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ABSTRACT

This paper presents the nonlinear system identification of a slightly flexible 25kg fixed-wing UAV
in the time domain using a computationally efficient distributed aerodynamics model and a lin-
ear structural dynamics representation. The equations of motion are formed by making use of
the free vibration modes of the structure and the mean axis formulation. The structural modes
and mode shapes are determined from ground vibration tests. The distributed aerodynamics, ac-
counting for elastic deformations, are modeled using a quasi-steady stability and control derivative
approach and by applying strip theory. Initial distributions for the derivatives are obtained from
vortex-lattice-method calculations. For matching the model response to the measured response,
parameters for scaling the initial derivative distributions are introduced. The flexible model is
subsequently identified based on flight test data using the output error method in the time domain
and maximum likelihood estimation. A good overall identification result is achieved with a close
match of the fast aircraft dynamics. Lastly, an evaluation is given on the suitability of the identified
model for real-time simulation, loads estimation and active load control law design.
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Nomenclature

ax,ay,az = Accelerations (longitundinal, lateral, vertical) expressed in OBR coordinates, m/s2

b, br = Deformed and undeformed position vector relative to OBG , m
ci = Local strip chord, m
c = Wing aerodynamic mean chord, m
cm = Center of mass
CF = Coefficient vector of aerodynamic forces
CM = Coefficient vector of aerodynamic moments
d = Elastic deformation vector in OBR coordinates, m
dV = Volume element, m3

dy = Local strip width, m
Fext = Vector of external forces, N
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FA = Vector of aerodynamic forces, N
G = Gravity acceleration vector in OI coordinates, m/s2

h = Altitude, m
J = Inertia tensor, kg·m2

k = Factor of induced drag term
m = Aircraft mass, kg
MA = Vector of aerodynamic moments, N·m
Mext = Vector of external moments, N·m
ne = Number of elastic modes
ns = Number of strips
OAS = Local aerodynamic strip frame
OBG = Global body-fixed frame
OBR = Body-reference frame (center of mass)
OBS = Local strip-fixed frame
OI = Inertial reference frame
p = Position vector of mass element relative to OBR , m
p,q,r = Angular rates (roll, pitch, yaw), rad/s
ps = Static pressure, Pa
q = Dynamic pressure, Pa
qA = Dynamic pressure of local relative flow, Pa
qN = Dynamic pressure of local normal flow, Pa
Qη j = Generalized forces of j-th mode, N·m
r = Position vector of mass element relative to OI , m
r0 = Position vector of origin of OBR , m
s = Half wing span, m
s = Undeformed position vector relative to OBR , m
Si = Local strip surface area, m2

Sref = Wing reference surface area, m2

T = Air temperature, deg
TBRI = Transformation matrix from OI to OBR

u,v,w = Translational velocities (longitudinal, lateral, vertical) expressed in OBR coordinates, m/s
ug,vg,wg = Translational velocities (longitudinal, lateral, vertical) expressed in OI coordinates, m/s
uA,vA,wA = Translational aerodynamic velocities (longitudinal, lateral, vertical), m/s
VA = Aerodynamic velocity at OBR , m/s
VA,i = Local aerodynamic velocity vector, m/s
VN,i = Local normal flow vector, m/s
VTAS = True airspeed, m/s
X0 = Steady flow-separation point on the upper surface
α = Angle of attack at OBR , rad
αeff,i = Local strip effective angle of attack, rad
β = Angle of sideslip at OBR , rad
βeff,i = Local strip effective angle of sideslip, rad
δa = Aileron deflection, rad
δc = Control surface deflection, rad
δe = Elevator deflection, rad
δ f = Flaperon deflection, rad
δr = Rudder deflection, rad
εb = Bending strain, 0.01%
εs = Shear strain, 0.01%
εt = Torsion strain, 0.01%
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εT = Induced downwash angle, rad
ε0,εe = Rigid and elastic twist angle, rad
η = Generalized displacement coordinate
λ = Latitude, deg
µ = Generalized mass, kg·m2

ν0,νe = Rigid and elastic dihedral angle, rad
ω = Angular velocity vector of OBR , rad/s
ωn = Undamped natural (modal) frequency, rad/s
ωA = Aerodynamic angular velocity vector of OBR , rad/s
ρ = Air density, kg·m−3

ξ = Structural (modal) damping ratio
ϕ = Longitude, deg
ϕe = Elastic sweep angle, rad
ϕ25c = Rigid sweep angle at quarter chord line, rad
Φ,Θ,Ψ = Euler angles (roll, pitch, yaw), rad
Φd = Elastic translational displacement vector, m
Φ j = Mode shape of j-th mode
Φϕ = Elastic angular rotation vector, rad
Θi = Estimation parameter
(·)|BR = (·) expressed in OBR

1 Introduction
Main drivers in aircraft development relate to the need of an increased fuel efficiency to reduce

operational cost and fulfill increasingly demanding environmental regulations. The efforts have led to
constructing aircraft with lighter structures and higher aspect ratio wings which thus become more flex-
ible. Due to the increase in flexibility, such wings are characterized by lower natural frequencies and
exhibit increased in-flight deformations. These can lead to a coupling of rigid-body motion and elastic
deformation through the aerodynamic forces and moments. Flight control systems further complicate
the interaction, possibly leading to degraded [1] or unstable [2] control performance. Therefore, these
interactions need to be considered in the design models for flight control systems.
Depending on the characteristics of the aircraft, the purpose of application, or the availability of exper-
imental data, different modeling frameworks are required. In the context of this work, the objective is
the development of an aeroelastic model for a slightly flexible 25kg fixed-wing UAV that can be adapted
based on flight test data using system identification techniques in the time domain. The model is in-
tended for real-time simulation, loads estimation, and active load control law design. Therefore, a model
of moderate complexity with a limited number of state variables is required. Beyond that, it is desired to
maintain a distributed aerodynamics model such that local forces and moments can be calculated.

An overview of different aerodynamics modeling and system identification activities including ap-
plications for flexible aircraft is given in [3]. The modeling of flexible aircraft is suggested with an
additional dynamic-pressure dependent part associated with each stability and control derivative of a
classical model structure. However, this approach is only valid provided the rigid-body and structural
frequencies are sufficiently separated. A unified framework for modeling flexible aircraft is presented
in [4] and later in [5]. The equations of motion are derived by Lagrange’s equation and the principle of
virtual work. Further, they make use of a modal representation of the structure and the mean axis con-
straints to minimize inertial coupling between the rigid-body and elastic degrees of freedom (assuming
small deformations). The nonlinear equations of motion of the flexible aircraft then simplify and are
presented in terms of the nonlinear equations of the rigid-body motion and additional linear differential
equations for the modal deflections of the structure. The equations are solely coupled by the aerodynamic
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forces and moments. The modeling of aerodynamics is further proposed by a quasi-steady stability and
control derivative approach and by applying strip theory. Strip theory is a simple method often found
in models concerned with the investigation of wake vortex encounter, namely aerodynamic interaction
models (AIM) [6–8]. In strip theory, the lifting surfaces of the aircraft are divided into spanwise strips.
Each strip is then treated as a two-dimensional airfoil with its local geometric and aerodynamic char-
acteristics. This approach allows for the resolution of local relative flow conditions and the resulting
change in force and moment distributions. Outside aerodynamic interaction models, the application of
strip theory is e.g. found in real-time full-envelope aerodynamic models for small UAVs [9]. The mod-
eling methodology of [4] was further adopted in later works by various authors, in [10] together with
quasi-steady strip aerodynamics, and in [11, 12] together with unsteady aerodynamics using modified
strip theory [13, 14] and indicial functions [15, 16]. The work of [10, 11] both aimed at modeling only
incremental aerodynamics due to elastic deformations, assuming the availability of a rigid-body flight
mechanics and aerodynamics model. System identification techniques for flexible aircraft in combination
with the framework of [4, 5] can be found in [17, 18] for the identification of a high performance glider.
Though keeping the quasi-steady derivative approach for modeling the aerodynamic forces, moments,
and generalized loads, the derivatives are not determined by applying strip theory, but directly estimated
as parameters within the parameter estimation process. This modeling approach is a the straightforward
extension of the traditional rigid-body approach to a flexible structure, which can be easily combined
with system identification techniques. However, the distributed property of the aerodynamics model is
lost. Other applications of system identification for flexible aircraft are found e.g in [19] for the in-flight
identification of structural modes using an eigensystem realization algorithm (ERA).

Given the review on the literature, the framework of [4, 5] is a powerful method for modeling slightly
flexible aircraft. Further, strip theory is simple but effective for modeling local aerodynamic forces and
moments. The objective of this work is to maintain this strip aerodynamics model while allowing for
the adaption of the model using system identification techniques in the time domain. The paper is
structured as follows. Section 2 introduces the slightly flexible unmanned test aircraft G-Flights Dimona
and summarizes the test activities that were performed. Section 3 describes the modeling of the test
aircraft. Within this section, the equations of motion are developed using the free vibration modes of the
structure and the mean axis formulation of [4]. Further, the modeling of quasi-steady strip aerodynamics
is explained. Lastly, section 4 presents the identification and evaluation of the flexible model.

2 Unmanned Test Aircraft G-Flights Dimona
The slightly flexible test aircraft G-Flights Dimona, depicted in Figure 1, is an unmanned replica of

the HK36 Super Dimona at a scale of 1:3. It is driven by an electrical motor with a maximum power of
4kW, has a total mass of 25kg and a length of 2.4m. The original wings of the aircraft have been replaced
by custom spar, rib, and foil manufactured wings with increased span and flexibility. The total wingspan
of the aircraft is 5.4m with a total wing surface area of 1.68m2. The aircraft can either be controlled
by a safety-pilot via remote control or by a flight control computer. It is equipped with a total of four
control surfaces at the trailing edge of each wing: inner/outer ailerons and inner/outer flaperons, which
are used for lateral-directional control and for load control. The aircraft further comprises a rudder for
lateral-directional control and two elevators for longitudinal control and load control.

2.1 Test Instrumentation
The aircraft is equipped with the standard test instrumentation of a rigid-body aircraft and an ad-

ditional test instrumentation distributed along the fuselage, wings, and empennage. The standard test
instrumentation comprises several sensors, computers, and radio equipment. An industry-grade high-
precision inertial navigation platform (INS) supported by dual-antennas is used for the measurement of
GPS position, attitude, velocities, and accelerations. An increased position accuracy of 0.02m is achieved
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Fig. 1 Test Aircraft G-Flights Dimona

with a third antenna on ground providing Differential GPS correction. Airspeed, angle of attack, angle
of sideslip, static air pressure, and air temperature are measured by three air data systems (ADS). They
each consist of a five-hole-probe with an additional inertial measurement unit (IMU) and temperature
sensor for measurement correction. The airdata systems are located at the left (ADS1) and the right
(ADS2) wing as well as at the vertical tail (ADS3). The air data systems were developed in-house and
calibrated within wind tunnel experiments [20]. The standard test instrumentation is completed by a data
recorder computer and separate real-time flight control computer. The flight control computer serves as
the main host for GNC applications and issues control outputs to the servos. Further, it supports di-
rect code deployment from MATLAB/SIMULINK. Data distribution between the sensors and computers
is implemented via Ethernet-network and Controller Area Network (CAN). Table 1 lists the available
measurement parameters of the standard test instrumentation.

Table 1 Standard measurement parameters

Name Symbol Unit
Latitude ϕ deg
Longitude λ deg
Altitude h m
Roll angle Φ rad
Pitch angle Θ rad
Heading Ψ rad
Roll rate pINS rad/s
Pitch rate qINS rad/s
Yaw rate rINS rad/s
Longitudinal velocity uINS

g m/s

Name Symbol Unit
Lateral velocity vINS

g m/s
Vertical velocity wINS

g m/s
Longitudinal acceleration aINS

x m/s2

Lateral acceleration aINS
y m/s2

Vertical acceleration aINS
z m/s2

Angle of attack αADS1/2/3 deg
Angle of sideslip β ADS1/2/3 deg
Static pressure pADS1/2/3

s Pa
Dynamic pressure qADS1/2/3 Pa
Air temperature T ADS1/2/3 ◦C

The additional test instrumentation is distributed at various stations along the fuselage, wings, and
empennage to measure structural dynamics and loads. It comprises several IMUs and strain gauges
(shear, bending, torsion) which are concentrated in load measurement stations (LMS). Figure 2 displays
the distribution of the sensors along the test aircraft. Since the measurement of loads and structural
dynamics for wings and empannage is of prime importance, most sensors are located in these areas.

2.2 Ground Vibration Test and Modal Analysis
Considering the slight flexibility of the test aircraft, the assumption of linear structural dynamics is

reasonable. Therefore, it was decided to represent the elastic deformation of the structure by a set of free
vibration modes and mode shapes. To determine the structural modes of the aircraft, a ground vibration
test (GVT) and experimental modal analysis was performed at the Technische Universität Berlin. Ham-
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Fig. 2 Distribution of additional test instrumentation along the test aircraft

mer and shaker inputs were used to excite the structural vibrations of the aircraft. The first 7 structural
modes up to the first symmetric wing torsion mode were identified and considered for the structural
dynamics model. Details on the measurement setup, test execution, and results are presented in [21].
The structural mode shapes were subsequently determined from a finite element (FE) model adapted to
the GVT data. Table 2 lists the 7 structural modes. Figure 3 further visualizes the modes. Especially
the first symmetric wing bending mode exhibits a low natural frequency. Considering the servo actuator
bandwidth of 6.74 Hz it is the mode likely to be excited by control action or atmospheric disturbance.

Table 2 First 7 identified structural modes of the G-Flights Dimona

Mode Definition
Modal Modal

frequency ωn (Hz) damping ξ (%)
1 First symmetric wing bending 3.97 0.85
2 First antisymmetric wing bending 8.56 1.38
3 First antisymmetric vertical tailplane bending 11.18 1.24
4 First symmetric in-plane wing bending 13.21 1.83
5 Second symmetric wing bending 14.60 1.79
6 First symmetric horizontal tailplane bending 17.24 2.76
7 First symmetric wing torsion 25.83 1.91

Printed using Abaqus/CAE on: Thu Oct 19 22:33:11 Mitteleuropäische Sommerzeit 2017

(a) Mode 1

Printed using Abaqus/CAE on: Thu Oct 19 22:33:46 Mitteleuropäische Sommerzeit 2017

(b) Mode 2

Printed using Abaqus/CAE on: Thu Oct 19 22:34:38 Mitteleuropäische Sommerzeit 2017

(c) Mode 3

Printed using Abaqus/CAE on: Thu Oct 19 22:35:00 Mitteleuropäische Sommerzeit 2017

(d) Mode 4

Printed using Abaqus/CAE on: Thu Oct 19 22:35:22 Mitteleuropäische Sommerzeit 2017

(e) Mode 5

Printed using Abaqus/CAE on: Thu Oct 19 22:37:16 Mitteleuropäische Sommerzeit 2017

(f) Mode 6 (g) Mode 7

Fig. 3 Visualization of the first 7 structural modes of the G-Flights Dimona

2.3 Flight Tests
A comprehensive flight test campaign was performed to acquire flight data for system identification.

The campaign included a total of 7 flights with 109 maneuvers performed. All maneuvers were executed
with the help of an in-house developed autopilot for aerodynamic parameter identification [22], which
was adapted based on an a priori estimation of the rigid-body dynamics. Details on the overall concept
and main components of the test setup are given in [23]. A variety of classical maneuvers specifically
designed for the identification of the rigid-body dynamics were flown [24]. They comprised multiple lon-
gitudinal maneuvers including 3-2-1-1 maneuvers, pulse maneuvers and level deceleration maneuvers.
Further, different lateral-directional maneuvers were performed including bank-to-bank maneuvers and
rudder doublets. A full description of the maneuver characteristics is presented in [22]. The longitudinal
maneuvers were executed by the elevators while the lateral-directional maneuvers were executed by the
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ailerons, flaperons, and rudder. In order to identify the individual control effectiveness of ailerons and
flaperons, four different control configurations were varied within the bank-to-bank maneuvers: execu-
tion of the maneuvers by 1) inner and outer ailerons, 2) only inner ailerons, 3) only outer ailerons, and
4) inner and outer flaperons. The maneuvers were ultimately repeated around different trim velocities in
the range of VTAS = 18−30m/s.

3 Flexible Aircraft Model
This section describes the flexible aircraft model. The modeling methodology is based on the frame-

work of [4] and strip theory. The equations of motion are developed by representing the structural dy-
namics with free vibration modes and making use of the mean axis constraints. The aerodynamic strip
forces and moments are modeled using a quasi-steady stability and control derivative approach.

3.1 Equations of Motion

x

y

z

xI

yI

zI

ρdV

r

r0

p

OI

R
BOω

Fig. 4 Definition of a mass element’s po-
sition using inertial OI (xI,yI,zI) and body
OBR (x,y,z) reference frames

The position r of an arbitrary mass element ρdV of an
elastic body can be expressed in an inertial reference frame
OI (xI,yI,zI) in terms of its relative position p to a body-
reference frame OBR (x,y,z) and the position r0 of the origin
of OBR (see Figure 4). The specified positions of the mass el-
ement in the inertial and body-reference frames are then re-
lated by the expression r = r0 +p. The body-reference axes
OBR may rotate with an angular velocity ω and their orien-
tation may be defined by an arbitrary Euler angle sequence.
The axes move with the body but are not necessarily attached
to a material point.
Assume that a modal description of the structure is available
(e.g. from ground vibration tests and finite element model),
such that the elastic deformation d at a point (x,y,z) can be
expressed in terms of mode shapes Φ j(x,y,z) and the gener-
alized displacement coordinates η j(t) by

d(x,y,z, t) =
ne

∑
j=1

Φ j(x,y,z)η j(t) (1)

where ne denotes the number of elastic modes of the unconstrained, undamped vibration problem. Then,
the position of the mass element relative to OBR can be separated into its undeformed part s(x,y,z) (rigid-
body) and its deformation part d(x,y,z, t). The body-reference frame OBR may be used to develop the
equations of motion of the unconstrained elastic body, assuming that each mass element is treated as
a point mass. When doing so, inertial coupling can occur between the rigid degrees of freedom and
the elastic degrees of freedom. However, it is found that with a suitable choice of OBR satisfying the
mean axis constraints and the origin of OBR to be located at the instantaneous center of mass, the inertial
coupling can be neglected [4, 25].
The mean axis, first introduced by [26], define a body frame for which the relative translational and
angular momenta, due to the elastic deformation, are zero for all time t ≥ 0. Combined with the modal
description of the structure and only assuming small deformations (i.e. deformation and deformation rate
are colinear), the constraints can be expressed by [4, 5]

ne

∑
j=1

dη j

dt

∫
V

Φ j ρ dV = 0,
ne

∑
j=1

dη j

dt

∫
V

s×Φ j ρ dV = 0 (2)
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It can be shown that for the constraints to be satisfied, the elastic degrees of freedom require to be
orthogonal to the translational and rotational rigid-body degrees of freedom, respectively [4, 27]. These
conditions are guaranteed when the elastic deformations are represented by free vibration modes and the
body-reference axes OBR are located at the instantaneous center of mass. The decoupled equations of
motion of the elastic body are then given by [4, 11]

V̇|BR =−ω|BR×V|BR +TBRIG|I +
1
m

Fext |BR (3)

ω̇|BR =−J−1(ω|BR× (Jω|BR))+J−1Mext |BR (4)

η̈ j =−2ξ jωn, jη̇ j−ω
2
n, jη j +

1
µ j

Qη j (5)

The first two equations are formally equivalent to the standard nonlinear rigid-body flight dynamic equa-
tions for the translational and rotational degrees of freedom. Within these equations, V|BR and ω|BR

denote the linear and angular velocity vectors of the body-reference axes OBR with respect to the iner-
tial reference axes OI , expressed in body-reference coordinates. The gravity acceleration vector G|I is
expressed in OI coordinates and transformed to OBR with the transformation matrix TBRI . The aircraft
mass is m and the inertial tensor J. Note that with the assumption of small deformations, J is considered
constant. The vectors Fext |BR and Mext |BR denote the sum of external forces and moments expressed in
coordinates of OBR . Only aerodynamic forces are considered in this work. The last Equation 5 repre-
sents the ne linear differential equations for the structural dynamics in generalized coordinates. Within
these equations, η j denotes the generalized displacement, ωn, j the undamped natural frequency, ξ j the
modal damping ratio, µ j the generalized mass, and Qη j the generalized forces of each mode. Given the
nonlinear rigid-body equations of motion and the linear equations of motion of the structure decoupled
as presented, a coupling is solely due to Fext |BR , Mext |BR , and Qη j .

3.2 Quasi-Steady Strip Aerodynamics
The aerodynamic forces and moments of the test aircraft are modeled by applying strip theory. All

effective lifting surfaces, i.e. wings, horizontal tail, and vertical tail, are divided into a finite number
of spanwise strips. Each strip is then treated as a two-dimensional airfoil with its own geometric and
aerodynamic characteristics. The aerodynamic characteristics are modeled by means of quasi-steady
parameters. This implies that the resultant aerodynamic forces and moments at every time instant have
reached their steady state values and are only dependent on the instantaneous configuration and local
relative flow. The aerodynamic forces and moments of the fuselage are expressed by additional quasi-
steady parameters acting on the center of mass.

Consider the aircraft with its lifting surfaces divided into a finite number of ns spanwise strips, each
with local width dyi, local chord ci, and local surface area Si. Each strip is assigned a structure support
point (SP) at its centerline for which the instantaneous deformation (elastic translational displacement
and elastic angular rotation) is known from the superposition of structural mode shapes and generalized
displacements coordinates. The aircraft can then be treated as a discrete structure of interconnected
points, as shown in Figure 5, which mark the elastic axes of the lifting surfaces.
For the modeling of aerodynamic forces and moments, each strip is further assigned two aerodynamic
control points along its centerline, i.e. a neutral point (NP) which is assumed at the 25%-chord position
and a zero pressure point (PP0) which is assumed at the 50%-chord position. In strip theory, the strips
themselves are assumed non-deformable. Therefore, their motion can be described similar to the motion
of a flat plate, as indicated in Figure 5 for the i-th strip.
The instantaneous position of each strip’s structure support point, neutral point, and zero pressure point
can be described relative to a global body-fixed frame OBG . The frame OBG is aligned with the body-
reference axes OBR (origin at the center of mass) but is translated by a vector bcm, considered constant due
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Fig. 5 Position and orientation of the i-th strip relative to the global body-fixed frame OBG and definition
of the local strip-fixed frame OBS

to the assumption of small deformations [5]. Further, a local strip-fixed frame OBS is introduced which
defines the instantaneous translation and orientation of the strip’s 25%-chord line. Its origin is located
at the neutral point and its orientation relative to OBG is defined by three rotations. These three rotations
are the rigid and elastic dihedral angles (ν0,i, νe,i), the rigid and elastic twist angles (ε0,i, εe,i), and the
rigid and elastic sweep angles (ϕ25c,i, ϕe,i). The rotation from OBG to OBS is given by the transformation
matrix TBSBG . With the alignment of OBG and OBR , the transformation matrix TBSBG equals TBSBR .
Let bNP,i denote the instantaneous position of the strip’s neutral point relative to the global body-fixed
axes OBG . Further define br,NP,i as the rigid-body part of the position vector and

d(xi,yi,zi, t) =
ne

∑
j=1

Φd, j(xi,yi,zi)η j(t) (6)

ϕϕϕ(xi,yi,zi, t) =
ne

∑
j=1

Φϕ, j(xi,yi,zi)η j(t) (7)

as the elastic translational displacement and elastic angular rotation vectors of the i-th structure support
point along and about the body-reference axes, respectively. Then, under the assumption of no strip
deformation, the position bNP,i relative to the body-fixed axes OBG is calculated by

bNP,i(t) = br,NP,i +d(xi,yi,zi, t)+Tϕ,i(t)(br,NP,i−br,SP,i) (8)

with br,SP,i denoting the rigid-body position vector of the i-th strip structure support point and Tϕ,i de-
noting the transformation matrix only due to elastic angular rotations in Equation 7. Note that bNP,i is
indicated time varying to distinguish between the non time varying terms in the equation. This notation
is omitted for simplification in the following. Similar expressions can be derived for the position vectors
of structure support point and zero pressure point.
The aerodynamic characteristics of the strips are modeled with quasi-steady parameters. In this sense,
each strip is assigned a local non-dimensional lift coefficient and a local non-dimensional drag coeffi-
cient, where each coefficient itself is formed by stability and control derivatives normalized by Si/Sre f

CL,i = CL0,i +CLα ,ϕ=0,i ·

(
1+
√

X0,i

2

)
·αeff,i +

nc

∑
n=1

CLδc,n ,i ·δc,n (9)

CD,i = CD0,i + ki ·C2
L,i (10)
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In the equations, CLα ,ϕ=0,i indicates the lift curve slope of the unswept strip, αeff,i is the strip’s local
effective angle of attack, and δc are the nc deflections of the available control surfaces. Quasi-steady
stall effects are included in terms of Kirchhoff’s theory of flow-separation and an approximation of the
steady flow-separation point X0,i based on hyperbolic-tangent [24]. For vertical stabilizer strips the non-
dimensional lift coefficient is interpreted as a side force coefficient CY,i with the effective angle βeff,i. All
terms are assumed to act on the strip’s neutral point, except for CL0,i and CLδc,n ,i ·δc,n, which are assumed
to act on the strip’s zero pressure point and a variable point along the centerline as a function of the
deflection [28], respectively. They are ultimately transferred to the strip’s neutral point. The moments
caused thereby are expressed in terms of non-dimensional moment coefficients Cl,i (roll), Cm,i (pitch),
and Cn,i (yaw). Non-dimensionality is achieved through dividing the moments by s (roll, yaw) and c
(pitch), respectively. Lastly, the aerodynamic characteristics of the fuselage are modeled by additional
non-dimensional force and moment coefficients with classical 1-point stability derivatives.
To calculate the effective angles in Equation 9, the local relative flow at each strip has to be determined.
This is achieved by summing all individual flow components at OBS , i.e. the linear aerodynamic velocity
of OBR , plus additional terms due to rotation about OBR , and the velocity of the structure:

VA,i|BR = VA|BR +ωA|BR× (bNP,i−bcm)+
ne

∑
j=1

Φd, j(xi,yi,zi)η̇ j (11)

The induced velocity due to elastic rotation about the structure support point is neglected. In Equa-
tion 11, VA|BR and ωA|BR denote the linear and angular aerodynamic velocity vector at OBR , respectively.
Downwash effects are taken into account at tailplane strips by the induced downwash angle εT,i. It is
proportional to the angle of attack at OBR and flaperon deflections, delayed by the time ∆tεT ,i the flow
requires to reach the tailplane strips [29].

εT,i(t) =
∂εT

∂α
·α(t−∆tεT ,i)+

n f

∑
n=1

∂εT

∂δ f ,n
·δ f ,n(t−∆tεT ,i) (12)

Herein, ∂εT/∂α and ∂εT/∂δ f ,n denote the partial derivatives of the downwash angle to the angle of attack
at OBR and n f flaperon deflections. In this work, the calculation of ∆tεT ,i is simplified by taking the
mean distance between wing and horizontal or vertical tail strip neutral points along xBR , divided by the
airspeed VA at OBR . The downwash angles are then used to correct the local relative flow at the tailplane
strips. The local relative flow is originally defined in the local strip aerodynamic frame OAS , but as given
in Equation 11, is already expressed in components along OBR . Then, the angles αi and βi define the
orientation of OAS relative to OBR . The local relative flow at the i-th strip is illustrated in Figure 6.
With transformation matrix TBSBR , the local relative flow from Equation 11 can be expressed in OBS

coordinates. It is then straight forward to calculate the effective angles needed for the calculation of the
aerodynamic force coefficient in Equation 9, by

αeff,i = arctan
(

wA,i|BS

uA,i|BS

)
, βeff,i = arcsin

(
vA,i|BS

|VA,i|

)
(13)

Indicated in Figure 6, the orientation of the force and moment coefficients is either given along the
coordinates of OAS (defined by αi and βi) or along the normal flow component VN,i, but overall rotated
about the body-reference axis xBR by the rigid and elastic dihedral angle1. They can be expressed in
components of the body-reference axes OBR through a sequence of rotations involving these angles and
summarized to coefficient vectors CF

i |BR and CM
i |BR , respectively. The resulting forces and moments at

1Assuming no elastic sweep angle ϕe,i = 0. If ϕe,i 6= 0, a further rotation is given by this angle.
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Fig. 6 Local relative flow at the i-th strip and force and moment coefficients (assuming ϕe,i = 0)

either the neutral point (strips) or the center of mass (fuselage) are then given by

FA
i |BR = qN,i Sref CF

i |BR (14)

MA
i |BR = qN,i Sref D CM

i |BR (15)

with the diagonal matrix D, which has the main diagonal elements {s,c,s}, and the effective dynamic
pressures for wing and horizontal tail strips (Equation 16a) and vertical tail strips (Equation 16b) as

qN,i = qA,i cos2(βeff,i) (16a)

qN,i = qA,i cos2(αeff,i) (16b)

The forces and moments are ultimately transferred to the center of mass and summed up for the equations
of motion of the rigid-body degrees of freedom. The generalized forces Qη j for the equations of the
structural dynamics can be obtained by first transferring all strip forces and moments to their respective
structure support points. Then, the resulting strip forces and moments are collected in vector form and
are subsequently transformed with the transposed mode shapes

Qη j = Φ
T
j

(
FA

x,SP FA
y,SP FA

z,SP MA
x,SP MA

y,SP MA
z,SP

)T
(17)

4 Flexible Model Identification and Evaluation
This section is concerned with the identification of the flexible aircraft model and the evaluation of

the results. Prior to the actual parameter estimation, a simulation model is assembled and implemented
in MATLAB/SIMULINK. Given the equations of motion of the flexible aircraft and the quasi-steady strip
aerodynamics model, the model is combined with additional models from the in-house library FLYSIM.
These include an earth and atmosphere model, a wind and turbulence model, and an actuator model for
the representation of servo and control surface dynamics. Moreover, a propulsion model and landing
gear model are added. Subsequently, a suitable set of maneuvers is selected. This is accomplished by
post-processing the gathered flight test data and transferring all the available measurement parameters
listed in Table 1 to the center of gravity. Moreover, the load measurement parameters are corrected by the
dead weight of the structure. The selection of maneuvers is based on different criteria such as precision
of maneuver execution, dynamic pressure variations, and atmospheric disturbance.
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4.1 Parameter Estimation
The estimation of model parameters is performed with the in-house tool DAVIS, using the output

error method in the time domain and maximum likelihood estimation [24]. Suitable model parameters
Θi to be estimated are required. Since the structural dynamics model was identified from GVT data,
only parameters of the strip aerodynamics model are estimated. Initial distributions of the normalized
stability and control derivatives are obtained from vortex-lattice-method calculations of the aircraft in
the open source software tool XFLR5. The aircraft is modeled without fuselage as advised by XFLR5.
To this end, all lifting surfaces are divided into spanwise strips based on geometric properties and the
resolution of local flow effects. A total number of 48 wing strips, 8 horizontal tail strips, and 5 vertical
tail strips are considered. Subsequently, the locations of the strips are used to define associated structure
support points as described in subsection 3.2 and determine the structural mode shapes from the adapted
FE-model. The resulting distributions are shown in Figure 7.
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Fig. 7 Initial derivative distributions from XFLR5: a)
wing lift with CL0,i ( ), CLα ,i ( ), CLδ f

,i ( ), CLδa,in ,i

( ), CLδa,out ,i
( ), b) horizontal tail lift with CLα ,i ( ),

CLδe ,i ( ), c) vertical tail side force with CYβ ,i ( ), CYδr ,i

( ), d) to f) parasitic drag of wing, horizontal and ver-
tical tail

According to the aerodynamic parametriza-
tion of the non-dimensional force coefficients,
separate distributions are obtained for zero coef-
ficients, stability derivatives, and control deriva-
tives. The associated control surface deflections
are δa,in and δa,out for inner and outer ailerons,
δ f ,in and δ f ,out for inner and outer flaperons, δr
for the rudder, and δe for the elevators. Each
wing control surface is assumed to only influence
the lift on the side of the wing it is attached to.
Parameters for linearly scaling the initial distri-
butions are introduced and defined as estimation
parameters. In this way, the initial distributions
can be adapted in the estimation process with a
limited number of estimation parameters. On the
other hand, the achievable solution is constrained
by the qualitative shapes of the initial distribu-
tions. Separate scaling parameters are defined
for each lifting surface, i.e. wings, horizontal tail,
and vertical tail. Scaling parameters for the con-
trol derivative distributions of opposite control
surfaces are either paired or grouped based on the
control allocations used in the flight tests (indi-
cated in Figure 7 with the color code). The additional stability derivatives of the fuselage and downwash
parameters are treated as direct estimation parameters with no effect on the distributions. Stall parame-
ters are determined separately from flight data and kept fixed for the estimation. Measurement outputs
of the rigid-body motion are selected and set as criteria for the parameter estimation:

y =
[

VTAS α β ṗ q̇ ṙ p q r Φ Θ Ψ ax ay ay u v w
]

(18)

The values and standard deviations of the final estimated distribution scaling parameters are listed in
Table 3. Low standard deviations are achieved for all estimated parameters. A value close to 1 indicates
an estimation result close to the initial distributions from XFLR5. This is found for the parameter k_CYβ

of the vertical tail, the parameters k_CLα ,wing and k_CLα ,htp of the wing and the horizontal tail, and the
parameter k_CLδa,out

of the outer ailerons. Least agreement with the initial distributions from XFLR5 are
found for the parameters k_CD0 of all lifting surfaces, k_CL0,wing of the wing, and k_CLδe

of the elevators.
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Table 3 Estimated scaling parameters

Θi Value Std. deviation
k_CD0 3.1389 1.95%

k_CYβ
0.9988 0.82%

k_CYδr
0.8234 1.33%

k_CL0,wing 0.3105 3.26%

k_CLα ,wing 1.1425 0.87%

k_CLα ,htp 0.8897 0.76%

k_CLδ f
0.7746 1.09%

k_CLδe
0.5646 0.74%

k_CLδa,in
0.7401 1.08%

k_CLδa,out
0.9731 0.99%

Table 4 Estimated additional parameters

Θi Value Std. deviation
∂εT/∂α 0.411 1.75%
∂εT/∂δ f 0.0248 1.72%

CYβ ,fuse -0.1295 11.82%

Cl0,fuse -0.0017 1.01%

Cm0,fuse -0.0378 4.87%

The result of k_CD0 being significantly underestimated by
XFLR5 is expected considering the approximation of vis-
cous drag from 2D polar data associated with the calcula-
tion method. Table 4 further lists the values and standard
deviations of the final estimated additional parameters of
the fuselage and downwash. Only few parameters for the
most dominant fuselage effects are incorporated in the fi-
nal parameter set. An increased standard deviation is only
observed for the parameter CYβ ,fuse of the fuselage.
Matching plots of the identification result are shown in
Figure 8 for longitudinal and lateral maneuvers. The plots
up to the last four represent measurement parameters of
the rigid-body motion. A good overall identification re-
sult is achieved for all maneuvers. Especially the fast air-
craft dynamics are matched well, which is important for
control law design. Very good matches are also achieved
for the translational rigid-body accelerations (ax, ay, az),
which are directly related to the external forces acting on
the aircraft. Note that gravitational accelerations are not
measured by the sensors. Some model deficiencies are
found for the measurement parameters true airspeed VTAS
and pitch angle Θ, which indicate slight deviations of the
model’s pitching moment to the actual aircraft’s pitching
moment. Unexpected model behavior is also observed in
the last part of the level deceleration maneuver. However,
judging from the control action of ailerons and rudder,
an undetected asymmetric atmospheric disturbance is sus-
pected to influence the maneuver.

4.2 Evaluation
The identified model is further evaluated with regard to its capability to estimate distributed struc-

tural loads and its use in active load control law design. To this end, shear forces Qz measured at middle
and inner load measurement stations along the wing are compared to the model outputs in the last four
plots of Figure 8. The outputs are constructed to only capture the aerodynamic loads of the deformed
structure. This is achieved by summing all aerodynamic strip forces in zBR-direction up to the respective
load measurement stations. Inertial loads are neglected such that an overestimation of shear forces is
expected during dynamic peaks. Close matches are found for all shear forces for the majority of maneu-
vers. This result indicates an overall plausible representation of the actual aerodynamic force distribution
along the wing. Moreover, the close match of shear forces at the inner load measurement stations LMS5
(left) and LMS6 (right) are in good agreement with the identification result of az, since both stations cap-
ture the majority of aerodynamic forces in zBR-direction. An unexpected model behavior is solely found
for the inner load measurement stations during flaperon bank-to-bank maneuvers, where the effects of
local load increase/decrease due to flaperon deflection and the resulting rotation of the aircraft are not
represented correctly. It is suspected that the negligence of a dedicated fuselage model within XFLR5 and
therewith negligence of wing-fuselage interaction effects on the initial derivative distributions is a cause
of the deviation. Based on these results, the identified model is capable of computing realistic distributed
aerodynamic forces and moments and thus is well suited for state of the art model-based load estimation
techniques [30]. This aspect combined with the simple model structure also provides a suitable basis for
real-time simulation and the design of active load control laws.
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5 Conclusion
A control-oriented modeling framework for slightly flexible aircraft suitable for parameter iden-

tification in the time domain was presented. It combines linear structural dynamics and a distributed
quasi-steady aerodynamics model using strip theory. The applicability of the modeling framework was
demonstrated for a slightly flexible 25kg fixed-wing UAV. Free vibration modes and mode shapes of
the structure were obtained from ground vibration tests. Initial distributions for the stability and con-
trol derivatives of the strip aerodynamics were derived from vortex-lattice-method steady-flow calcu-
lations. They were subsequently adapted based on flight test data using the output error method in
the time domain and maximum likelihood estimation. The use of scaling parameters for adapting the
initial distributions is demonstrated to be an efficient approach for achieving a limited number of estima-
tion parameters. A good overall identification result and close match of the fast aircraft dynamics was
achieved. Good agreements with the initial derivative distributions were found for the lift curve slope
and angle of sideslip dependent stability derivative distributions, while viscous drag effects were signif-
icantly underestimated by the vortex-lattice-method calculations. Further, the evaluation of distributed
shear force measurements along the wing demonstrated the capability of the model to compute realistic
distributed aerodynamic forces and moments. The resultant computationally efficient model provides a
suitable basis for real-time simulation, loads estimation, and active load control law design. The latter
highly benefit from the capability of the strip aerodynamic model structure to yield distributed forces
and moments. Possible future work includes the improvement of the derivative distributions based on
high-fidelity numerical or experimental data.
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