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Abstract When designing the control laws for a new program, the aircraft 

manufacturer has to face to numerous constraints: 
New hardware, new system architecture, new structural specificities, new func-

tions, new certification basis. 
More, automatic control theory improves continuously. 
Then the engineers develop, each time, a new set of control laws. It needs some 

time, in development phase, but also during the flight test phase. 
To save time, reduce cost and to minimize risk of such new developments, a 

new (once again, but breaking the rules) concept has been designed: G*, the Ge-
neric Control laws. 

This concept proposes a new way of designing and computing the control laws, 
absolutely generic. The same set of laws is applied to all AIRBUS family mem-
bers, covering almost all the functions, from take-off to landing, in manual and au-
tomatic modes, including all the flight domain protections. 

The interests are numerous:  
• drastic reduction of development lead time, before and during 

flight test campaign 
• strong family behavior 
• best performance and safety level 
• certification easiness 
• technical synergy with other disciplines 

GSTAR is already partially applied on A350. It will be used on any new model, 
and is also introduced on legacy programs depending on opportunities. 
This paper explains the equation cascade method to compute in real time the linear 
part of the control laws. 
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1- INTRODUCTION 
 

To design control laws, the classical approach consists in creating a 
mathematical model of the aircraft on a flight domain grid. The control laws are 
designed on each point (state and vector placement, 𝐻𝐻∞, predictive control, …), 
and the resulting gains (feedback, precommands, filters…) are tabulated along the 
flight domain, inside the computer. 

The generic approach needs only a model of a subset of the aerodynamic 
characteristics of the aircraft: tabulation along the flight domain, or equations, de-
pending on the parameter. 
Then the complete set of control laws is a cascade of equations, computing in real 
time all the terms of these functions. The cascade is big and complex, but once 
validated and certified, it doesn’t need any future (further) modification. 
 
Almost all the functions from take-off to landing are considered, interacting with 
the others. Only some specific features are not solved by G* equations, such as vi-
bratory comfort augmentation functions, or Load alleviation functions, that have 
to deal with very specific structural characteristics or sizing constraints, and then 
are not necessarily the same on each family member. 
 
The different control laws are available as some bricks, that can be activated or 
not on any member. These bricks can also evolve in the future, without jeopardiz-
ing the global efficiency, because the other bricks adapt automatically – if needed- 
to the modification. 
 
The lonely features that are coded specifically to the family member are the aero-
dynamic characteristics, the actuators characteristics, the structural filtering acting 
on the sensors, and the time delay of the computing chain, that can be different 
when the hardware architecture is not the same. 
 
G* targets some objectives, defined to control precisely the aircraft, improve safe-
ty and optimize the structural sizing. Due to the high level of accuracy of G* con-
cept ,the objectives or the equations don’t need any tuning in flight tests, then the 
only tests that subsist are the ones to tune precisely the pilot feeling, linked mainly 
to the structural aircraft behavior. 
G* is designed to cope with this particular objective, then some specific tuning 
keys, tunable in real time during flight tests, impact directly the cascade of equa-
tions. 
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2- AIRCRAFT MODEL 
 

The necessary model is composed of 3 elements: 
 

• Flight mechanic equations representing the aircraft 
• Actuator model 
• Hardware filtering chain and calculation or transmission delays 

 
Classically, the flight mechanic linear equations are written on longitudinal axis, 
or on lateral axis, around an equilibrium: 
 
On longitudinal axis: (system 1 equations) 
 

𝑞𝑞 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟 − 𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟(𝜑𝜑) 
   𝑁𝑁𝑁𝑁 = 𝑣𝑣𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑣𝑣 𝑣𝑣𝑙𝑙𝑟𝑟𝑙𝑙 𝑓𝑓𝑟𝑟𝑝𝑝𝑝𝑝𝑙𝑙𝑟𝑟 −  cos (𝜃𝜃)

cos (𝜑𝜑)
 

 

��̇�𝛼�̇�𝑞� = �
𝑝𝑝𝛼𝛼 1
𝑚𝑚𝛼𝛼 𝑚𝑚𝑞𝑞

� �
𝛼𝛼
𝑞𝑞� + �

0
𝑚𝑚𝛿𝛿𝑞𝑞

� 𝛿𝛿𝑞𝑞 

 
𝑁𝑁𝑁𝑁 = 𝑉𝑉

𝑔𝑔
𝜋𝜋
180

(𝑞𝑞 − �̇�𝛼)  
  
And on lateral axis: (system 2 equations) 

 𝑟𝑟 = 𝑦𝑦𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟 − 𝑔𝑔
𝑉𝑉

sin (𝜑𝜑) 
 
    

 
 
 

Where matrix coefficients are obtained from aerodynamic coefficients, dynamic 
pressure, and aircraft weight, inertias and geometric characteristics. 

For instance,  𝑝𝑝𝛼𝛼 = 𝑆𝑆𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑
𝑚𝑚𝑉𝑉

𝐶𝐶𝑁𝑁𝛼𝛼, or 𝑚𝑚𝛿𝛿𝑞𝑞 = 𝑆𝑆𝐿𝐿𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑
𝐼𝐼𝑑𝑑𝑑𝑑

𝐶𝐶𝑚𝑚𝛿𝛿𝑞𝑞 

 

The actuator model can be very complex when representing all the non-linear 
effects that affect its behavior. To design a control law, only some of them are 
taken into account, because the most extreme ones (stall due to load, free plays, 
dead band zone…) are managed via some specific  functions or protections, that 
are not part of the control laws we are dealing with in this paper. 
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Thus, the model useful for control laws design is composed with a limiter, a 
rate limiter and a linear transfer function. The linear TF is usually a 4th order filter, 
to cope with the frequency characteristics of the actuator in a [0:10Hz] range. 

 

 
   The limiter and RL are used to manage integral terms saturation. For GSTAR 
equations as presented below, only the linear Transfer Function is used. 

 
 

    The complete calculation chain considers sensors – that can be IRS, IMU, ac-
celerometers,…-, the information transmission to the control laws host, and the 
transmission of control laws orders to actuation servo-loop. This numeric chain 
can be represented by the sampling periods of each component, the nominal dura-
tion and jitters of the transmission channels, and the asynchronisms between the 
components. Finally, this complete chain is represented with a global nominal de-
lay, and a global jitter margin. 

 
The information chain from sensors to the laws considers also the filtering of 

the informations: internal filter inside sensors, or specific filtering added into the 
control laws computer, for different purposes: anti-aliasing filter, noise suppres-
sion, structural damping filter,… On a modern aircraft, whose primary structure is 
optimized , the natural flexible modes are low frequency with a low damping ra-
tio, then the structural filtering chain is “complex”, to deal with the vibratory in-
formation, whatever for passive information attenuation or active damping in-
crease. Finally, the complete filtering chain, without actuator Transfer function, 
reaches easily a 8th or 10th order, that implies a phase lag fast evolving with fre-
quency, in the range of aircraft rigid modes. 

 
 
 
 
 
 
 
 
 
 
 
 

Copyright by the author(s) and/or respective owners. Published with authorisation by CEAS.



5 

3- GSTAR PRINCIPLE 
 

When considering a simple rigid aircraft motion, the aerodynamic equa-
tions can be linearized in a small state space model: 2X2 in longitudinal, and 4X4 
in lateral. Then the equations to calculate a control law are quite simple, and can 
be solved manually or coded into the computer. But, when considering the numer-
ous delays and filters of the system, its size grows drastically, and the equations 
become very complex.  
Moreover the resulting control law is far from the one obtained on the “simple” 
aircraft. 
 

The classical solving is done numerically with a mathematical software, 
for each tabulated point of the flight domain, and the resulting control law gains 
are tabulated into the computer. 
 

The GSTAR methodology proposes to use a fixed order equivalent filter 
to represent all the delays and filters of the chain, then to consider this equivalent 
filter in the aircraft model. Thus the size of the model keeps manageable, and the 
equations of the control law can be written. The solving of this system is done in 
cascade, giving first the closed loop placement of the equivalent filter, before giv-
ing all the gains of the control law. 
Once obtained, this equations system can be coded into the computer, and calcu-
late the control law gains in real time, based on the tabulated aerodynamic coeffi-
cients and the objectives of the law. 

 
The equivalent filter used by AIRBUS has a frozen structure, that allows to 

adapt in real time to hardware modifications, and that suits to every family mem-
ber. 

 
The second step is to design the control laws. 

Aircraft control laws can be seen in three layers: 
The inner layer shapes the aircraft behavior. It is composed with two families of 
elements: some non-linear controllers whose target is to bring back the aircraft on 
the linear model, and some linear controllers that shape the dynamic behaviour of 
the system. This inner control loop makes up the “manual” control laws. 
The second layer is the guidance loop, and is based on the augmented aircraft, 
shaped by the inner loop. This layer is the core of the Auto-pilot functions. 
The upper layer is the navigation loop, based on the augmented aircraft shaped by 
the second layer. This third level represents the auto-pilot navigation loop. 
Flight domain protections can be seen as second layer functions, taking control on 
human pilot or AP orders. 
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4- TEACHING EXAMPLE 
 
Let us consider system 1 equations.  

This system represents the longitudinal aircraft, once the possible non-linear con-
trollers have managed the non-linear -or not considered- aerodynamic coefficients. 

The inner loop controller will rely on Nz accelerometer and a pitch rate gyrom-
eter. These 2 sensors are high frequency filtered. The information provided by the 
sensors is sent to a computer, hosting the control law. Some structural filtering is 
added on these sensor informations. The computer will send its order to elevator 
actuator computer ,which hosts the elevator servo-loop . 

 
The global delay of the chain, called Tg, can be represented by a 2nd order pade 

filter,  𝑇𝑇𝑇𝑇𝑙𝑙𝑟𝑟𝑣𝑣(𝑟𝑟) = 𝑝𝑝𝑟𝑟𝑙𝑙𝑟𝑟(𝑇𝑇𝑔𝑔, 2) =
𝑇𝑇𝑇𝑇2
12 𝑐𝑐²−𝑇𝑇𝑇𝑇2 𝑐𝑐+1
𝑇𝑇𝑇𝑇2
12 𝑐𝑐²+𝑇𝑇𝑇𝑇2 𝑐𝑐+1

 

The global filter applied to the chain, including actuator transfer function, is 
called Tfilt(s). 
Then the resulting filter to consider is 
 𝑇𝑇𝑇𝑇𝑔𝑔𝛿𝛿𝑐𝑐𝑔𝑔𝑔𝑔𝛿𝛿(𝑟𝑟) = 𝑝𝑝𝑟𝑟𝑙𝑙𝑟𝑟(𝑇𝑇𝑔𝑔, 2) ∗ 𝑇𝑇𝑓𝑓𝑝𝑝𝑣𝑣𝑝𝑝(𝑟𝑟) 
 
We can design a 4th order equivalent filter, called TFequi(s), that has the fol-
lowing structure: 
 𝑇𝑇𝑇𝑇𝑒𝑒𝑞𝑞𝑒𝑒𝑒𝑒(𝑟𝑟) = 𝐵𝐵(𝑟𝑟). 𝑝𝑝𝑟𝑟𝑙𝑙𝑟𝑟(𝑇𝑇𝑒𝑒𝑞𝑞 , 2) where 𝐵𝐵(𝑟𝑟) = 1

𝑠𝑠²
𝜔𝜔0²+2

𝜉𝜉
𝜔𝜔0

𝑐𝑐+1
 and 𝑇𝑇𝑒𝑒𝑞𝑞  is an 

equivalent delay. 
To design it we establish a theorem: 

Given a frequency f1, and 2 values g1 and g2. 
We note 𝜔𝜔1 = 2𝜋𝜋𝑓𝑓1,  and 𝜔𝜔2 = 2𝜋𝜋 𝑓𝑓1

2
 

A 2nd order butterworth filter 𝐵𝐵(𝑟𝑟) = 1
𝑠𝑠²
𝜔𝜔0
2+2𝜉𝜉

𝑠𝑠
𝜔𝜔0

+1
 

verifies 𝑔𝑔1 = 𝑟𝑟𝑎𝑎𝑟𝑟�𝐵𝐵(𝜔𝜔1)�, 𝑟𝑟𝑟𝑟𝑙𝑙 𝑔𝑔2 = 𝑟𝑟𝑎𝑎𝑟𝑟�𝐵𝐵(𝜔𝜔2)� 

If and only if 
1
𝑔𝑔12
− 4

𝑔𝑔22
= 3 𝑋𝑋2

4
− 3  has a real solution 𝑋𝑋². 

If yes, 𝑋𝑋 = 𝜔𝜔1
2

𝜔𝜔0
2, 

And 𝜉𝜉2 =
1
𝑇𝑇1
2−(1−𝑋𝑋)2

4𝑋𝑋
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We then can fix B(s) to equal 𝑟𝑟𝑎𝑎𝑟𝑟(𝑇𝑇𝑇𝑇𝑔𝑔𝛿𝛿𝑐𝑐𝑔𝑔𝑔𝑔𝛿𝛿(𝑟𝑟)) on 𝜔𝜔1 𝑟𝑟𝑟𝑟𝑙𝑙 𝜔𝜔2, and fix 𝑇𝑇𝑒𝑒𝑞𝑞  to 
cope with arg�𝑇𝑇𝑇𝑇𝑔𝑔𝛿𝛿𝑐𝑐𝑔𝑔𝑔𝑔𝛿𝛿� 𝑎𝑎𝑟𝑟𝑣𝑣𝑙𝑙𝑦𝑦 𝜔𝜔2 

 
We can write from system 1 equations 

�𝑟𝑟2 − �𝑝𝑝𝛼𝛼 + 𝑚𝑚𝑞𝑞�𝑟𝑟 + 𝑚𝑚𝑞𝑞𝑝𝑝𝛼𝛼 − 𝑚𝑚𝛼𝛼�𝑁𝑁𝑁𝑁 = −
𝑉𝑉
𝑔𝑔

𝜋𝜋
180

𝑝𝑝𝛼𝛼𝑚𝑚𝛿𝛿𝑞𝑞𝛿𝛿𝑞𝑞 

 
Let us define the inner control law: 

𝛿𝛿𝑞𝑞 = 𝑝𝑝𝑟𝑟𝑙𝑙𝑟𝑟(𝑇𝑇, 2) ∗ 𝐵𝐵(𝑟𝑟) ∗ (𝐾𝐾𝐷𝐷𝑁𝑁𝑁𝑁𝑐𝑐 + 𝐾𝐾𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐾𝐾𝑞𝑞𝑞𝑞 +
𝐾𝐾𝑒𝑒
𝑟𝑟

(𝑁𝑁𝑁𝑁𝑝𝑝 − 𝑁𝑁𝑁𝑁)) 

Then we have: 
�𝑟𝑟2 − �𝑝𝑝𝛼𝛼 + 𝑚𝑚𝑞𝑞�𝑟𝑟 + 𝑚𝑚𝑞𝑞𝑝𝑝𝛼𝛼 −𝑚𝑚𝛼𝛼�𝑁𝑁𝑁𝑁

= −
𝑉𝑉
𝑔𝑔

𝜋𝜋
180

𝑝𝑝𝛼𝛼𝑚𝑚𝛿𝛿𝑞𝑞 ∗ 𝑝𝑝𝑟𝑟𝑙𝑙𝑟𝑟(𝑇𝑇, 2) ∗ 𝐵𝐵(𝑟𝑟) ∗ (𝐾𝐾𝐷𝐷𝑁𝑁𝑁𝑁𝑐𝑐 + 𝐾𝐾𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

+ 𝐾𝐾𝑞𝑞𝑞𝑞 +
𝐾𝐾𝑒𝑒
𝑟𝑟

(𝑁𝑁𝑁𝑁𝑝𝑝 − 𝑁𝑁𝑁𝑁)) 

 
If we consider the following general system of 7th order whose controlled vari-

able is u: 
(𝜃𝜃2𝑟𝑟2 + 𝜃𝜃1𝑟𝑟 + 𝜃𝜃0)(𝑟𝑟𝑟𝑟2 + 𝑎𝑎𝑟𝑟 + 𝑙𝑙)(𝐾𝐾2𝑟𝑟2 + 𝐾𝐾1𝑟𝑟 + 𝐾𝐾0)𝑢𝑢 + 𝑅𝑅.𝑢𝑢

= (𝜃𝜃2𝑟𝑟2 − 𝜃𝜃1𝑟𝑟 + 𝜃𝜃0)(𝐾𝐾𝑒𝑒𝑐𝑐𝑢𝑢𝑐𝑐 + 𝐾𝐾𝑒𝑒𝑢𝑢 + 𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢𝑟𝑟𝑢𝑢 +
𝐾𝐾𝑒𝑒𝑒𝑒
𝑟𝑟

(𝑢𝑢𝑐𝑐 − 𝑢𝑢)) 

Then the closed loop system is:      
          (v) 
(𝑇𝑇7𝑟𝑟7 + 𝑇𝑇6𝑟𝑟6 + 𝑇𝑇5𝑟𝑟5 + (𝑇𝑇4 − 𝜃𝜃2𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢)𝑟𝑟4 + (𝑇𝑇3 − 𝜃𝜃2𝐾𝐾𝑒𝑒 + 𝜃𝜃1𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢)𝑟𝑟3

+ (𝑇𝑇2 + 𝜃𝜃2𝐾𝐾𝑒𝑒𝑒𝑒 + 𝜃𝜃1𝐾𝐾𝑒𝑒 − 𝜃𝜃0𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢)𝑟𝑟2 + (𝑇𝑇1 − 𝜃𝜃1𝐾𝐾𝑒𝑒𝑒𝑒 − 𝜃𝜃0𝐾𝐾𝑒𝑒)𝑟𝑟
+ 𝜃𝜃0𝐾𝐾𝑒𝑒𝑒𝑒)𝑢𝑢 = (𝜃𝜃2𝑟𝑟2 − 𝜃𝜃1𝑟𝑟 + 𝜃𝜃0)(𝐾𝐾𝑒𝑒𝑐𝑐𝑟𝑟 + 𝐾𝐾𝑒𝑒𝑒𝑒)𝑢𝑢𝑐𝑐 

 
Whose terms can be calculated in a specific function  𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓_𝑟𝑟𝑞𝑞𝑢𝑢𝑟𝑟𝑝𝑝𝑝𝑝𝑙𝑙𝑟𝑟_𝐵𝐵𝑇𝑇 

[𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4,𝑇𝑇5,𝑇𝑇6,𝑇𝑇7,𝜃𝜃0,𝜃𝜃1,𝜃𝜃2] = 𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓_𝑟𝑟𝑞𝑞𝑢𝑢𝑟𝑟𝑝𝑝𝑝𝑝𝑙𝑙𝑟𝑟𝐵𝐵𝑇𝑇(𝑟𝑟, 𝑎𝑎,𝑙𝑙,𝑇𝑇,𝐾𝐾0,𝐾𝐾1,𝐾𝐾2,𝑅𝑅) 
Content: 

𝜃𝜃2 =
𝑇𝑇²
12

 

𝜃𝜃1 =
𝑇𝑇
2

 

𝜃𝜃0 = 1.0 
𝑇𝑇7 = 𝑟𝑟𝜃𝜃2𝐾𝐾2 
𝑇𝑇6 = 𝑟𝑟𝜃𝜃2𝐾𝐾1 + (𝑎𝑎𝜃𝜃2 + 𝑟𝑟𝜃𝜃1)𝐾𝐾2 
𝑇𝑇5 = 𝑟𝑟𝜃𝜃2𝐾𝐾0 + (𝑎𝑎𝜃𝜃2 + 𝑟𝑟𝜃𝜃1)𝐾𝐾1 + (𝑙𝑙𝜃𝜃2 + 𝑎𝑎𝜃𝜃1 + 𝑟𝑟𝜃𝜃0)𝐾𝐾2 
𝑇𝑇4 = (𝑎𝑎𝜃𝜃2 + 𝑟𝑟𝜃𝜃1)𝐾𝐾0 + (𝑙𝑙𝜃𝜃2 + 𝑎𝑎𝜃𝜃1 + 𝑟𝑟𝜃𝜃0)𝐾𝐾1 + (𝑙𝑙𝜃𝜃1 + 𝑎𝑎𝜃𝜃0)𝐾𝐾2 
𝑇𝑇3 = (𝑙𝑙𝜃𝜃2 + 𝑎𝑎𝜃𝜃1 + 𝑟𝑟𝜃𝜃0)𝐾𝐾0 + (𝑙𝑙𝜃𝜃1 + 𝑎𝑎𝜃𝜃0)𝐾𝐾1 + 𝑙𝑙𝜃𝜃0𝐾𝐾2 
𝑇𝑇2 = (𝑙𝑙𝜃𝜃1 + 𝑎𝑎𝜃𝜃0)𝐾𝐾0 + 𝑙𝑙𝜃𝜃0𝐾𝐾1 
𝑇𝑇1 =  𝑙𝑙𝜃𝜃0𝐾𝐾0 + 𝑅𝑅 
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The system has 7 dynamics. In closed loop, 3 of these dynamics are placed by 
the control law on the objectives,  

(𝑟𝑟2 + 2𝜀𝜀𝜔𝜔𝑟𝑟 + 𝜔𝜔2) �𝑟𝑟 +
1
𝜏𝜏
� = 𝜇𝜇3𝑟𝑟3 + 𝜇𝜇2𝑟𝑟² + 𝜇𝜇1𝑟𝑟 + 𝜇𝜇0 

 
The 4 last ones correspond to the equivalent filter pole placement. 

(𝑥𝑥4𝑟𝑟4 + 𝑥𝑥3𝑟𝑟3 + 𝑥𝑥2𝑟𝑟2 + 𝑥𝑥1𝑟𝑟 + 𝑥𝑥0) 
 
 
 
So, the left part of (v) can be identified to: 

           
(𝑥𝑥4𝑟𝑟4 + 𝑥𝑥3𝑟𝑟3 + 𝑥𝑥2𝑟𝑟2 + 𝑥𝑥1𝑟𝑟 + 𝑥𝑥0). �𝜇𝜇3𝑟𝑟

3 + 𝜇𝜇2𝑟𝑟² + 𝜇𝜇1𝑟𝑟
+ 𝜇𝜇0�.𝑢𝑢 

 
This identification can be written via an equations cascade, written in a specific 

function 
[𝐾𝐾𝑒𝑒 ,𝐾𝐾𝑒𝑒𝑒𝑒 ,𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢]
= 𝑟𝑟𝑞𝑞𝑢𝑢𝑟𝑟𝑝𝑝𝑝𝑝𝑙𝑙𝑟𝑟_𝑣𝑣𝑙𝑙𝑝𝑝_𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟7(𝜇𝜇0, 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3,𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4,𝑇𝑇5,𝑇𝑇6,𝑇𝑇7,𝜃𝜃0,𝜃𝜃1,𝜃𝜃2) 

Content: 

𝑥𝑥4 =
𝑇𝑇7
𝜇𝜇3

 

 

𝑥𝑥3 =
𝑇𝑇6 − 𝑥𝑥4𝜇𝜇2

𝜇𝜇3
 

 

𝑥𝑥2 =
𝑇𝑇5 − (𝑥𝑥4𝜇𝜇1 + 𝑥𝑥3𝜇𝜇2)

𝜇𝜇3
 

 

𝐶𝐶1 =
𝑇𝑇4 − (𝑥𝑥4𝜇𝜇0 + 𝑥𝑥3𝜇𝜇1 + 𝑥𝑥2𝜇𝜇2)

𝜇𝜇3
 

 

𝐶𝐶2 =
𝑇𝑇3 − 𝑥𝑥3𝜇𝜇0 − 𝑥𝑥2𝜇𝜇1

𝜇𝜇3
 

 

𝐶𝐶3 = 𝐶𝐶2 −
𝜇𝜇2𝐶𝐶1
𝜇𝜇3

 

 

𝐾𝐾11 = 𝜃𝜃1 +
𝜇𝜇2𝜃𝜃2
𝜇𝜇3
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𝐾𝐾12 =
𝜇𝜇1𝜃𝜃2
𝜇𝜇3

− 𝜃𝜃0 −
𝜇𝜇2(𝜃𝜃1 + 𝜇𝜇2

𝜇𝜇3
𝜃𝜃2)

𝜇𝜇3
 

 
 
𝐾𝐾13 = 𝜃𝜃2 
 
 
𝐷𝐷11 = 𝑥𝑥2𝜇𝜇0 + 𝜇𝜇1𝐶𝐶1 + 𝜇𝜇2𝐶𝐶3 − 𝑇𝑇2 
 
 

𝐾𝐾21 = 𝜃𝜃0 −
𝜇𝜇1𝜃𝜃2
𝜇𝜇3

 

 

𝐾𝐾22 =
𝜇𝜇1 �𝜃𝜃1 + 𝜇𝜇2𝜃𝜃2

𝜇𝜇3
� − 𝜇𝜇0𝜃𝜃2

𝜇𝜇3
 

 
𝐾𝐾23 = 𝜃𝜃1 
 
𝐷𝐷22 = 𝑇𝑇1 − 𝜇𝜇0𝐶𝐶1 − 𝜇𝜇1𝐶𝐶3 
 

𝐾𝐾31 =
−𝜇𝜇0𝜃𝜃2
𝜇𝜇3

 

𝐾𝐾32 =
𝜇𝜇0(𝜃𝜃1 + 𝜇𝜇2𝜃𝜃2

𝜇𝜇3
)

𝜇𝜇3
 

 
𝐾𝐾33 = −𝜃𝜃0 
 
𝐷𝐷33 = −𝜇𝜇0𝐶𝐶3 

 
 
Thus we obtain a 3 equations system with 3 unknowns 𝐾𝐾𝑒𝑒,𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢 ,𝐾𝐾𝑒𝑒𝑒𝑒  
 

𝐾𝐾11𝐾𝐾𝑒𝑒 + 𝐾𝐾12𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢 + 𝐾𝐾13𝐾𝐾𝑒𝑒𝑒𝑒 = 𝐷𝐷11 
𝐾𝐾21𝐾𝐾𝑒𝑒 + 𝐾𝐾22𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢 + 𝐾𝐾23𝐾𝐾𝑒𝑒𝑒𝑒 = 𝐷𝐷22 
𝐾𝐾31𝐾𝐾𝑒𝑒 + 𝐾𝐾32𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢 + 𝐾𝐾33𝐾𝐾𝑒𝑒𝑒𝑒 = 𝐷𝐷33 

 
Whose determinants are: 

𝐷𝐷 = 𝐾𝐾11 �
𝐾𝐾22 𝐾𝐾23
𝐾𝐾32 𝐾𝐾33

� − 𝐾𝐾21 �
𝐾𝐾12 𝐾𝐾13
𝐾𝐾32 𝐾𝐾33

� + 𝐾𝐾31 �
𝐾𝐾12 𝐾𝐾13
𝐾𝐾22 𝐾𝐾23

� 

 

𝑅𝑅𝑞𝑞 = 𝐷𝐷11 �
𝐾𝐾22 𝐾𝐾23
𝐾𝐾32 𝐾𝐾33

� − 𝐷𝐷22 �
𝐾𝐾12 𝐾𝐾13
𝐾𝐾32 𝐾𝐾33

� + 𝐷𝐷33 �
𝐾𝐾12 𝐾𝐾13
𝐾𝐾22 𝐾𝐾23

� 
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𝑅𝑅𝑁𝑁 = 𝐾𝐾11 �
𝐷𝐷22 𝐾𝐾23
𝐷𝐷33 𝐾𝐾33

� − 𝐾𝐾21 �
𝐷𝐷11 𝐾𝐾13
𝐷𝐷33 𝐾𝐾33

� + 𝐾𝐾31 �
𝐷𝐷11 𝐾𝐾13
𝐷𝐷22 𝐾𝐾23

� 

 

𝑅𝑅𝑝𝑝 = 𝐾𝐾11 �
𝐾𝐾22 𝐷𝐷22
𝐾𝐾32 𝐷𝐷33

� − 𝐾𝐾21 �
𝐾𝐾12 𝐷𝐷11
𝐾𝐾32 𝐷𝐷33

� + 𝐾𝐾31 �
𝐾𝐾12 𝐷𝐷11
𝐾𝐾22 𝐷𝐷22

� 

 
D cannot be zero if the aircraft is controllable. 
And we finally obtain: 

𝐾𝐾𝑒𝑒 =
𝑅𝑅𝑞𝑞
𝐷𝐷

 

𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢 =
𝑅𝑅𝑁𝑁
𝐷𝐷

 

𝐾𝐾𝑒𝑒𝑒𝑒 =
𝑅𝑅𝑒𝑒
𝐷𝐷

 
and: 

𝑥𝑥1 = 𝐶𝐶1 −
𝜃𝜃2𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢
𝜇𝜇3

 

 

𝑥𝑥0 = 𝐶𝐶3 −
𝜃𝜃2𝐾𝐾𝑒𝑒
𝜇𝜇3

+
�𝜃𝜃1 + 𝜇𝜇2𝜃𝜃2

𝜇𝜇3
�𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢

𝜇𝜇3
 

 
This equation cascade is easily applied to our system to compute the gains of 

the inner loop. 

Considering  𝑝𝑝𝑟𝑟𝑙𝑙𝑟𝑟(𝑇𝑇, 2) =
𝑇𝑇2
12𝑐𝑐²−𝑇𝑇2𝑐𝑐+1
𝑇𝑇²
12𝑐𝑐²+𝑇𝑇2𝑐𝑐+1

 

 
And 𝐵𝐵(𝑟𝑟) = 1

𝑔𝑔𝑐𝑐²+𝑔𝑔𝑐𝑐+𝑢𝑢
 

 
we note: 𝐴𝐴 = −𝑉𝑉

𝑔𝑔
𝜋𝜋
180

𝑝𝑝𝛼𝛼𝑚𝑚𝛿𝛿𝑞𝑞 , 𝐾𝐾0 = 𝑚𝑚𝑞𝑞𝑝𝑝𝛼𝛼 − 𝑚𝑚𝛼𝛼, 𝐾𝐾1 = −�𝑝𝑝𝛼𝛼 + 𝑚𝑚𝑞𝑞�,𝐾𝐾2 = 1.0 
 
Then we have: 

[𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4,𝑇𝑇5,𝑇𝑇6,𝑇𝑇7,𝜃𝜃0,𝜃𝜃1,𝜃𝜃2] = 𝑝𝑝𝑙𝑙𝑟𝑟𝑓𝑓_𝑟𝑟𝑞𝑞𝑢𝑢𝑟𝑟𝑝𝑝𝑝𝑝𝑙𝑙𝑟𝑟𝐵𝐵𝑇𝑇(𝑟𝑟, 𝑎𝑎,𝑙𝑙,𝑇𝑇,𝐾𝐾0,𝐾𝐾1,𝐾𝐾2, 0.0) 
We note now the objectives: 

𝜇𝜇3 = 1.0 

𝜇𝜇2 = 2𝜉𝜉𝜔𝜔 +
1
𝜏𝜏

 

𝜇𝜇1 = 𝜔𝜔² +
2𝜉𝜉𝜔𝜔
𝜏𝜏

 

𝜇𝜇0 =
𝜔𝜔²
𝜏𝜏
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We obtain: 
[𝐾𝐾𝑒𝑒 ,𝐾𝐾𝑒𝑒𝑒𝑒 ,𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢]
= 𝑟𝑟𝑞𝑞𝑢𝑢𝑟𝑟𝑝𝑝𝑝𝑝𝑙𝑙𝑟𝑟_𝑣𝑣𝑙𝑙𝑝𝑝_𝑙𝑙𝑟𝑟𝑙𝑙𝑟𝑟𝑟𝑟7(𝜇𝜇0, 𝜇𝜇1, 𝜇𝜇2, 𝜇𝜇3,𝑇𝑇1,𝑇𝑇2,𝑇𝑇3,𝑇𝑇4,𝑇𝑇5,𝑇𝑇6,𝑇𝑇7,𝜃𝜃0,𝜃𝜃1,𝜃𝜃2) 

 
and 

𝐾𝐾𝑁𝑁𝑁𝑁 =
𝐾𝐾𝑒𝑒 + 𝑝𝑝𝛼𝛼𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢

𝐴𝐴
 

𝐾𝐾𝑞𝑞 =
𝐾𝐾𝑒𝑒𝑢𝑢𝑐𝑐𝑢𝑢
𝑚𝑚𝛿𝛿𝑞𝑞

 

𝐾𝐾𝑒𝑒 =
𝐾𝐾𝑒𝑒𝑒𝑒
𝐴𝐴

 
 
 
 
The precommand term is written from (v) to compensate the real mode,  
 

𝐾𝐾𝐷𝐷 = 𝜏𝜏𝐾𝐾𝑒𝑒 
 
 
The augmented aircraft transfer function becomes 
 

�
𝑥𝑥4
𝑥𝑥0
𝑟𝑟4 +

𝑥𝑥3
𝑥𝑥0
𝑟𝑟3 +

𝑥𝑥2
𝑥𝑥0
𝑟𝑟2 +

𝑥𝑥1
𝑥𝑥0
𝑟𝑟 + 1� .�

𝑟𝑟2

𝜔𝜔²
+

2𝜀𝜀𝑟𝑟
𝜔𝜔

+ 1� .𝑁𝑁𝑁𝑁

= (
𝑇𝑇2

12
𝑟𝑟² −

𝑇𝑇
2
𝑟𝑟 + 1)𝑁𝑁𝑁𝑁𝑝𝑝 

 
Thus we can have a second layer controller to define Nzc, and use the same 

equations cascade method to compute in real time the components of this second 
layer. 

 
For example, 𝑁𝑁𝑁𝑁𝑝𝑝 = 𝐾𝐾𝑣𝑣𝑁𝑁𝑔𝑔(𝐾𝐾𝑁𝑁𝑔𝑔(𝑍𝑍𝑝𝑝 − 𝑍𝑍) − 𝐷𝐷𝑉𝑉𝑁𝑁) + 𝐾𝐾𝛿𝛿𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐾𝐾𝑢𝑢𝛿𝛿𝑁𝑁𝑁𝑁�̇�𝑁 allows to 

define a “altitude holder” control law. 
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5- GSTAR ADVANTAGES 
 
This method brings many advantages for our control laws design. 
 

Technically: 
• the equations cascades define precisely where all the aircraft 

dynamics are placed, and allow to modify the objectives of the 
law to cope with some stability margins constraints. 

• The efficiency of the law is guaranteed, because every “per-
turbating” parameter is taken into account. The equivalent de-
lay can be automatically adapted when the hardware path is 
varying. Thus, objectives of the law are the only tuning pa-
rameters to be adjusted during flight test campaign. It simpli-
fies drastically the way to perform the flight tests. 

• A specific aerodynamic model can be developed and identified 
in flight test for the control laws design need. It is simpler and 
faster than building a complete aerodynamic model. 

 
 
Strategically: 

•  All family members have the same control laws, that guaran-
tee the homogeneity, and the same level of safety. 

• No regression risk when developing a new model. 
• An innovative function can easily be retrofitted on any mem-

ber. 
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