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ABSTRACT

In this paper, we propose a closed-loop model reference adaptive controller augmented Linear
Quadratic Regulator to compensate for uncertainties from the payload and motor faults. When
the quadrotor UAV conveys objects or transports people, parameters such as mass, moment of iner-
tia, center of gravity, and aerodynamic coefficient significantly affect control performances. And,
the actuator degradation is called loss of effectiveness, which can cause the quadrotor to crash
during the mission. Firstly, we describe the mathematical model of quadrotor with the payload
and motor faults. Secondly, the closed-loop model reference adaptive controller augmented Linear
Quadratic Regulator enhances altitude and attitude tracking performances. Third, the reference
model is designed using the Linear Quadratic Regulator (LQR) approach, and an observer-like
term is added to eliminate the undesirable oscillations in the transient response. Fourth, the uni-
form ultimate boundedness of the proposed controller is proved by using the Lyapunov candidate
function. Lastly, we compare the LQR with integral action and the proposed control scheme under
the parametric uncertainties to analyze the overall performances of the proposed controller. The
simulation results show that the proposed control scheme presents better performance when the
payload is attached to the quadrotor than the LQR method.

Keywords: Nonlinear Control; Model Reference Adaptive Control(MRAC); Closed-loop Reference Model; Pay-
load; Center of Gravity(CoG); Quadrotor;
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Nomenclature

{I} = Inertial frame fixed to earth
{B} = Body-fixed frame fixed to quadrotor of center of gravity
x,y,z = Position measured in the inertial frame
ψ,θ ,φ = Euler angles (yaw, pitch, roll) measured from the inertial frame
u,v,w = Linear velocity measured in the body-fixed frame
p,q,r = Angular velocity measured in the body-fixed frame
ez,I,ephi,I,etheta,I,epsi,I = Integrated output tracking error
m = Mass
I = Inertia tensor
xG,yG,zG = Center of gravity in the body-fixed frame
KF,u,KF,v,KF,w = Aerodynamic force coefficient
KM,p,KM,p,KM,p = Aerodynamic moment coefficient
Fg,Mg = Force and Moment from gravity exerted in the body-fixed frame
Fa,Ma = Force and Moment from aerodynamic exerted in the body-fixed frame
Ft ,Mt = Force and Moment from thrust exerted in the body-fixed frame
Fx,Fz,Fz = Force exerted in the body-fixed frame
Mx,My,Mz = Moment exerted in the body-fixed frame
Ap ∈ Rn×n = A matrix in the plant model
Bp ∈ Rn×m = B matrix in the plant model
A ∈ Rn×n = A matrix in the extended plant model
B ∈ Rn×m = B matrix in the extended plant model
Are f ∈ Rn×n = A matrix in the reference model
Bre f ∈ Rn×m = B matrix in the reference model
Λ ∈ Rm×m = Unknown constant diagonal matrix
Lv ∈ Rn×n = Error feedback gain
Pv ∈ Rn×n = Unique solution of the Algebraic Ricatti Equation (ARE)
Rv ∈ Rn×n = ARE weight matrix
Qv ∈ Rn×n = ARE weight matrix
KLQR = Optimal LQR gain
R = LQR weight matrix
Q ∈ Rn×n = LQR weight matrix
e(t) = Error vector
V = Lyapunov candidate function
u(t) = Control input vector
f (x) : Rn → Rm = Unknown nonlinear function matrix
Θ ∈ RN×m = Constant matrix of the unknown coefficients
Θ̂ = Estimated constant matrix of the unknown coefficients
Φ = Basis function
Θ̄ = Modified constant matrix of the unknown coefficients
Φ̄ = Modified basis function
Kx = Ideal feedback gain
K̂x = Estimated feedback gain
Γ

Θ̄
= Adaptive update gain
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1 Introduction
Unmanned Aerial Vehicle (UAV) has been widely used for military and civilian usage in recent

times. The quadrotor type UAV is used for various tasks such as spraying pesticides [1] and quickly
reconnaissance [2] because the UAV has a simple structure, can vertically take off and land on a narrow
space, and hover at a certain altitude during a mission. In order to perform all of these missions safely
and reliably, designing a stable controller for quadrotor is essential. One of the most used controller ap-
proaches is the Proportional-Integral-Derivative (PID) because this method structure is simple and easy
to implement the quadrotor [3]. However, the person who has no knowledge of control theory and flight
experience is difficult to tune the PID gains. The Linear-Quadratic-Regulator (LQR) is an alternative
solution that is convenient to find the optimal gain because we only change the state and input weighted
matrix depending on the results [4]. Moreover, LQR with integral action is well known that the inte-
gral action term reduces the steady-state error [5]. However, the quadrotor has the highly nonlinear and
strong coupled term associated with several parametric uncertainties to deteriorate the flight performance
while performing a mission. For example, when the payload like electronic devices, battery, and parcel
is attached asymmetrically to the quadrotor, the model parameters such as mass, moment of inertia, and
center of gravity are changed in real-time. The payload also causes the aerodynamic effect that dete-
riorates tracking performance because it is considered a flat plate with thick thickness. Moreover, the
actuator degradation is called loss of effectiveness, which can cause the quadrotor to crash during the
mission. Therefore, we need the adaptive controller to compensate for the uncertainties in real-time.

Various adaptive control techniques have been presented in the two decades to solve these para-
metric uncertainties. Among proposed adaptive control approaches, Model Reference Adaptive Control
(MRAC) can estimate uncertain parameters and control gains with respect to the reference model on-
line, tracking the the desired reference model is designed considering the overshoot, settling time, and
rising time. Sadeghzadeh proposed the M.I.T rule, a kind of MRAC to change feedback and feedfor-
ward gain online automatically [6]. Schreier compared with MRAC to Model Identification Adaptive
Control (MIAC) on the quadrotor platform [7]. Moreover, Ibarra suggested an adaptive attitude con-
troller when the lengths of quadrotor arms are exactly unknown [8]. Using the decentralized MRAC
method, Jurado proposed an attitude controller to overcome uncertainties in the moment of inertia [9].
In Ref. [10], Palunko tried to compensate for errors due to the CoG offset due to the slung payload using
the feedback linearization adaptive tracking controller. Bakshi suggested the Indirect Model Reference
Adaptive Control using a neural network to reject the effect from the variation of motor and aerodynamic
coefficient [11]. In Ref. [12], when the motor efficiency degenerates, Combined Model Reference Adap-
tive Control (CMRAC) is used to achieve better performance than the traditional MRAC. In Ref. [13],
Predictor-based Model Reference Adaptive Control (PMRAC) is proposed to compensate for the loss of
effectiveness by using the state-predictor and reference model.

Previous research does not consider the entire parametric uncertainty from the mass property, aero-
dynamic, and loss of effectiveness because the quadrotor is not considered for transportation. When
transporting the parcel, the quadrotor has uncertainties from center of gravity, aerodynamic, and loss
of effectiveness that can not be ignored because they can affect a significant impact on control perfor-
mance. Therefore, the closed-loop model reference adaptive control augmented LQR with integral action
is proposed to compensate for the parametric uncertainties and guarantee stable performance. And, The
closed-loop reference model also is used to enhance the robustness and transient response in MRAC
architecture.

This paper is organized as follows. Section 2 represents the dynamic modelling under the parametric
uncertainty such as mass and moment of inertia, center of gravity, aerodynamic effect, and loss of effec-
tiveness. Section 3 gives the suggesting closed-loop model reference adaptive control augmented LQR
with integral action. Section 4 provides simulation results, which compares LQR with integral action
and the proposed controller. Section 5 summarizes this study and presents future research directions.
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2 Quadrotor UAV Modeling with Parametric Uncertainties

Fig. 1 Quadrotor with payload coordinate frame

In order to derive the dynamic model of quadrotor, we need to define the inertial coordinate system
and body-fixed coordinate. The inertial coordinate frame,{I}, have the z-axis pointing the center of the
earth where gravity is applied, and the x-axis pointing the north, y-axis facing east, as shown in Fig.1. In
addition, the body-fixed coordinate frame,{B}, is located at center of quadrotor. Let, [x,y,z]T represent
position measured in frame {I}, [φ ,θ ,ψ]T represent Euler angle of {B} measured from {I}. [u,v,w]T

represent velocity vector, and [p,q,r]T represent angular velocity both measured from the frame {B}.

2.1 Quadrotor UAV Kinematics
In order to obtain the quadrotor kinematics, we have to define a rotation matrix that transforms any

vector expressed in the inertial frame to the body-fixed frame. (For the simplicity, the following notations
is used, sin(x)→ sx cos(x)→ cx tan(x)→ tx. )

RB
I =

 cθ cψ cθ sψ −sθ

−cφ sψ + sφ sθ cψ cφ cψ + sφ sθ sψ sφ cθ

sφ sψ + cφ sθ cψ −sφ cψ + cφ sθ sψ cφ cθ

 (1)

The velocity in the inertial frame and velocity in body-fixed frame have the following relation. u
v
w

=

 cθ cψ cθ sψ −sθ

−cφ sψ + sφ sθ cψ cφ cψ + sφ sθ sψ sφ cθ

sφ sψ + cφ sθ cψ −sφ cψ + cφ sθ sψ cφ cθ


 ẋ

ẏ
ż

 (2)

The time derivative of Euler angles in the inertial frame and the angular velocity in the body-fixed frame
have the following relation.  φ̇

θ̇

ψ̇

=

 1 sφ tθ cφ tθ
0 cφ −sφ

0 sφ

cθ

cφ

cθ


 p

q
r

 (3)
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2.2 Quadrotor UAV Dynamics
6 DOF dynamic quadrotor UAV model is derived using Newton’s second law (F = ma). We will de-

rive the model considering the offset of the center of gravity because the payload can cause the variation
of center of gravity. Let, the actual center of gravity to the origin of body-fixed frame is expressed as
follows: rG = {xG,yG,zG}. when the payload is mounted to the quadrotor, the non-diagonal moment of
inertia is not zero. However, we assume that the non-diagonal term will be ignored because the diagonal
moment of inertia is dominant. The inertia tensor is as follows:

I =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 (4)

The effects on gravity due to the centre of gravity are induced as:

Fg =

 mgsinθ

mgcosθ sinφ

mgcosθ cosφ

 ,Mg =

 −zGmgcosθ sinφ + yGmgcosθ cosφ

zGmgsinθ − xGmgcosθ sinφ

−yGmgsinθ + xGmgcosθ sinφ

 (5)

And, the payload causes the aerodynamic force and moment because this shape is similar to the flat
plate, which has thick thickness. The aerodynamic force and moment of quadrotor are assumed as the
lumped system.

Fa =

 −KF,u∥u∥u
−KF,v∥v∥v
−KF,w∥w∥w

 ,Ma =

 −KF,p∥p∥p
−KF,q∥q∥q
−KF,r∥r∥r

 (6)

The thrust force and moment are obtained through an allocation matrix, which converts force and
moment into each motor thrust command. The loss of effectiveness in each motor is introduced as
0 ≤ γi ≤ 1. And, the motor dynamics is assumed to be the first-order transfer function.

Ft =

 0
0

−(γ1T1 + γ2T2 + γ3T3 + γ4T4)

 ,Mt =

 dy(−γ1T1 + γ2T2 + γ3T3 − γ4T4)

dx(γ1T1 + γ2T2 − γ3T3 − γ4T4)

cT (γ1T1 − γ2T2 + γ3T3 − γ4T4)

 (7)

Gmotor(s) =
τ

τs+1
(8)

where τ is the motor time constant.
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The equations about linear velocity and angular velocity are based on body fixed frames. Unlike
the traditional quadrotor dynamics model, dynamics is associated with the parametric uncertainty such
as: mass, moment of inertia, center of gravity, aerodynamic, and loss of effectiveness. The force F =
Fg +Fa +Ft is exerted at frame B. The moment M = Mg +Ma +Mt is exerted at frame B.

u̇ = Fx,t
m + vr−wq+gsinθ + xG(q2 + r2)− yG(pq− ṙ)− zG(pr+ q̇)− 1

mKF,u∥u∥u
v̇ = Fy,t

m +wp−ur+gcosθ sinφ − xG(qp+ ṙ)+ yG(p2 + r2)− zG(qr− ṗ)− 1
mKF,v∥v∥v

ẇ = Fz,t
m +uq− vp+gcosθ cosφ − xG(rp− q̇)− yG(rq− ṗ)+ zG(q2 + p2)− 1

mKF,w∥w∥w
ṗ =

Mx,t
Ixx

+
Iyy−Izz

Ixx
qr− m

Ixx
[yG(ẇ−uq+ vp−gcosθ cosφ)− zG(v̇−wp+ur−gcosθ sinφ)]− 1

Ixx
KF,p∥p∥p

q̇ =
My,t
Iyy

+ Izz−Ixx
Iyy

rp− m
Iyy
[zG(u̇− vr+wq+gsinθ)− xG(ẇ−uq+ vp−gcosθ sinφ)]− 1

Iyy
KF,q∥q∥q

ṗ =
Mz,t
Izz

+
Ixx−Iyy

Izz
pq− m

Izz
[xG(v̇−wp+ur−gcosθ sinφ)− yG(u̇− vr+wq+gsinθ)]− 1

Izz
KF,r∥r∥r

(9)

To control the z-axis velocity, the equation based on inertia frame is rewritten as:

ẍ =−Fz
m

(
sφ sψ + cφ cψsθ

)
ÿ =−Fz

m

(
cφ sψsθ − sφ cψ

)
z̈ = g− Fz

m

(
cφ cθ

) (10)

3 Closed-Loop Model Reference Adaptive Control Augmented LQR
with Integral Action
The proposed controller is divided into baseline controller and adaptive controller. The baseline

controller is designed using LQR with integral action to reduce the steady-state error. The overall struc-
ture of the controller is shown below. Our controller consists of an altitude controller and an attitude
controller. The process of designing each controller is discussed in the following chapters.

Fig. 2 Structure of closed-loop model reference adaptive control
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3.1 Linear Quadratic Regulator with Integral Action
According to the Ref. [14], we can define the MIMO system including uncertainties as follows.

ẋp = Apx+BpΛ(u+ f (xp))

yp =Cpx

f (xp) =
N

∑
i=1

θiφi(xp) = Θ
T

Φ(xp)

(11)

The linear quadratic regulator method is used as baseline controller that have the Integral feedback
connections to enhance the performance of the baseline controller. we add the new state called integrated
output tracking error.

ėy(t) = y(t)− yc(t)

eyI =

t∫
0

ey(τ)dτ
(12)

Adding (11), the new state x=(eT
yI,x

T
p ) is defined to obtain the extended system and open-loop dynamics.

And, the linearized model of quadrotor is obtained by linearizing the nonlinear z-axis equation at the
hover state and gathering the nonlinear term into the unknown function.

ẋ = Ax+BΛ(u+ΘT Φ(x))+Bre f yc(t),
y =Cx

A =

[
0m×m Cp

0np×m Ap

]
,B =

[
0m×m

Bp

]
,Bre f =

[
−Im×m

0np×m

]
,C =

[
0m×m Cp

] (13)

Using (9) and 10), this dynamic model is arranged in the same form as the (13).

z̈ = g− Fz
m

(
cφ cθ

)
ṗ =

Mx,t
Ixx

+
Iyy−Izz

Ixx
qr− m

Ixx
[yG(ẇ−uq+ vp−gcosθ cosφ)− zG(v̇−wp+ur−gcosθ sinφ)]− 1

Ixx
KF,p∥p∥p

q̇ =
My,t
Iyy

+ Izz−Ixx
Iyy

rp− m
Iyy
[zG(u̇− vr+wq+gsinθ)− xG(ẇ−uq+ vp−gcosθ sinφ)]− 1

Iyy
KF,q∥q∥q

ṗ =
Mz,t
Izz

+
Ixx−Iyy

Izz
pq− m

Izz
[xG(v̇−wp+ur−gcosθ sinφ)− yG(u̇− vr+wq+gsinθ)]− 1

Izz
KF,r∥r∥r

(14)

x =
[

ez,I eφ ,I eθ ,I eϕ,I z φ θ ϕ ż p q r
]T

Ap =

[
04×4 I4×4

04×4 04×4

]
,Bp =

[
04×4

Bp,(2,1)

]
,Bp,(2,1) =


1
m 0 0 0
0 1

Ixx
0 0

0 0 1
Iyy

0

0 0 0 1
Izz

,Cp =
[

I8×8

]

A =

[
04×4 Cp

08×4 Ap

]
,B =

[
04×4

Bp

]
,Bre f =

[
−I4×4

08×4

]
,C =

[
04×4 04×8

08×4 Cp

]
,Λ =

[
I4×4

]
(15)

Define the line-in-parameter state-dependent function and unknown coefficient matrix to compensate
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for nonlinear terms caused by the parametric uncertainties including mass, moment of inertia, center of
gravity, and loss of effectiveness.

Θ =



∆m 0 0 0
0 01×4 01×4 KM,p

0 01×4 KM,q Iyy − Ixx

0 KM,r Izz − Ixx −myg

0 Ixx − Iyy −mzg mzg

0 −mxg mxg 01×4

0 −myg 01×4 01×4


,Φ =



g
∥p∥p

qr
ẇ−uq+ vp−gcosθ cosφ

v̇−wp+ur−gcosθ sinφ

∥q∥q
rp

u̇− vr+wq+gsinθ

ẇ−uq+ vp−gcosθ cosφ

∥r∥r
pq

v̇−wp+ur−gcosθ sinφ

u̇− vr+wq+gsinθ



(16)

where ∆m = m− m̂ is the difference between true mass and known mass.

The Linear Quadratic Regulator with integral action is also an optimal control method. We obtain
the optimal control input to minimize the cost function. This cost function consists of quadratic state and
quadratic control input which is weighted by the Q matrix and R matrix to decide the desired response.
Unlike the traditional LQR method, our state X includes the integrated output tracking error to overcome
the limitation of LQR which is weak when the disturbance exists.

J(x,u) =
t∫

0

xT Qx+uT Ru dt (17)

Q =

 350 · I4×4 0 0
0 10 · I4×4 0
0 0 I4×4

 ,R =
[

I4×4

]
(18)

Finally, the control input of baseline controller is derived as follows.

u =−R−1BT Px =−KLQRx =−
[

eyI,xp

][ KI

Kp

]
(19)

AT P+PA+Q−PBR−1BT P = 0 (20)

where P matrix is the soultion of algebraic riccati equation.

KLQR =


17.3 0 0 0 15.7 0 0 0 5.4 0 0 0

0 5.3 0 0 0 2.61 0 0 0 0.425 0 0
0 0 5.3 0 0 0 2.61 0 0 0 0.425 0
0 0 0 5.3 0 0 0 2.61 0 0 0 0.68


T

(21)
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3.2 Closed-Loop Model Reference Adaptive Control
Firstly, we can choose the reference model that considers the desired response. The classical MRAC

has a trade-off in which increasing the update gain results in poor tracking performance, and decreasing
the update gain results in poor transient response. According to the [15], we can remove undesirable
oscillations in transients response and obtain fast tracking performance by adding the observer-like term
to the reference model. A stable reference model is defined as follows.

ẋre f = Are f x+Bre f r(t)+Lv(x− xre f )

yre f =Cre f xre f
(22)

Reference model is obtained using the optimal LQR gain. The Are f is derived through the matching
condition.

Are f = A−BKLQR
T (23)

To find observer-like gain, we can select v = 0.1. And, we solve the Alegebra Ricati Equation
numerically using appropriate Qv matrix and Rv matrix to obtain the following Lv.

Lv = PvRv
−1,Qv = Q0 +

v+1
v In×n,Rv = R0 +

v
v+1 In×n

PvAre f
T +Are f Pv

T −PvRv
−1Pv +Qv = 0

(24)

where v is the parameter that control transient response.

Lv =

 10 · I4×4 04×4 04×4

04×4 5 · I4×4 04×4

04×4 04×4 1 · I4×4

 (25)

Secondly, using the (16), we will compensate the parametric uncertainty of quadrotor to guarantee
the tracking performance. we can describe the equation (13) in the following form.

ẋ = Are f x+BΛ(uad +(Im×m −Λ
−1)ubl +Θ

T
Φ(xp))+Bre f ycmd

ẋ = Are f x+BΛ(uad + Θ̄
T

Φ̄(ubl,xp))+Bre f ycmd
(26)

where Θ̄T =
[

Ku
T ,ΘT

]
and Φ̄(ubl,xp) =

[
ubl

T ,ΦT (xp)
]

is estimated adaptive gain.

The adaptive control term is decided to compensate the modified uncertainty term.

uad =− ˆ̄
Θ

T
Φ̄(ubl,xp) (27)

To obtain the error dynamics, we change the open loop dynamics using (27).

ẋ = Are f x−BΛ(∆Θ̄T Φ̄(ubl,xp))+Bre f ycmd (28)

where ∆Θ̄T = ˆ̄
ΘT − Θ̄T .
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Let,
e = x− xre f (29)

gives following error dynamics by subtracting (23) from (28).

ė = (Are f −Lv)e+BΛ(∆Θ̄
T

Φ̄(ubl,xp)) (30)

To prove Lyapunov Stability, we define Av as follows and organize algebraic ricatti equation as follows
using P−1

v .

Av = Are f −Lv,Pv
−1 = P̃v

Av
T P̃v +AvP̃ =−Rv

−1 − P̃vQvP̃v < 0
(31)

To check the stability of the proposed controller, we assume the following Lyapunov function cadidate
as follows.

V (e,∆Θ̄) = eT P̃ve+ trace(Λ∆Θ̄T Γ
−1
Θ̄

∆Θ̄) (32)

where Γ
Θ̄=500·I15×15

is update gain.

using this error dynamics(30) equation, the time differential of V is described applying the vector trace
identity method.

V̇ (e,∆Θ̄) = eT (P̃vAv +Av
T P̃v)e+2eT P̃vBΛ(∆Θ̄T Φ̄(ubl,xp))+2trace(∆Θ̄T Γ

−1
Θ̄

∆
˙̄
Θ) (33)

According to the property (31), we derive adaptive law and prove time derivative of V is semi-negative.

˙̄̂
Θ = Γ

Θ̄
Φ̄(ubl,xp)eT PB

V̇ (e,∆Θ̄) =−eT (Rv
−1 + P̃vQvP̃v)e ≤ 0

(34)

since ẋre f ∈ L∞ and ė ∈ L∞, we can guarantee second degree time derivative is uniformly lower
bounded. using Barbalat’s lemma, we prove time derivative of V become to zero, at t → ∞.

V̈ (e,∆Kx,∆Θ) =−2eT (Rv
−1 + P̃vQvP̃v)ė (35)

Finally, we can conclude that the proposed controller is global asymptotically stable. In practice, the
control inputs are: baseline controller + adaptive controller.

u = ubaseline +uadaptive

ubl =−KLQRx

uad =− ˆ̄
Θ

T
Φ̄(ubl,xp)

(36)
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4 Simulation Results
The simulation results are analyzed whether the proposed control method follows the desired com-

mand correctly when the parametric uncertainties exist. The simulation was conducted for two scenar-
ios: In scenario 1, we assume that parameter such as the mass, moment of inertia, center of gravity is
inaccurate so that this effect causes the unstable behavior. Moreover, aerodynamic force and moment de-
teriorate the tracking performance. In scenario 2, the fault is injected into motor1 and motor2 to show the
passive fault-tolerant performance. The true model parameters and initial model parameters are listed in
Table 3. In order to compare the performance of our proposed controller, LQR with integral action was
selected. We will compare the results using a graph of each state and a graph of error root-mean-square
(RMSE) to compare the performance of the controller.

Table 1 Parameters of quadrotor model

Parameter Initial Values True Values Units Parameter Initial Values True Values Units
Ixx 0.025 0.0325 kg ·m/s2 KM,q 0.0 0.25 m
Iyy 0.025 0.0325 kg ·m/s2 KM,p 0.0 0.25 m
Izz 0.04 0.052 kg ·m/s2 KM,r 0.0 0.25 m
m 1.5 1.95 kg kt 1.3e−6 1.3e−6 N · s2

xG 0 0.025 m kq 4.5e−8 4.5e−8 N ·m · s2

yG 0 -0.025 m τmotor 0.03 0.03 1/s
zG 0 0.025 m l 0.25 0.25 m
γ1 1.0 0.75 − γ3 1.0 1.0 −
γ2 1.0 0.80 − γ4 1.0 1.0 −

Fig. 3 Simulation result of Euler angle with LQR and LQR+MRAC in Scenario 1
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Fig. 4 Root-mean-square error of LQR and LQR+MRAC in Scenario 1

Fig. 5 Simulation result of Euler angle with LQR and LQR+MRAC in Scenario 2
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Fig. 6 Pulse-width modulation of LQR and LQR+MRAC in Scenario 2

Fig. 7 Root-mean-square error of LQR and LQR+MRAC in Scenario 2

In scenario 1, the attitude and altitude performance of LQR with integral and proposed controller is
presented in Figure 3. In t = 0∼ 4, results of LQR with integral action show the undesired oscillation due
to the mass property and aerodynamic coefficient uncertainties. After this initial time, the LQR control
scheme presents the swaying behavior when step input is injected. In Figure 4, root-mean-square error of
LQR and LQR+MRAC scenario 1 is shown. Also, through the root-mean-square error, we have shown
the accuracy of the proposed controller numerically. As we mentioned before, the proposed controller
of root-mean-square error is smaller than LQR with integral action overall simulation. In scenario 2
that fault is injected into motor1 and motor2 at t = 10(s), the attitude and altitude performance of LQR
with integral and proposed controller is presented in Figure 5. Before the fault is injected, LQR and the
proposed controller have similar tracking performance. However, after 10 seconds, LQR controller has
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strong oscillation because this controller can not compensate for the loss of effectiveness effect correctly.
Through Figure 6, we can understand that the LQR method continuously changes the PWM signals to
follow the command accurately. However, the MRAC approach shows the smooth PWM signals even
the fault is injected. In Figure 7, the root-mean-square error of LQR and LQR+MRAC in scenario 2 is
shown.

Table 2 Root-mean square error of LQR and LQR+MRAC in Scenario 1

z (m) φ(deg) θ(deg) ψ(deg)
LQR 7.72 0.93 0.93 0.12

LQR+MRAC 2.21 0.32 0.32 0.03

Table 3 Root-mean square error of LQR and LQR+MRAC in Scenario 2

z (m) φ(deg) θ(deg) ψ(deg)
LQR 5.57 0.39 0.36 0.09

LQR+MRAC 2.20 0.12 0.26 0.03

5 Conclusion
In this paper, we derive the quadrotor UAV modelling with uncertainty from payload and motor

faults. And, the closed-loop model reference adaptive controller augmented linear quadratic regulator
is proposed to compensate the parametric uncertainties such as the mass, moment of inertia, center of
gravity, aerodynamic coefficient, and loss of effectiveness. In the numerical simulations, the results show
that the proposed controller have better performance than the LQR with integral action. Moreover, when
fault is injected, the proposed controller show the passive fault-tolerant ability through the results of
scenario 2.
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