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ABSTRACT

This article explores the use of monocular self-supervised visual odometry and depth estimation
algorithms in rover-like scenarios. The aim of these methods is to learn, using Convolutional Neu-
ral Network (CNN) architectures, the estimation of pixel-dense depth maps and visual odometry
measurements from monocular video sequences without any associated ground-truth data. The
article reviews the core method, its limitations, and the solutions proposed in the literature. Dif-
ferent learning objectives from the literature are tested and the associated results are reported.
In addition, a new learning objective based on the frequency domain of the image is proposed
to exploit the particularities of the rover-like scenarios, increasing the accuracy of the odometry
results.
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Nomenclature

D = depth
DCT = Discrete Cosine Transform
I = image
K = camera intrinsics
p = pixel coordinates
R = rotation
SSIM = Structural Similarity Index Metric
T = transformation matrix
t = translation

1 Introduction
Visual odometry and depth estimation are of key importance in robot-based autonomous navigation.

Recent advances in computer vision allow to estimate dense depth maps from monocular images, relax-
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ing the need for camera stereo pairs or power-demanding LIDAR equipment. Recent methods used to
require ground-truth depth data for training. However the availability of relevant training data in space
applications appears as a key issue, as complete training data is only available in simulated or mock-up
environments yielding to new problems of domain gap and generalisation.

The recent introduction of self-supervised monocular depth and visual odometry algorithms mitigate
the constraint on ground-truth data availability. These methods can be trained purely on monocular
image sequences, without the need of ground-truth depth and/or visual odometry poses. This appears as
an opportunity for rover-like exploration missions, where the captured data by the rover can be used to
incrementally train and and improve visual odometry and monocular depth sensing capabilities.

In this article we explore the use of such methods in a rover-like dataset, performing a comparison
among different methods and show which techniques are extensible to rover-like scenarios. In addition,
we propose a spectral-based loss for image reconstruction, based on previous work of our research lab
[article pending publication, currently under review], that captures frequency information for the image
reconstruction process. The paper is organised as follows: The related work is presented in Section 2.
The method is described in Section 3. The dataset, experiments and discussions are presented in Section
4. Finally the conclusions are presented in Section 5.

2 Related Work
Self-supervised monocular depth and pose estimation models are trained to reconstruct a target

frame from a sequence of nearby views using the estimated relative camera pose and depth [1]. The
photometric difference between the reconstructed frame and the target frame is used as a supervisory
signal to improve the predictions (see Fig. 1). However, such process implicitly assumes several key
elements 1) the scene is static, i.e. without moving objects that cause occlusions not explainable by the
camera motion; 2) the scale between the predicted depth and pose are consistent during training; 3) test
and the camera intrinsics remain the same at train and test time.

Fig. 1 Self-supervised visual odometry and depth estimation pipeline. a) the relative camera pose is esti-
mated between a pair of frames, a source frame Is and a target frame It using a encoder-like architecture
(green); a encoder-decoder (blue) is used to estimate the depth of the target frame It; b) an estimation of
the target frame Ît can be computed from the source frame Is using the estimated target depth Dt and the
relative pose between It and It . c) the differences between It and Ît define the learning objective
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2.1 Reconstruction Assumptions
The assumption on static scenes and the absence of occlusions are hardly met in real-world scenes,

particularly in road and city environments where many objects move at different speeds and trajectories
with respect to the camera. Also, surfaces with high reflectance might also appear in real-world objects
creating inconsistent photometric errors. The common approach is to exclude from the loss computation
the pixel regions that cannot be explained by the ego-motion movement. One of the first self-supervised
monocular visual odometry and depth estimation methods, [1], proposed a combined pose-explainability
network to retrieve both the camera pose between frames and a mask that provided information on
which pixels were not explainable by the predicted motion. Other authors [2–4] explicitly model the
scene motion with optical flow to mask areas of the image that violate the ego-motion assumption by
measuring the forward and backward optical flow consistency between two frames. [5, 6] classify scene
objects as "possibly moving" or "static" by injecting semantic information and then mask moving areas
in the computation of the loss. An occlusion-aware loss term based on measuring depth differences
for corresponding points was proposed in [5] to model the occlusions directly at the loss level. The
authors of [7] use the minimum per-pixel error inside a training sequence to mitigate the influence of
occlusions, and use the warped source frame for the loss computation in those areas where the error
between the warped source frame and the target frame is lower than the error between the source frame
and target frame. [8] computes a mask based on the distribution of the image reconstruction loss, and
introduces weak supervision based on epipolar geometry estimations. Other authors directly use the
depth to generate 3D point clouds and create depth alignments for additional supervision [9, 10].

2.2 Scale Assumptions
In a monocular setting, if no other cues are available, the predicted depth and pose are scale-

ambiguous. The sensed objects may be large objects located far away from the camera, or small objects
that are close to it. To enforce scale consistency during training, several loss terms have been proposed.
Geometric consistency between estimated depths at source and target frames is enforced in [11] by min-
imising a loss based on the difference between the source depth warped to the target frame and the target
depth. A similar approach is followed by [12] but using the inverse depth terms. Other authors explicitly
disentangle scale from the problem by aligning the depth estimations to sparse depth points obtained
from triangulation as presented in [13].

In a rover scenario, scale can be estimated by integrating other sources of data. Prior knowledge on
the height of the camera can be leveraged to estimate the scale of the translation vector during the visual
odometry process [14], although such techniques usually assume a flat and homogeneous ground plane.
Other data sources like wheel odometry estimates or sparse point LIDAR depth measurements can be
used to reconstruct up to scale visual odometry and depth map estimates.

2.3 Camera Assumptions
Respect to the intrinsic camera parameters, the generalisation of camera pose estimation to tests sets

that differ from the training sets is often neglected and few works exist in this direction. Explicitly adding
intrinsic information to the images by incorporating a new layer in the learning architecture is treated
in [15]. Estimating the rotation and translation from point correspondences using epipolar geometry
instead of using a network is presented in [10, 13]. [16] uses a combination of Perspective-n-Point (PnP)
and fundamental matrix decomposition to solve for cases where the total translation results in degenerate
epipolar solutions.

The aim of this article is to evaluate the most representative state-of-the-art contributions on a rover-
like scenario. Also, we extend previous work by proposing the use of a spectral loss in the task of
image reconstruction, leveraging that in a rover-like environment almost all the pixel motion is due to
the camera ego-motion (excepting shadows cast by the rover, or small moving rocks). Generalisation
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to different camera models is not treated here, as that would require a rover-like dataset of the same
environment captured with different cameras following the same trajectory.

3 Method Description
Most of the self-supervised monocular depth and pose estimation methods available in the literature

employ image reconstruction from time contiguous video frames as the supervisory signal. Image re-
construction is the task of estimating a target frame by warping past or future source frames under the
assumption of a given pixel or camera movement. The image reconstruction task is modelled as a trans-
formation of the camera coordinate system, so that the differences between the target and reconstructed
frames can be used as a supervision signal to learn relative camera poses and depth.

The relationship between the pixel coordinates pt of a target frame It and the corresponding pixel
coordinates ps of a source frame Is can be related by means of the scene depth and the camera motion
via Eq. 1. Let K denote the camera intrinsics matrix, Tt−>s the transformation matrix between the target
and source camera coordinates and Dt the depth of the target scene. For a given pair of frames, the pixel
coordinates of a target frame It can be transformed to those of a source frame Is by first retroprojecting
the target pixel homogeneous coordinates into the 3D world coordinates, then rotating and translating
the resulting point cloud to the source coordinate system, and finally projecting the point cloud to source
frame coordinates. The values of the pixels in projected coordinates ps are used to obtain the recon-
structed target frame Ît , i.e. the source frame warped to the target pixel coordinates.

ps = KTt−>sDt(pt)K−1 pt (1)

3.1 Photometric Supervision
The learning objective is then provided by the minimisation of a distance metric between the target

video frame It and the reconstructed target frame Ît . Often, distance metrics are based on the differ-
ences between the target and the reconstructed frame in the pixel domain, under the assumption that the
surfaces are Lambertian, i.e. the apparent intensity is constant independently of observation angle. Two
common metrics used used in the literature [1, 2, 11] are the L1 pixel intensity distance and the Structural
Similarity Index Metric (SSIM).

The L1 pixel intensity distance is expressed as cumulative sum of absolute pixel-value differences
between the target and reconstructed images:

L1 = ∑
p
|It(p)− Ît(p)| (2)

SSIM is a quality measure presented by [17] based on the comparison of luminance l(a,b), con-
trast c(a,b), and structure s(a,b), between two images a and b using sliding circular-symmetric Gaus-
sian windows of NxN pixels. The luminance measure is expressed as l(a,b) = 2µaµb+C

2µ2
a µ2

b+C
, where µa

and µb represent the mean intensity values of the a and b images inside the window and C repre-
sents a numeric constant to avoid numerical instability. The contrast measure is computed as c(a,b) =
(2σaσb +C)/(σ2

a +σ2
b +C), where σ stands for the standard deviation of the mean centred image. The

structure index s(a,b) = (σab +C)/(σaσb +C) is computed using the correlation coefficient σab com-
puted between the mean centred and normalised standard deviated images.

SSIM(a,b) =
(2µaµb +C)(2σab +C)

(µ2
a +µ2

b +C)(σ2
a +σ2

b +C)
(3)
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The SSIM loss term is then computed as:

Lssim =
1−SSIM(It , Ît)

2
(4)

3.2 DCT Supervision
Phometric based losses arise naturally in the direct comparison of two images and allow to easily

exclude from the learning objective image areas that are not explainable by camera motion (e.g. a moving
car), improving the learning objective in these situations [5, 7]. However, in a rover-like environment it
is expected that all the observed motion is due to the camera motion. This particularity allows to explore
transformed domains in which more optimal image representations for the learning objective may be
achieved.

A loss term based on the Discrete Cosine Transform (DCT) is proposed to account for frequency
information as a similarity measure between the target and reconstructed images. The DCT is a real
valued transform that expresses a signal as a linear combination of cosine bases that represent the fre-
quency components (pixel-intensity variability) across rows, columns and linear combinations of them.
The DCT has been widely used to characterise local structures in image signals and image compression.
Eq. 5 expresses the DCT of an image, x(n,m), of size NxM.

DCT (X) = X(u,v) =CuCv

N−1

∑
n=0

N−1

∑
m=0

x(n,m)cos(
2n+1uπ

2N
)cos(

2m+1vπ

2M
) (5)

Cu =
√

1/N when u = 0, else Cu =
√

2/N. Cv =
√

1/M when v = 0, else Cv =
√

2/M. Then, the
DCT based loss is computed as:

LDCT = ‖DCT (It)−DCT (Ît)‖2 (6)

In the computation of the LDCT the first coefficient of the DCT is removed, as it represents the mean
value of the image.

3.3 Weak Pose Supervision, Smoothness Loss, and Scale Consistency
The problem presented in Eq. 1 is an ill-posed problem. There are infinite combinations of depth

values that may suffice the pose objective. Two solutions are generally introduced to overcome this issue.
Smoothing loss and weak pose supervision

The smoothness loss enforces smooth depth maps in areas where the magnitude of the gradient in
the image is low. This term, known as edge-aware smoothness loss is computed as:

Lsmooth = |∂xd∗t |e−|∂xIt |+ |∂yd∗t |e−|∂yIt |, (7)

where ∂x and ∂y indicate derivatives in the horizontal and vertical direction. Following [18] we use
d∗t , the mean normalised inverse depth, that penalises the shrinking of the estimated depth into small
values.

To penalise pose errors that might yield into incorrect depth and pose estimations, we introduce a
weak pose supervision loss based on the essential matrix decomposition, in a similar fashion to [8]. The
essential matrix for a given pair of images is computed using key-point matches between them, obtained
via a differentiable implementation of a scale space detector with Multiple Kernel local descriptors [19,
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20]. The essential matrix is then decomposed into rotation and translation (Ress, tess) and the optimal
solution is chosen as the rotation and translation (Ress, tess) that maximises the number of triangulated
key-points in front of the camera plane. We compute the pose loss term as:

Lpose = ‖I−RessRT‖ f ro+‖t̄ess− t̄‖2, (8)

where the sub-index fro denotes the Frobenius norm. The translation vectors are normalised before
comparison to remove the effect of the scale in the calculation

Scale consistency between the estimated depth and motion is often neglected and a scale-consistent
output is learnt by the network. In this setting, the ego-motion network cannot provide a full camera
trajectory over a long video sequence because of the per-frame scale ambiguity [11]. To explicitly
enforce the motion and the depth to provide a scale consistent output, we use the geometric consistency
loss from [11]:

Lscale = ∑
p

|D̂t(p)−Dt(p)|
D̂t(p)+Dt(p)

(9)

3.4 Learning Objectives
To estimate the influence of each loss term in the performance we define different learning objec-

tives. We present a summary of each loss term and their associated weights in Tab. 1

Name Loss terms Values

Baseline L1 + γLsmooth γ = 0.001
Min Reprojection L1 + γLsmooth γ = 0.001
SSIM αL1 + (1−α)Lssim + γLsmooth γ = 0.001,α = 0.95
DCT L1 + αLDCT + γLsmooth γ = 0.001,α = 0.01
Pose L1 + αLpose + γLsmooth γ = 0.001,α = 0.001
Scale L1 + αLscale + γLsmooth γ = 0.001,α = 0.5

Table 1 Different learning objectives defined for the experiments with their associated weights for each
term.

The weight of each loss term has been chosen according to the reported values literature, excepting
the value of the SSIM whose typical value is α = 0.15. In our experiments such value made the results
diverge quickly leading to large errors in pose and depth, we tested gradually low values of α until the
learning objective converged. The Min Reprojection experiment has the same learning objective as the
Baseline, but it is designed to measure the influence of excluding areas from the computation loss in a
rover-like scenario, where the assumption of motion being different to the ego-motion is not broken. To
do so, the approach from [7] is followed: for a given sequence only the minimum error across frames
is kept, and the pixels from the reconstructed frame Ît that give lower loss values than those that use
directly the source frame Is are used.

3.5 Architecture and Other Considerations
The architecture is based on the approach from [7]. The depth is estimated through a CNN encoder-

decoder architecture with skip connections. The encoder is a ResNet 18 [21] pretrained on ImageNet
[22]. The decoder outputs the depth maps at different levels of the decoder (scales) and uses ReLu
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activation functions except for the depth decoder head that uses scaled sigmoids to output the depth in a
fixed, controlled range. Following other works we fix the output to 0.1-100 units of depth.

The pose is also estimated using a CNN-based architecture. We follow [7] by using a modified
Resnet-18 that accepts two images concatenated in the channel dimension. The network outputs the ro-
tation and translation of the images in axis angle representation. Following other works, we make use of
the locally sub-differentiable bi-linear sampling to sample the adjacent views. To overcome the gradient
locality of the bi-linear sampling, we follow the multi-scale approach of [7]. We use the depth maps
extracted at different levels of the depth estimation network to reconstruct the image, however, instead
of computing the photometric error loss at different resolutions, the depth is scaled at the resolution of
the image. In this way all the layers work towards the same objective.

4 Dataset and Experiments
We train and evaluate each system on the Devon Island Rover Navigation dataset [23]. This dataset

provides rover traverse data and long-range localisation data captured over 10 km in vegetation-free,
planetary-analogue terrain. We use the left camera and the RTK differential GPS of the rover traverse
data to evaluate our system. From the 22 sequences of images, totalling 49,410 image pairs, we train
our experiments with the images acquired with the RGB left camera of the first 4 sequences (a total of
10,028 images) and use the sequences 04, 05, 06 and 07 for evaluating the algorithm outside the training
set. The images are resized to 408x640 px from the original 1280x960 px and no data augmentation is
used. Each batch is composed of image triplets with the preceding and following frames to the target
frame.

The experiments are implemented in PyTorch [24] using the Adam optimiser [25] with a learning
rate of 10−4. We make use of pre-trained ResNet-18 backbones for the depth and pose estimation
networks. We also make use of the Kornia library [20] for differentiable image warping and key-point
matching.

4.1 Visual Odometry Performance
The influence of each loss term in the visual odometry performance is evaluated by means of the

Root Mean Squared Error (RMSE) of the absolute difference between the estimated trajectory and the
ground-truth. The results, reported numerically in Tab. 2 and graphically in the Appendix, are obtained
for both the training and test sequences and computed over each individual sequence. The super-index *
indicates the sequence was used for training.

Since the relative motion estimated by visual odometry systems has undefined scale and orientation
with respect to the ground-truth, the direct comparison of trajectories would not provide meaningful re-
sults. This issue is commonly addressed in the literature by performing a single similarity (scale, rotation
and translation) alignment [26] between the ground-truth and the estimated trajectory. This alignment in-
volves a global rotation, translation and scaling. Translating the estimated trajectory to the ground-truth
instead of aligning both to share the same origin of coordinates may reduce the influence of long-term
error accumulation, hence in this work the alignment is provided by a single rotation, translation to the
same origin of coordinates, and a per-frame scaling. This scaling, where every translation vector is nor-
malised and then scaled with the module of the ground-truth translation vector extracted from the GPS, is
performed due to its similarity to on-line visual odometry system where every measurement is weighted
with other data sources such as the Inertial Measurement Unit (IMU). The chosen alignment is designed
to replicate a real operational scenario.

The results reported in Tab. 2 show that the inclusion of additional information sources in the pho-
tometric reconstruction loss (SSIM, DCT and, Min Reprojection) help to improve the Baseline learning
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Method 00* 01* 02* 03* 04 05 06 07 Average Train Average Test
Total meters [m]

512.69 390.17 788.50 699.44 502.99 711.26 711.64 546.21
RMSE Error [m]

Baseline 26.1358 11.3079 13.2032 34.8430 13.2013 15.7199 12.9380 29.7934 21.3725 17.9132
Min Reprojection 43.0327 1.7727 14.2009 16.1470 18.3547 17.0702 10.2517 11.7243 18.7883 14.3502

SSIM 26.0177 7.6808 17.4690 74.1475 7.6474 9.0329 17.9394 16.9418 31.3288 12.8904
Pose 44.2576 7.2900 45.3156 18.1853 38.8852 58.4711 16.4289 25.8335 28.7621 34.9047
Scale 42.8631 6.3628 26.7926 23.1558 23.9089 26.4946 20.6786 23.8841 24.7936 23.7415

DCT (Proposed) 25.0735 7.3755 12.4923 20.8762 8.5359 8.5642 11.5351 17.1784 16.4544 11.4534

Table 2 Error metrics for the visual odometry algorithm over different sequences. The super-index ∗
denotes the sequence was used for training. Bold-style text indicates minimum value in a column.

objective. The proposed spectral-loss for image reconstruction outperforms, in average, the existing
methods. However, there is not a technique that consistently outperforms the rest in every scenario, sug-
gesting that a combination of techniques might provide the best performance. Surprisingly, the Pose and
Scale methods yield to bad results on all the scenarios. A first analysis suggests that the results of the
pose objective might be caused by excessive influence of the rotation. This has been tested by smooth-
ing the rotations during the trajectory reconstruction, by converting the rotation matrix to a quaternion
representation and applying a spherical linear interpolation with the identity quaternion q = (1,0,0,0).
The results after this interpolation (see Tab. 1) improve, suggesting that the rotation and translation term
should be weighted differently or other more suitable metrics for the rotation loss computation should be
explored. The scale term enforces consistency between the depth and translation, helping to regularise
the output when the displacement between frames of the vehicle is not constant or when sequences from
different datasets are combined. In this dataset the motion scale is constant, having roughly 20cm of dis-
placement between frames [23]. This might cause the learning objective try to correct for an in-existent
behaviour, leading to incorrect pose and depth estimates.

Method 00* 01* 02* 03* 04 05 06 07 Average Train Average Test
RMSE Error [m]

Smoothed Pose 26.167 16.653 18.172 20.398 36.751 34.050 16.463 14.134 20.348 25.349

Table 3 Results after smoothing the rotation matrices for the Pose experiments by applying a spherical
linear interpolation with the unit quaternion.

The depth results are only shown qualitatively due to the absence of ground-truth dense-depth maps
in the dataset. A selection of relevant examples are shown in Fig. 2. The first two columns correspond
to training data and the two last to test data. From the second top row to the last row, the methods shown
are: Baseline, Min Reprojection, SSIM, DCT, Pose, and Scale. It can be observed how the methods fail
to generalise to the presence of large rocks or other elements not seen during training. This behaviour
could be explained by the lack of those elements in the training data, being almost all the sequences
composed of plain terrain images. The Min Reprojection method provides depth maps with lesser detail
compared to other methods. This might be caused by the masking of image-areas that cause large errors
in the photometric loss. As only few examples are observed, these might be considered outliers and then
rejected by the learning objective, exposing the algorithm to even lesser examples of such elements. The
SSIM and DCT method provide more sharp depth maps that other losses. It is interesting to observe that
the Scale method provides wrong depth measurements in the presence of large illumination gradients.
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Fig. 2 Qualitative depth results. The two first columns correspond to training data, the two last to test
data. From second top row to last row: Baseline, Min Reprojection, SSIM, Pose, Scale, and DCT
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5 Conclusions
In this paper monocular self-supervised visual odometry and depth estimation methods applied to

rover navigation have been presented. The majority of the state-of-the-art methods have been developed
using datasets captured from moving vehicles in urban environments that present different conditions to
rover-like scenarios: motion different to the ego-motion, different vanishing points, and larger variety
of objects. We have shown that such methods generalise well when applied to rover-like environments.
However, the use of techniques that explicitly mask areas from the reconstructed image that arise in
high-error might affect the depth estimation of objects with low representation in the dataset. The fact
that the ego-motion assumption is not broken in rover-like scenarios can be leveraged to introduce new
transformed domain losses that include the frequency information of the image and not only the pixel
photometric error, leading to better odometry measurements.

We hope the presented work motivates further research in the are of monocular self-supervised visual
odometry and depth estimation in rover scenarios. Suggested future lines of research are the inclusion
of other sensors to improve the estimates (e.g. introduce scale information), and study the performance
of the algorithm when tested outside the training domain: different camera model, moving at a different
speed, and changes in the image conditions such as rock sizes.
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Appendix
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