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ABSTRACT 

Assessing the performance of extremum seeking control – a class of model-free adaptive controller – remains 

a mathematically-intensive task that involves many restrictive assumptions due to the presence of a 

harmonic forcing signal. In this paper, we propose the use of bifurcation analysis and numerical 

continuation to provide a simple numerical framework for engineers to investigate the dynamics of an 

extremum seeking system. Using the example of a poorly-tuned auto-trim system on a nonlinear airliner 

model, the advantage of bifurcation analysis and continuation is demonstrated, including the ability to 

directly identify the oscillation amplitude and stability information. Other behaviours common in nonlinear 

harmonically-forced systems, such as existence of multiple solutions and bifurcations leading to multi-

harmonic responses, are also detected. The purpose of this paper is to demonstrate the advantages of 

continuation in characterising the dynamics of an extremum seeking controller and to present this exciting 

controller scheme to the wider aeronautics audience.  
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Nomenclature 

𝐴 = forcing amplitude 

𝑐 = mean aerodynamic chord 

𝐶𝑥, 𝐶𝑧 , 𝐶𝑚 = force and moment coefficients 

𝑔 = gravitational acceleration 

ℎ = thrust line distance above CG 

𝐼𝑦 = pitch moment of inertia 

𝐽 = objective function 

𝐾𝐸 = learning rate (a proportional gain) 

𝑚 = mass 

𝑞 = pitch rate 

𝑆 = wing area 

𝑡 = time 
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𝑉 = total velocity 

𝛼 = angle of attack 

𝛿𝑒 = elevator deflection 

𝛿𝑡 = tailplane deflection 

𝜃 = pitch angle 

𝜌 = air density 

𝜑 = phase lag 

𝜔 = forcing frequency 

1 Introduction 

Extremum seeking control is a form of model-free adaptive control that automatically seeks out the 

extremum point(s) (maxima or minima) of an objective function. This is done via a ‘perturb and observe’ 

scheme, which injects a sinusoidal perturbation to the control signal and observes the subsequent changes 

in the objective function. An online estimation of the objective function’s slope can then be inferred, 

which in turn drives the control input to the point at which the slope is zero (i.e., the extremum). As the 

whole process is done online and does not require any knowledge of the plant, extremum seeking control 

is especially useful in cases where the optimal set point is either not known or is highly sensitive to 

changes in parameters, as often seen in many real-world applications.  

Extremum seeking control has attracted significant attention from researchers in recent years. 

Specifically, the number of publications on the topic between 2000 and 2009 alone exceeded those from 

the year 1960 to 2000 combined [1]. Part of the reason for this sudden surge in interest is due to a pivotal 

paper in 2000, which provided the first rigorous mathematical proof of stability in a general nonlinear 

extremum-seeking system [2]. Since then, various engineering and industrial applications of extremum 

seeking control has been explored, including internal combustion engine [3], wind power systems [4], 

and for optimising formation flight [5], to name a few. On the theoretical front, some notable works 

include automatic tuning of PID gains [6], limit cycle amplitude minimisation [7], convergence analysis 

[8], and optimising systems with only periodic solutions [9]. Another recent development is the addition 

of a built-in extremum-seeking controller block in the R2021a release of the Simulink Control Design 

toolbox in MATLAB [10]. This reflects the increasing popularity of the method and will further introduce 

extremum seeking control to many new users through a user-friendly environment. For more background 

on the theories as well as applications of extremum seeking control in other fields, readers are referred to 

papers [1, 11] and textbooks [12, 13]. 

Despite these developments, the current procedures for analysing an extremum-seeking system 

remain mathematically challenging and involve a number of assumptions that may prove impractical in 

many engineering systems. This in large part is due to the presence of the harmonic perturbation, which 

results in periodic motions and poses a major challenge to both analytical and numerical analyses. 

Regarding the analytical side, the method of averaging and the singular perturbation method are employed 

to reduce the system under investigation and approximate it as an equilibrium map [2]. The assumptions 

involved in these approaches require that the frequencies of the three main elements (the perturbation 

signal, the filters in the extremum controller, and the plant’s dynamics) are well-separated [7] – usually 

by an order of magnitude each. Considering the example of a generic flight dynamics model, these 

requirements are already limiting since a simple longitudinal (4th-order) aircraft model with actuator 

already spans three orders of magnitude on the frequency spectrum: 10-1-100 rad/s for the two rigid-body 

modes and 101 rad/s for the actuator. The impact of higher-order harmonic terms is also neglected in these 

approximations, which may further invalidate the results in highly nonlinear applications. On the 

numerical front, recent works have successfully employed numerical continuation using the AUTO-07P 

software to analyse extremum seeking controllers [14-17]. Various nonlinear phenomena have been 

characterised using this continuation-based scheme, including existence of multiple stable solutions, 
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unstable solutions, and loss of stability. However, the underlying equations used by the numerical solver 

in [14-17] are still equilibrium approximations of the full harmonically-forced systems, so the limitations 

listed above still apply.  

To fill in this gap, we present here an example of how harmonically-forced bifurcation analysis can 

be employed to analyse an extremum seeking controller on a highly nonlinear system with no closed-

form solutions. This method effectively converts the harmonically-forced plant into an autonomous self-

oscillating system, which can then be easily solved by continuation. Past applications of harmonically-

forced bifurcation analysis have focused on examining the frequency response of nonlinear systems, most 

famously the Duffing equation (see section II in [18] for a brief introduction), along with some recent 

developments in the field of flight dynamics and control [18, 19]. In presenting this work, we hope that 

the combination of bifurcation analysis and extremum seeking control will provide a powerful framework 

for future researchers and engineers to design and test many advanced implementations of this controller 

scheme. The example problem shown here can also be another contribution to the ever-expanding 

literature on dynamics of nonlinear harmonically-forced systems.  

2 Problem Description 

In this paper, we consider a fourth-order longitudinal aircraft model coupled with a conventional 

manoeuvre-demand controller and an auto-trim system – the latter uses extremum seeking. Although both 

controllers provide stability and accomplish their objectives, they have been intentionally tuned to achieve 

poor performance. This provides the backdrop to demonstrate the capability of harmonically-forced 

bifurcation analysis in identifying the stability boundaries and revealing the wide variety of dynamics that 

can be encountered in a poorly-designed controller or on a highly nonlinear plant. 

2.1 Aircraft Model and the Manoeuvre-Demand Controller 

The open-loop equations of motion for the longitudinal rigid-body modes of an aircraft can be written 

 

1  �̇� =
1

𝑚𝑉
[
1

2
𝜌𝑉2𝑆(𝐶𝑧 cos 𝛼 − 𝐶𝑥 sin 𝛼) − 𝑇 sin 𝛼 + 𝑚𝑔 cos(𝜃 − 𝛼)] + 𝑞 (1) 

2  �̇� =
1

𝑚
[
1

2
𝜌𝑉2𝑆(𝐶𝑧 sin 𝛼 + 𝐶𝑥 cos 𝛼) + 𝑇 cos 𝛼 − 𝑚𝑔 sin(𝜃 − 𝛼)] (2) 

3  �̇� =
1

2
𝜌𝑉2𝑆𝑐

𝐶𝑚

𝐼𝑦
−

𝑇ℎ

𝐼𝑦
 (3) 

4  �̇� = 𝑞 (4) 

 

in which the coefficients of aerodynamic force along the body x and z axes 𝐶𝑥 and 𝐶𝑧 (forwards along 

the fuselage and downwards respectively) and the moment coefficient in pitch 𝐶𝑚 are represented as 

follows: 

5  𝐶𝑖 = 𝐶𝑖0
(𝛼) + 𝐶𝑖1

(𝛼, 𝛿𝑒 , 𝛿𝑠) + 𝐶𝑖2
(𝛼)

𝑐𝑞

2𝑉
 (5) 

 

where 𝑖 = [𝑥, 𝑧, 𝑚]. Standard flight dynamics notation is used – see nomenclature. These coefficients are 

shown in Fig. 2, depicting data from the NASA Generic T-tail Model (GTT – see Fig. 1) – created to 
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represent a generic mid-sized regional airliner. pchip and spline interpolation/extrapolation are used to 

make the model smooth, which is beneficial for bifurcation analysis. Numerical values for the remaining 

parameters in equations (1-5) are listed in Table 1. 

 

Fig. 1 The NASA GTT 

 

 

Fig. 2 Aerodynamic coefficients of the GTT 

 

Table 1 Aircraft parameters 

𝑆 wing area 70.1 m2 

𝑐 mean aerodynamic chord 3.37 m 

ℎ engines' height above CG 2.02 m 

𝑚 mass  25,332 kg 

𝜌 air density (at 10,000 ft) 0.905 kg/m3 

𝐼𝑦 pitch moment of inertia 1,510,624 kg m2 

𝑔 gravitational acceleration 9.81 m/s2 

𝑇 thrust  29,982 N 
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A simple angle-of-attack demand controller as shown 

in Fig. 3 is used in our analysis. The reference input is 

demanded angle of attack 𝛼𝑑, which is subtracted from the 

actual angle of attack in the outer loop and then integrated. 

In the inner loop, a proportional stability augmentation 

system is included using pitch rate 𝑞 and pitch angle 𝜃 

feedback. All three gains 𝐾𝐼, 𝐾𝑞, and 𝐾𝜃 are fixed gains. 

The block 𝐶𝐸 is the extremum-seeking controller used for auto-trim. Its input is the elevator deflection 𝛿𝑒 

and the output is tailplane deflection 𝛿𝑡. The details of its working are presented in the next section. As 

mentioned, the closed-loop system is stable, although the gains have been selected to give poor 

performance.  

2.2 The Extremum-Seeking Auto-Trim Controller  

An extremum-seeking controller will automatically seek 

out the maxima or minima of an objective function, which 

are the points with zero slopes. In this example, the objective 

function is set to be 𝐽 = |𝛿𝑒|. The idea is that controller will 

adjust the tailplane deflection until |𝛿𝑒| reaches its minimum 

at zero. When this condition is achieved, the aircraft will be 

flying at the commanded angle of attack using only tailplane 

for trim and may represent minimum drag trim for the 

specific flight condition.  

The static relationship between elevator and tailplane 

deflections to keep the aircraft in trimmed flight at 2 deg 

angle of attack is shown as the solid line in Fig. 4a, with the 

inset showing a magnified view. Only aerodynamic data for 

tailplane between –10 and +5 deg are available. However, 

they can be spline-extrapolated as shown by the dashed lines. 

This artificially creates a peak and a trough with zero slopes 

that can potentially draw the auto-trim controller toward them 

instead of the desired |𝛿𝑒| = 0 point. For our purpose, this 

artificial peak/trough pair is desirable as it allows us to 

demonstrate the full capability of continuation methods in 

identifying additional attractors that may be hard to detect. 

Therefore, spline extrapolation is used for the tailplane 

aerodynamic data. This results in the objective function 𝐽 = |𝛿𝑒| as shown in Fig. 4b, with the three zero-

slope points labelled A-C; point A is the desired target for the auto-trim controller.  

A brief introduction to the principles extremum seeking 

control is now presented, although readers are referred to 

sources such as [12, 13] for a more formal introduction. Fig. 

5 is the block diagram of the auto-trim controller – 

previously labelled simply as 𝐶𝐸 in Fig. 3. The input to the 

controller is elevator, which is automatically controlled by 

the 𝛼-demand system. 𝐽 = |𝛿𝑒| is the objective function as 

Fig. 3 Closed-loop block diagram 

Fig. 5 Block diagram of the auto-trim 

controller. 

Fig. 4 Static relationship between elevator 

and tailplane at trim for flight at 𝜶 = 2o (a) 

and the objective function (b). 

a) 

b) 
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defined. This signal is multiplied by a sinusoidal perturbation of the form 𝐴 sin(𝜔𝑡) and a proportional 

gain 𝐾𝐸 and then integrated. Finally, another sinusoidal perturbation is added with a phase lag 𝜑, giving 

us the tailplane deflection. In this scheme, the controller will continuously perturb the tailplane 𝛿𝑡 at a 

frequency 𝜔 rad/s, thereby causing 𝐽 to vary sinusoidally at the same frequency. Due to the presence of 

the 𝛼-demand controller, 𝐽 will follow the static map shown in Fig. 4 in response to changes in the set 

point of 𝛿𝑡. This set point is controlled by the integral action, which continuously drives 𝛿𝑠 until 

𝐽𝐾𝐸𝐴 sin(𝜔𝑡) oscillates symmetrically about zero. This only happens when 𝐽 reaches one of the inflection 

points in Fig. 4 (so that the product of 𝐽(𝜔𝑡) and sin(𝜔𝑡) is symmetric about zero). The extremum seeking 

controller therefore has the capability to automatically seek out an inflection point in an objective function 

without any knowledge of the model – making it especially useful for plants that are sensitive to changes 

in system parameters. We acknowledge that a real-world auto-trim controller does not require extremum 

seeking [20-22] and the example provided here is only to exemplify the capability of bifurcation and 

continuation methods in analysing an extremum-seeking system.  

Table 2 shows the parameters of the auto-trim controller used in this paper. 

 

Table 2 Extremum seeking controller parameter 

𝐴 forcing amplitude 0.2 deg 

𝐾𝐸 learning rate 5 rad/s 

𝜙 demodulation phase 90 deg 

 

The effects of both the 𝛼-demand and the auto-trim controllers are now presented. Fig. 6 shows the 

aircraft responding to a step change in demanded angle of attack from 1 to 2 deg using two different 

forcing frequencies – both are under 1 Hz and can therefore be considered realistic. In both instances, the 

angle of attack converges to its commanded value of 2 deg. However, the second case with 4 rad/s forcing 

fails to drive the elevator to zero, and instead converges to the inflection point C in Fig. 4. This does not 

happen when 𝜔 is increased to 6 rad/s, as seen in Fig. 6a. In practice, performance can be improved by 

better tuning of both the 𝛼-demand and the auto-trim controllers, as well as the addition of a low-pass 

and/or high-pass filter in the extremum controller. The use of filters is not discussed here. 

 

 

Fig. 6 Step responses in 𝜶𝒅 using two different forcing frequencies. 

a) b) 
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3 Harmonically-Forced Bifurcation Analysis 

Having discussed the basics of extremum control and its potential shortcomings in highly nonlinear 

applications, we now propose the use of bifurcation analysis and numerical continuation as a tool to 

systematically assess the performance in those situations. Since its first application to flight dynamics 

models in the early 80s [23, 24], bifurcation analysis has seen increasing use in the field of aircraft 

dynamics and control by both the research community and the industry [25]. This method traces out a 

map of equilibrium and limit cycles solutions – both stable and unstable – in a nonlinear system in 

response to static changes in an input parameter (such as control surface deflection). Past studies have 

successfully used bifurcation analysis to characterise various nonlinear behaviours of interests such as 

spin, wing rock, and jump phenomenon [26], as well as to assess the performance of flight control systems 

[27, 28]. These studies, however, were still restricted to analysing quasi-static changes to the input 

parameter. A further extension the method in the flight dynamics context has been proposed recently, 

which permits examinations of the aircraft’s responses to a harmonic forcing input; the results are then 

presented in the form of a nonlinear Bode plot [18, 19]. The same approach is used here to analyse a 

closed-loop system with an extremum seeking controller, which is inherently periodic due to the presence 

of the sinusoidal perturbation. We will refer to this approach as harmonically-forced bifurcation analysis 

in this paper. 

The method to implement harmonically-forced bifurcation analysis in an extremum-seeking system 

is now presented. In general, bifurcation analysis requires that the state equations be written as 

autonomous first-order ordinary-differential equations. The harmonic forcing term sin 𝜔𝑡 (or other 

equivalent) can be generated in such an environment by the addition of two ‘dummy states’ 

 

6  
�̇�1 =    𝑥1 + 𝜔𝑥2 − 𝑥1(𝑥1

2 + 𝑥2
2) 

�̇�2 = −𝜔𝑥1 + 𝑥2 − 𝑥2(𝑥1
2 + 𝑥2

2) 
(6) 

 

It can be shown that 𝑥1 = sin 𝜔𝑡 and 𝑥2 = cos 𝜔𝑡 are asymptotically stable solutions of equation (6). 

These two states can now be used to generate the harmonic forcing signals in an extremum seeking 

controller. Accordingly, the whole plant is now a self-oscillating autonomous system, for which steady 

state solutions can be found by continuation in the same way as an autonomous (non-forced) system can 

be solved for limit cycle solutions.  

All bifurcation analysis in this paper was done in the MATLAB/Simulink environment using the 

Dynamical Systems Toolbox [29], which is the MATLAB implementation of the continuation software 

AUTO-07P [30]. 

4 Results 

4.1 Existence of Multiple Solutions 

The two different responses observed in Fig. 6 suggest that there are at least two stable solutions at 

4 rad/s forcing. Using these two responses as starting points for the continuation solver, the resulting 

bifurcation diagrams of the elevator and tailplane deflections are shown in Fig. 7. The forcing frequency 

𝜔 is set as the continuation parameter, thereby giving us an indication of how our choice of 𝜔 affects the 
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oscillation amplitude and stability. All solutions in Fig. 7 are periodic, and both the maxima and the 

minima of the oscillation are shown (note that in some cases, including much of the stable solution for 

elevator, the amplitudes are small and the maxima and minima are indistinguishable in the figure). 

Therefore, the oscillation amplitudes are easily indentified on the diagram – a major advantages over 

existing methods that approximate the responses as equilibrium maps. For the rest of the paper, only 

stable solutions are discussed in the interests of brevity. 

 

 

Fig. 7 Bifurcation diagrams: 𝝎 continuation. Solutions of the same branch are plotted in same colours. 

 

When 𝜔 is sufficiently high (above 2.56 rad/s), there are three possible stable responses as indicated 

by the three labels A-C. These labels correspond to the three inflection points shown in Fig. 4, with A 

being the desirable one. In the presence of multiple stable solutions, the initial condition will dictate which 

solution the system converges to in the absence of any changes to inputs during the simulation. The 

continuation solver indicates that B and C are connected (shown as red) and can therefore be detected 

when the starting solution converges to either the B or C inflection point. Branch A, on the other hand, is 

not connected to the other two. Despite this, we have seen from Fig. 6b that the simulation converged to 

point C at 𝜔 = 4 rad/s – indicating that branch A becomes an increasingly weak attractor as 𝜔 reduces.  

The existence of multiple solutions can also be seen at lower frequencies. To illustrate, Fig. 8 shows 

a magnified view of peak B at lower frequencies. We can see that there are at least two stable solutions 

on this branch alone at around 1.78 rad/s, which have been verified by time simulation (not shown). 
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Fig. 8 Magnified view of peak B at low frequencies. 

Results in this section have exemplified the potentially complex dynamics in a harmonically-forced 

system in general, and in an extremum-seeking controller in particular. Continuation not only provides a 

method to systematically characterise these behaviours, but can also be used to aid controller tuning via 

running a series of parameter sweeps. This argument has been made in previous studies on equilibrium 

bifurcation analysis (no harmonic forcing) [25], but it is even more important here because time 

simulations like those shown in Fig. 6 are even more computationally expensive to run due to the wide 

frequency separation between the forcing term and the plant’s dynamics.  

4.2 Multi-Harmonic Resonances 

As discussed in section 1, it is not practical to 

maintain sufficient frequency separation in a harmonically-

forced flight dynamics model in order to approximate the 

whole system as an equilibrium map. Numerical 

continuation is not subjected to such a restriction and 

therefore can potentially detect instances of resonances due 

to modal coupling between the aircraft’s dynamic modes 

and the harmonic forcing terms. To illustrate, consider the 

aircraft trimmed for level flight at 1 deg angle of attack with 

both the manoeuvre-demand and the auto-trim controller 

active. The continuation parameter is now the proportional 

gain 𝐾𝐸, which is commonly referred to as the learning rate 

parameter. The resulting bifurcation diagram is shown in Fig. 9. Stability is lost at around 𝐾𝐸 = 6 via a 

torus bifurcation. We compare the stable and unstable responses in Fig. 10 using two different values for 

𝐾𝐸. It can be seen that for 𝐾𝐸 = 6, a second frequency component has appeared with a frequency of 0.35 

rad/s. This lies between the two natural frequencies of the aircraft: 0.10 rad/s for the phugoid mode and 

1.50 rad/s for the short-period mode. It could therefore be inferred that although 𝜔 = 6 rad/s is higher that 

both natural frequencies, an internal resonance has occurred due to the high controller gain, leading to the 

multi-harmonic response observed in Fig. 10. This further underlines the advantage of the harmonically-

forced technique. 

Fig. 9. Continuation in the learning rate 

gain at 1 deg angle of attack. The forcing 

frequency is 6 rad/s.  
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Fig. 10 Single- and multi-harmonic responses 

5 Conclusion 

The use of harmonically-forced bifurcation analysis to analyse a nonlinear extremum seeking 

controller has been presented. Our results have demonstrated that combining two approaches provides a 

powerful framework for analysing complex nonlinear extremum seeking systems where existing 

approximations can be mathematically impractical or restrictive. Further developments in the topic should 

explore a realistic example, which exemplifies both the capability of continuation as well as the 

advantages of the extremum seeking method. 
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