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ABSTRACT

This paper deals with a nonlinear attitude controller considering the disturbance rejection for
urban air mobility (UAM). Using the disturbance observer-based control (DOBC) methodology,
the proposed controller is constructed with a two-stage design procedure. The baseline control is
established first by employing the time-scale separation approximation assumption and the feed-
back linearization approach, and then the Gaussian process regression (GPR) is augmented. Given
the computational burden, the GP model is learned offline with a fixed-size training dataset. The
GPR works as an adaptive law like the nonlinear disturbance observer. However, GPR can flex-
ibly model the disturbance because the GPR describes the disturbance as a distribution over the
functions. Furthermore, the control allocation method for the over-actuated system is presented
to distribute the control command efficiently. Consequently, the proposed controller is validated
with the numerical simulation under the various disturbance conditions such as model parameter
uncertainties.

Keywords: Urban Air Mobility(UAM); Disturbance Rejection Control; Gaussian Process Regression; Feedback
Linearization

1 Introduction
Nowadays, many people have been required for new transportation to smoothen traffic jams in an

increasingly urbanized society. As the road capacity in the urban areas is expected to saturate, many
countries prepare to utilize Urban Air Mobility (UAM), also called “air taxis,” in their areas [1], [2].
Most of the research has been developing the electric vertical take-off and landing (eVTOL) UAM, which
does not require the runway, for operating the system in the city. The eVTOL has been developed with
different concepts such as multirotor (Volocopter 2X - Volocopter, EHang 184 - EHang), tiltrotor (Joby
S4 - Joby Aviation, Butterfly - Hanwha Systems), and lift & cruise (Cora - Wisk Aero LLC). Recently,
it has been discovered that the multirotor configuration is more efficient in hovering [2]. In addition,
the multirotor structure is similar to unmanned aerial vehicles (UAVs), which have been extensively
researched for the design of the controller. In this context, this paper mainly aims to design the adaptive
controller for multirotor type UAM based on previous research for UAVs. This study could also be the
base to design the autopilot for different types of UAM.
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One of the challenging problems for UAM development is that it is typically characterized by high
nonlinearities and contains unmodeled dynamics. Most nonlinear control systems, e.g., three-loop au-
topilot, utilize the system model parameters to make the control commands. Hence, the model uncertain-
ties could degrade the tracking performance of the autopilot or even cause the mission failure. Moreover,
UAM can be affected by external disturbances such as building wind because the objective region of the
operation is generally a metropolitan area. In the past few years, some research activities have paid
attention to these challenging issues. The authors in [3] proposed the active disturbance rejection con-
troller with backstepping sliding-mode control methodology for quadrotor UAV considering the model
uncertainties and external disturbances. A nonlinear disturbance-based controller in [4] was adopted for
wind disturbance. Since much of the studies have been dealt with a small UAV, this paper focuses on the
solution of the challenging issues considering the characteristics of UAM.

The two-loop autopilot is the minimal control structure that guarantees the desired dynamic char-
acteristics [5]. This autopilot is based on the time-scale separation approximation and the feedback
linearization control methodology combined with a specific form of the desired error dynamics. Since
it is practical and straightforward to implement, the feedback linearization approach has been widely
used for the autopilot design of various aerospace systems during the last few decades. The physical
meaning and working principle of the autopilot that utilizes these concepts can be clearly understood.
Furthermore, it could be designed with the nonlinear control approach [6] that does not require the gain
scheduling method on the various operating points. On the other hand, the minimal control structure
has a weakness against the model uncertainties or external disturbances. Therefore, when the two-loop
topology is utilized, disturbance compensation techniques are also required to track the desired com-
mands accurately and secure in their mission.

Accordingly, some papers proposed the autopilot with the disturbance rejection techniques for an
accurate tracking performance even in the presence of parametric uncertainties or external disturbances
like the wind. It has been reported that the three-loop topology, which contains the additional feedback
loop to the minimal control structure, has robustness against the unmodeled dynamics [5]. This is be-
cause the integral term in the inner loop autopilot can counteract the disturbances as an adaptive law. The
authors in [4, 7, 8] proposed the nonlinear disturbance observer-based control (DOBC) techniques for
eliminating the adverse effects caused by the disturbances for various nonlinear systems. The time-delay
approximation concept was utilized for observing and compensating the disturbance in [9, 10]. However,
these parametric adaptive laws unavoidably have a transient region as the observations come from the
equation consisting of the state variables and system parameters. When the control command is derived
with an inaccurate estimate, it might degrade the performance of the baseline controller.

Gaussian process regression (GPR) has gained significant attention for handling the adverse effects
of the disturbances and system identification. This data-driven control method can be a suitable treat-
ment for the limitation of the parametric adaptive law as the inference takes place directly from the
training datasets and corresponding GP model [11]. Besides, GPR can generally obtain a more flexible
observation than the parametric methods under the sensor noise since it models the target value as the
distribution over the functions. The view of the nonparametric method GPR requires less prior knowl-
edge than the previous adaptive laws. Also, the unique advantage of GPR is that it provides the reliability
values of the estimation model as to whether the obtained estimate is accurate or not. In [12], the authors
conducted the GPR for estimating and regulating unknown disturbances related to the nonlinear friction
and damping of the inverted pendulum. Reference [13] attempted to adopt the adaptive law, consisting of
the modified GPR for online learning with a quaternion-based controller for the quadrotor system. Sev-
eral related works to the online learning GPR in [14, 15]; however, it can be reached to the limitation by
the computational burden for flight control systems as they are typically characterized as fast dynamics.

Consequently, this study aims to design the nonlinear two-loop autopilot with GPR to reduce the
adverse effects of the disturbances while benefiting from the GPR with a fixed training dataset for real-
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time implementation. The proposed autopilot is augmented by the two-loop baseline autopilot and the
GPR adaptive scheme utilizing the DOBC technique due to practicality and efficiency in functioning
[7]. Unlike previous research on disturbance rejection controllers, the baseline controller is built with
the time-scale separation assumption and the feedback linearization methodology. They can present
better insight into the physical sense and operational principle according to each control loop’s desired
tracking error dynamics. Corresponding to the procedure of the DOBC, there are two stages for autopilot
construction; the baseline controller and GPR design. Firstly, the baseline controller is designed with
specific forms of the error dynamics to make the resultant autopilot become the two-loop structure.
Secondly, the GPR is designed for estimating and compensating the disturbance caused by the wind or
system parameter variations.

The structure of this paper is as follows. In Section 2, the problem formulation is presented. In
Section 3, the proposed autopilot design procedure is illustrated. In Section 4, the numerical simulation
results are provided. Lastly, the conclusion of this study is offered in Section 5.

2 Problem Formulation

2.1 Nonlinear Dynamics Equations of UAM
In this section, nonlinear dynamic equations for the UAM system are described. Fig. 1 represents

an octa-rotor VTOL type UAM, which is considered in this study. As described in Fig. 1, the UAM is
assembled with eight co-axial rotors that are rotating in the opposite direction of each other. As described
in Fig. 2, two coordinate frames are defined to describe the motion of the vehicle. The first frame is the
North-East-Down (NED) frame {I}, which is called an inertial coordinate frame. The second frame is
the body-fixed frame {B} that the origin of the frame is attached to the center of gravity of the system.
Furthermore, let us assume that the UAM has a rigid body. Also, we can ignore the aerodynamic force
and body moment in the controller design stage since they are small enough.

According to the mentioned assumptions, the equations of motion for UAM can be derived from
Newton’s laws of motion. The velocity with respect to the body-fixed frame is written as

v̇vvB =−ωωωB× vvvB +CB
I gggI +

ΣFFFB

m
(1)

and the angular velocity in the body-fixed frame is defined as

ω̇ωωB = I−1
B (−ωωωB× IBωωωB +ΣMMMB) (2)

where the parameter m and the matrix IB = diag([Ixx, Iyy, Izz]) denote the mass and the moment of inertia
of the flight vehicle, and the vector gggI = [0,0,g]T represents the gravitational force in the inertial frame.
The matrix CB

I is the direction cosine matrix (DCM) rotating from the inertial frame to the body-fixed
frame. The variables vvvB = [u,v,w]T , and ωωωB = [p,q,r]T represent the velocity and angular velocity with
respect to the body-fixed frame. In addition, variables ΣFFFB = [ΣFx,ΣFy,ΣFz]

T and ΣMMMB = [L,M,N]T

denote the total force and body moment.

The kinematic relationship equation between the Euler angle and angular rates can be written as

φ̇ = p+qsinφ tanθ + r cosφ tanθ (3)

θ̇ = qcosφ − r sinφ (4)
ψ̇ = qsinφ secθ + r cosφ secθ (5)
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Fig. 1 The configuration of the UAM

Fig. 2 Two coordinate frames

and the variables φ , θ , and ψ denote the roll, pitch, and yaw angles. Following the mentioned assump-
tion, the total force is generated by each rotor and written as follows

ΣFFFB =
8

∑
i=1

FFFB,i (6)

FFFB,i , [0,0,−ηTmax,iui]
T (7)

and the total moment can be described as

ΣMMMB =
8

∑
i=1

(x̄i×FFFB,i +RRRB,i) (8)

RRRB,i , [0,0,(−1)i+1Cq,iTi]
T (9)

where the variables FFFB,i and RRRB,i represent the thrust force and moment caused by the i-th rotor. The
variable ui denotes the control input and the range of each rotor is in (0,1). The distance from the i-th
rotor to the origin of the body frame is written as x̄i = [Lx,Ly,0]T , as shown in Fig. 1. The parameter
Tmax,i provides the upper limit for the i-th rotor thrust force. The total force is not the exact sum of each
thrust produced due to an interference effect of the co-axial rotor. Therefore, these characteristics of the
co-axial rotor are modeled by an efficiency coefficient η and the counter-torque coefficient Cq,i.
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2.2 Time-scale Separation Assumption
As shown in nonlinear dynamic equations (1-2), the motion of the UAM can be described by the

velocity and angular velocity. The autopilot proposed in this paper chiefly concerns attitude control
related to the angular velocity because it is a critical component for safe flight. From Eqs. (6-9), the
control input variables have a direct effect on the body moment. It can be readily observed that the
angular rate can be thought of as fast dynamics since the body moment induces the change in angular
rate dynamics. In contrast, the Euler angles can be regarded as slow dynamic variables. The roll, pitch,
and yaw angles are caused after the angular velocity generation as in Eqs. (3-5). These observations
indicate that the complex dynamics can be decoupled into two dynamics mentioned above. Thus, the
autopilot can be efficiently designed with a separation of the outer loop autopilot for Euler angles and
the inner loop autopilot for angular velocity, as illustrated in Fig. 3.

Fig. 3 Time-scale separation approximation-based control structure

3 Controller Design
In this section, the disturbance attenuation controller is designed by adopting the DOBC methodol-

ogy in [7]. This structure is well known for its practical and effective implementation. The suggested
disturbance rejection controller is established using a two-stage design method that includes the base-
line controller and disturbance estimator design. The baseline controller is developed using time-scale
separation assumption. Furthermore, the disturbance is treated as an external input at this design stage.
Then, GPR is augmented to estimate and compensate for the disturbance to the baseline controller. Ad-
ditionally, the control allocation algorithm is presented due to the distribution of the control input to each
rotor. Thus, the structure of the entire autopilot described is designed through the following steps.

1) The baseline controller is designed using a two-loop feedback linearization methodology.
2) Gaussian process regression is constructed for estimating and compensating the disturbance.
3) The energy-effective control allocation matrix is also presented.

Fig. 4 Disturbance attenuation control structure

5Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



3.1 Baseline Controller

3.1.1 The outer loop controller
The baseline controller consists of two control loops: the outer loop controller for tracking given

Euler angle commands (φc, θc, and ψc) and the inner loop controller for tracking desired angular rate
values (pc, qc, and rc). The outer loop is designed first based on the time-scale separation assumption.
In this design step, the control commands are assumed to be slowly varying. The desired error dynamics
are chosen as the first-order system in order to produce the resultant controller with the minimal control
structure. The outer loop responses are characterized by the time constants: the design parameters τφ ,
τθ , and τψ . The error convergence rates are related to these values.

φ̇ =
1
τφ

(φc−φ) (10)

θ̇ =
1
τθ

(θc−θ) (11)

ψ̇ =
1

τψ

(ψc−ψ) (12)

From kinematic equations (3-5), and the above desired error dynamics equations (10-12), the angular
velocity commands can be derived as

pc = Kφ (φc−φ)+ pb (13)
qc = Kθ (θc−θ)+qb (14)
rc = Kψ (ψc−ψ)+ rb (15)

where the parameters Kφ , Kθ , and Kψ denote the control gains that are automatically determined as
follows.

Kφ = 1/τφ (16)
Kθ = 1/(τθ cosφ) (17)
Kψ = 1/(τψ cosφ secθ) (18)

The first terms of Eqs. (13-15) have the form of proportional feedback control for tracking the desired
error dynamics. Additionally, the second terms that are written as the bias control terms pb, qb, and rb
act for maintaining the trim conditions, and they have the forms as described below.

pb =−qsinφ tanθ − r cosφ tanθ (19)
qb = r tanφ (20)
rb =−q tanφ (21)
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3.1.2 The inner loop controller
While developing the inner loop controller, the disturbances are considered as the external input dp,

dq, and dr as follows.

ṗ =
(Iyy− Izz)

Ixx
qr+

L
Ixx

+dp (22)

q̇ =
(Izz− Ixx)

Iyy
pr+

M
Iyy

+dq (23)

ṙ =
(Iyy− Ixx)

Izz
pq+

N
Izz

+dr (24)

As shown in Fig. 3, the purpose of the inner loop is to track the commands provided from the outer
loop. According to the time-scale separation assumption, the derivative of the given rate commands can
be considered as zero (ω̇ωωB,c ≈ 0). Thus, the desired error dynamics for tracking the desired values using
the minimal control structure are chosen by the first-order system as follows.

ṗ =
1
τp

(pc− p) (25)

q̇ =
1
τq

(qc−q) (26)

ṙ =
1
τr

(rc− r) (27)

From Eq. (2) and the above desired error dynamics in Eqs. (25-27), the moment commands can be
obtained as

Lc = Kp (pc− p)+Lb− Ixxdp (28)
Mc = Kq (qc−q)+Mb− Iyydq (29)
Nc = Kr (rc− r)+Nb− Izzdr (30)

where the parameters Kp, Kq, and Kr stand for the control gain of the inner loop, and they are derived as
follows.

Kp = 1/τp (31)
Kq = 1/τq (32)
Kr = 1/τr (33)

The first terms of Eqs. (28-30) denote the proportional feedback control command, whereas the second
terms Lb, Mb, and Nb represent the control command to maintain the trim conditions.

Lb = (Iyy− Izz)qr (34)
Mb = (Izz− Ixx) pr (35)
Nb = (Iyy− Ixx) pq (36)

Moreover, the third terms in Eqs. (28-30) are for the compensation of the disturbance. In general, it is
impossible to measure the actual values of dp, dq, and dr. Hence, the estimate using adaptive law should
be required as described in Fig. 4, and the next section will cover the design of the GPR.
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3.2 Gaussian Process Regression
This subsection describes the disturbance estimation algorithm to treat the problem during the op-

eration of UAM by adopting the Bayesian approach (i.e., GPR). The GPR can provide the estimate as
a distribution over the function, so it has much more flexibility than the previous parametric adaptive
laws for observing the unmodeled dynamics. The GP model trains the model with a predefined training
dataset due to reducing the computational overload. The explanation of the design procedure for GPR
is exemplarily given to pitch dynamics for conciseness. The GPR for roll and yaw dynamics can be
constructed similarly. The structure of the training dataset is as

Dq =
{

Xq,yyyq
}
=
{

xxx(i)q ,y(i)q |i = 1, · · · ,N
}

(37)

where the vector xxx(i)q is the i-th input data that is composed of the velocity, Euler angles, and the attitude
angle commands as

xxx(i)q =
[
u(i),v(i),w(i),φ (i),θ (i),ψ(i),θ

(i)
c

]T
(38)

and the i-th output data of the training dataset containing the measurement noise εq with standard devia-
tion σq can be written as follows.

y(i)q = dq

(
xxx(i)q

)
+ εq (39)

εq ∼N (0,σ2
q ) (40)

The dataset is collected in the operation range during the data acquisition phase, according to the
structure mentioned above. Typically, the output data are unknown, so the numerical differentiation is
taken to calculate the disturbance by utilizing the modification of Eq. (23) as below. The estimation error
could be thought of as a component of the measurement noise.

y(i)q ≈ q̇− (Izz− Ixx)

Iyy
pr− M

Iyy
(41)

The prior GP model is composed of the mean function and covariance function that also called the
kernel. The prior mean function is chosen as zero because there is no disturbance information. The prior
covariance function employs the squared exponential (SE) kernel, which has an excellent property that
provides the precise modeling for any arbitrary continuous function [16].

dgp,q ∼ GP(0,kSE(xxx,xxx′)) (42)

where

kSE
(
xxx,xxx′

)
= σ

2
f exp

(
−(xxx− xxx′)T (xxx− xxx′)

2l2

)
(43)

The vector ψSE ,
[
σ2

f , l
]T

consists of the hyperparameters that represent the characteristics of the kernel,
and they can be optimized by maximizing the log marginal likelihood as

ψ
∗
SE,q = argmax

ψSE
log p

(
yyyq|Xq,ψSE

)
(44)

where
log p

(
yyyq|Xq,ψSE

)
=

1
2
(
yyyT

q K−1yyyq− logdetK−N log(2π)
)

(45)
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with kernel evaluations for all pairs of training data that can be written as follows.

K =


k
(

xxx(1)q ,xxx(1)q

)
· · · k

(
xxx(1)q ,xxx(N)

q

)
... . . . ...

k
(

xxx(N)
q ,xxx(1)q

)
· · · k

(
xxx(N)

q ,xxx(N)
q

)
 (46)

When the test point xxx∗q is given, the posterior mean and the variance function according to the training
dataset and the prior GP model can be calculated by the following joint Gaussian distribution.[

dgp,q
(
xxx∗q
)

yyyq

]
∼ N

(
0,

[
k∗ kkkT

kkk K +σ2
q IN

])
(47)

where

k∗ = k
(
xxx∗q,xxx

∗
q
)

(48)

kkk =
[
k
(

xxx(1)q ,xxx∗q
)
, · · · ,k

(
xxx(N)

q ,xxx∗q
)]T

(49)

Then, the posterior mean can be obtained by

µq
(
xxx∗q
)
= E

[
dgp,q

(
xxx∗q
)∣∣Xq,yyyq

]
= kkkT(K−1 +σ

2
q IN
)−1

yyyq (50)

and the posterior variance can be represented as follows.

σq
(
xxx∗q
)
= V

[
dgp,q

(
xxx∗q
)∣∣Xq,yyyq

]
= k∗− kkkT(K +σ

2
q IN
)−1

kkk (51)

Consequently, the estimate for the test point is given by a probabilistic model, the posterior mean func-
tion, as d̂q = µq

(
xxx∗q
)
. The posterior mean function is employed for disturbance compensation by replac-

ing the unknown disturbance in Eq. (29). Additionally, the variance function can present the reliability
of the estimated model.

3.3 Control Allocation Logic
Since this study considers the UAM with eight co-axial rotors, which is an over-actuated system,

the control allocation technique is required to distribute the control command appropriately. From Eqs.
(6-9), the relationships between the command input variables u and the total force and moment acting
on the flight vehicle can be briefly written with the matrix Ψ as follows.[

ΣFz

ΣMMMB

]
, Ψuuu (52)

For an over-actuated system, the concept of Moore-Penrose pseudo-inverse can be utilized to minimize
the energy of the control action [17]. Finally, the rotor throttle input uuu, which considers the control
energy efficiency, can be calculated as

uuu = Ψ
+

[
ΣFz,c

ΣMMMc

]
(53)

where
Ψ

+ = Ψ
T(

ΨΨ
T)−1

(54)
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4 Simulation Study
In this section, the performance of the proposed disturbance rejection controller is demonstrated

through the numerical simulations under the presence of the disturbance and system parameter uncer-
tainties. As described in Eqs. (22-24), the disturbance caused by wind or system parameter variation is
assumed to affect the inner loop directly. The system model parameters are presented in Tab. 1, and the
design parameters for each autopilot are chosen as follows.

τφ = 0.5(sec), τθ = 0.5(sec) , τψ = 0.5(sec) (55)
τp = 0.1(sec), τq = 0.1(sec) , τr = 0.1(sec) (56)

The training data for offline GP learning is collected in the operating region that is -30(deg) to
30(deg) in Euler angles for each test case. After gathering the training data, the fifty pair (i.e., N = 50 in
Eq. (37)) of data is randomly chosen for reducing the computational burden.

Table 1 The UAM model parameters used in this study

Parameter Description Value Unit
m Mass of the UAM 320 (kg)
IB Moment of inertia of the UAM diag([40,240,220]) (kg · m2)

(Lx,Ly) Distance from the rotor to the CG (2,1) (m)
τa Time constant of the actuator 0.01 (sec)

Firstly, the controller is tested with a form of constant disturbances, which has values dp = 50(deg/s2),
dq = 50(deg/s2), and dr = 0(deg/s2). Slowly varying wind or disturbance caused by uncertainty in the
center of gravity [8] could be considered similar in this case. The response of the attitude controller
with step command (Ωc = [10,10,0]T (deg)) is presented in Fig. 5(a). Also, the nominal response of the
baseline controller, as well as the response of the baseline controller without the disturbance rejection
algorithm, is attached for analyzing the performance. Figure 5(a) indicates that bias type error appears
when any disturbance rejection algorithm is not applied. As shown in Fig. 5(b), the GPR can estimate
given disturbance accurately, including the transient phase, unlike the other methods such as the nonlin-
ear disturbance observer (green-dashed line). Thus, the proposed Euler angle controller for the UAM can
accurately track the commands similar to the nominal response even in the presence of the disturbances.

(a) Attitude Controller Response (b) Disturbance Estimation Performance

Fig. 5 Disturbance rejection performance under case 1; disturbance with a form of constant
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(a) Roll Angle Control Response (b) Pitch Angle Control Response

Fig. 6 Disturbance rejection performance under case 2; constant disturbance, and uncertainties in MOI

Secondly, the proposed controller is tested by imposing various step commands under the constant
disturbance, which is the same in the first case and the model uncertainty. In this case, the value of the
moment of inertia is considered to differ from the actual as ±30%. Figure 6 represents that the designed
system can provide robust tracking performance under given conditions. Furthermore, the disturbance
rejection performance of GPR is well verified. Although there is a slight difference in the transient phase
when compared to the nominal response, the primary issue, a bias type error, is completely controlled.
According to the findings, even in the presence of these disturbances, the suggested disturbance rejection
algorithm would deliver adequate performance in these disturbances conditions.

5 Conclusion
Utilizing the DOBC concept, the nonlinear attitude controller and the GPR are designed and com-

bined to tackle the negative effect caused by wind and system parameter uncertainties for the UAM. The
baseline controller is designed using the feedback linearization methods (i.e., a two-loop controller that
is the minimal control structure). The augmented GPR works as an adaptive law like the disturbance ob-
server to compensate for the disturbance actively. The GPR model is trained offline with a fixed dataset to
reduce the computational effort while implementing. The control allocation mechanism is also provided
to produce the thrust force efficiently. In contrast to the prior parametric adaptive law, the numerical
simulation results demonstrate that the designed GPR adequately predicts the disturbance, including the
transient region. Thus, the suggested controller offered satisfactory tracking performance even in the
presence of a form of constant disturbance and the system parameter uncertainties. As a result, the de-
scribed disturbance rejection attitude controller can address the problems related to the disturbance of
UAM autopilot.
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