definition of the re- §
gions in a generic Oxy plane
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R
TR by
and
[Tz (x—x;)
li(x) = 22T 6
O = M) (©)

Once the region in which P belongs to has been found, it is possible to write
Eq. 7 as follows:

Vs; - (f—)?i) =; (f) — S (fi) @)

where X represents the vector of coordinates of the point P. Moreover,

Visi+ (Xm —Xi) = s (Xm) — 5: (%) = 1 (8)
Vi (Xip1 —%i) = 8i (K1) — i (X) =0 )

The following linear system can be written:

Xm—Xi Ym — )i Six _ 1 (10)
Xir1 —Xi Yi+1 —Yi| |Siy 0

which brings to Eq. 7,

sip = M (an
toee,
Siy =~ G (12)

representing the two partial derivatives of the score function s with respect to x and
v, where G is the matrix at the LHS of Eq. 10.
Eventually, the score assigned to any sample x; , is evaluated as follows:

s(xi[n]) = Vs, (x=%;) + s (%) (13)

With this formulation, two statistics can be considered. In this paper, the standard
deviation of the sample is always applied as second statistic. This help to increase
the score for stable samples.

Table 1 shows the values used in this paper.

4 Results

This section shows the results obtained by the proposed score-assignment method on
a flight test campaign conducted in the north Italy during June 2017. A total amount
of 18 flight tests have been collected on a Ultra-Light Machine (ULM) named G70
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Table 1 List of signals and corresponding statistics

Signal First statistic Value Second statistic (Standard
deviation) value

Angular rate Sample mean 0.01rads™! 0.005 rads ™!
Altitude Max deviation Im 0.5m
Vertical speed Sample mean Ims~! 0.5ms™!
Acceleration Sample mean 0.05¢g 0.025¢g
Impact pressure Max deviation 100 Pa 50 Pa

Pitch angle Max deviation 2° 1°

Roll angle Sample mean 1° 0.5°

Yaw angle Max deviation 1° 0.5°

and manufactured by Ing. Nando Groppo. The G70 is a propeller driven aircraft with
traditional wing-tail configuration, 2 seats, non-retractable landing gear. A fully-
fledged FTI suite developed by Politecnico di Milano is installed on-board. This FTI
system, called Mnemosine, is capable of supporting certification procedures [14].
Its design has been tailored for ULM and it consists of a low cost, low intrusive
and flexible solution for flight testing. A second equipment, the Smart-ADAHRS
demonstrator, is installed together with Mnemosine. This system is equipped with
an independent ADAHRS platform integrated with GNSS. The only parts shared by
the two systems are the pressure ports, probes and the first segment of pneumatic
links. The aerodynamic angles of the aircraft have been measured by two vanes
mounted on a Pitot-boom structure.

The flight tests have been collected during a Master course held in Politecnico di
Milano. Students themselves cover the Flight Test Engineer (FTE) position, bringing
in some cases to incomplete observations. In some cases, fuel data consumption are
missing, in some others the flight control surface position have not been recorded.
However, the method showed good capabilities to face this medium degree of un-
certainty. An example of the flight data recorded during one flight test can be seen
in Fig. 4.

To evaluate the capability of the method, the C;, — o plot is obtained. Because no
engine measurement is available on-board, a fuel consumption linearly descreasing
with time has been assumed. In this way, it is possible to evaluate the lift coefficient
as Cp = %, where m is the aircraft mass, g is the gravitational acceleration, g,
is the impact pressure and S is the wing surface area. The samples resulted to be
organized on a straight line, with slope Cro and zero ¢ close to the independent
analysis previously conducted by [3]. To avoid nonlinear effects, only the samples
with @ < 10° have been taken in consideration. A maximum error of —0.06% on
CLq and of —2.27% on o has been obtained. The quality of the linear regression
has been measured with the coefficient of determination.

Actually, the effects of Cp5, and asymmetric flight condition should be accounted
in a post-processing correction. Shortly, according to [7], the slope obtained by the
regression should be properly called Cj . However, the difference between Cj,, and
CLq has been here dropped for sake of clarity.
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It is interesting to note that the obtained samples organize on three straight lines.
In fact, some of them corresponds to flaps down in Take-Off (about 14°) and Land-
ing (about 36°) conditions. Because the flap angle deflection, for leading edge plain
flap, is equivalent to offset the null lift direction with an angle proportional to the
Oy, it is possible to identify two analytic values of A« to compare our results. In fact

Ao =10y (14)

In this work, to assess the accuracy of the method, the effect given by the flap on
0 has been evaluated. Considering a 2-dimensional 7,p = 0.5 [23] and a surface
ratio Sy /S = 0.66, the 3-dimensional value for (%; becomes 73p = 0.33. Unfortu-

nately, this value is valid up to 20° of flap deflection. The k' parameter [21] has
been used to extend the evaluation beyond this limit, leading to the following more
general formulation:

S
’L'3D=’Z'2D*K'/*?f (15)

Therefore, the following values are used in this paper T3p 140 = 0.33, T3p36° =
0.27.

Looking at the Fig. 5 it is possible to identify all the sample points obtained with
5(i) > 0.667 and 6y = 0°.

Fig. 6 shows the samples corresponding to flaps in TO condition, whereas Fig. 7
collects the sample obtained in LND condition.

It is important to notice that no flight control surface data has been directly ap-
plied into the score assignment. In fact, the flap deflection angle &y has been used
only in post-processing to distinguish Fig. 5-Fig. 7, in order to clearly identify the
three linear regression.

The comparison of the regression with the independent analysis conducted by
Battaini [3] confirms the validity of the method. Table 2 collects the results ob-
tained. A difference about —0.06 % has been obtained on Cr, with respect to the

Flight Test 17 June 2017 - 14:29 (UTC+1)

—— Impact Pressure q,, [Pa]
— Altitude [m]

1000 [

500

200 400 600 800 1000 1200 1400
Time [s]

Fig. 4 Example of flight test data reporting the impact pressure g. and the altitude
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CL - a curve

% 0.95

« [deg]

Fig. 5 C; — a plot, clean condition, oy = —5.7673°, C o = 0.085136deg ™! =4.8779rad~!, R? =
0.95812. Scatter plot color corresponds to the sample score.

CL - a curve
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Fig. 6 C; — «a plot, TO condition, op = —9.2128°, C o = 0.084072deg‘l =4817rad”!, R? =
0.70726. Scatter plot color corresponds to the sample score.

Copyright by the author(s) and/or respective owners. Published with authorisation by CEAS.



Air Data Virtual Sensor: a Data-Driven Approach to Identify Suitable Flight Test Data 13

CL - a curve
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Fig. 7 C;, — « plot, LND condition, o = —15.3087°, Cp o = 0.073267deg™! = 4.1979rad ™!,
R? = 0.88861. Scatter plot color corresponds to the sample score.
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Fig. 8 C; — o plot, global view of the three regression lines
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manual derivation, neglecting the effect of the elevator. For what concern the o,
the difference is about —2.27 %.

Source CrLa (o) R
Battaini [3] 4.881 —5.9015deg -
Regression, clean 4.8779 —5.7673 deg 0.95812
Regression, TO 4.817 —9.2128deg 0.70726
Regression, LND 4.1979 —15.3087 deg 0.88861

Table 2 Result on the estimation of C; o and @

To evaluate the accuracy of the regression in TO and LND conditions, a manual
estimation has been carried out. Hence, although the coefficient of determination of
the linear regression is lower than 0.9 for the TO and LND conditions, the obtained
results can be considered a good demonstration of the trim identification method,
due to the accordance with the analytical estimation.

5 Conclusions

With the larger use of digital solution in avionics, analytical redundancy and vir-
tual sensors are more familiar concepts. The FBW solutions, successfully applied
on larger passenger aircraft, will be even used by Small Air Transport community
following the path towards a greener aviation. The present work is part of the Smart-
ADAHRS project that has as final goal to design a simplex and complete Air Data
System architecture partially based on virtual sensors. The virtual sensors are ded-
icated to aerodynamic angle estimation exploiting neural network techniques. In
order to achieve accurate and reliable virtual sensors, the training stage is a crucial
part of the learning process. At the moment, the virtual sensors are implemented
on a flying demonstrator to be used in real time during flight tests. The flight trials
highlighted the need to flight manipulation before the learning process in order to
achieve a more balanced distribution of the flight data among the n-space dimension
of the VS definition.

A method for the automatic identification of the quasi-stationary and quasi-
symmetric situation in a flight test database has been described in this paper. The
method is based on a down sampling technique followed by a linear multivari-
able score assignation. If the mean value of the signal scores at a given time is
greater than a given threshold, it can be stated that it is a quasi-stationary and quasi-
symmetric point and it is valid, under some assumption, to be applied in several
application. The validity of the method has been assessed with the estimation of
Crq and op. The comparison of the results with values estimated independently by
means of classical Flight Test procedure confirms the validity of the method.
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The proposed method worked also in flaps down conditions and the comparison

on the corresponding A has been conducted with analytical analysis, showing
good accuracy. Although these are preliminary results, the authors think that the
method can be analysed thoroughly to improve its performance.
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