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ABSTRACT

Urban environments represent a challenging area for UAVs as part of Urban Air Mobility. The
reliance on the conventional fusion of GNSS and INS may not fulfill the higher navigation spec-
ifications, which could be issued by authorities due to the increased risk of urban air operation.
Within this paper, GNSS measurements are fused with those of a consumer grade IMU and VO
derived measurements of a monocular camera setup. The intention is to monitor the integrity
of the filter solutions and to increase the continuity compared to the conventional fusion. For
that purpose, a novel filter architecture is presented, comprising an INS/GNSS and an INS/VO
Extended Kalman Filter running in parallel. Using integrity monitoring strategies, unreliable,
redundant pseudo-range measurements can be rejected within the INS/GNSS filter through In-
novation Filtering. Additionally, the integrity of both filters is monitored using a χ2 test statistic
and a H0 hypothesis test. Once the INS/GNSS filter solution is detected as unreliable, the INS/VO
filter bridges the outage until the INS/GNSS filter recovered. By fusing the IMU measurements
with those of the VO algorithm, the drift can be drastically reduced. Finally, the proposed filter
architecture is applied to a recorded test dataset and the assumed benefits are verified. While the
accuracy of the parallel design is proven to be qualitatively better than the individual filters alone,
the proposed filter doubles the continuity property of the navigation solution.
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1 Introduction
As the main applications of the growing number of UAVs will be within the urban environment, the

air traffic will be concentrated above densely populated areas [1]. Due to the associated increased risk
for the population, more stringent navigation requirements may be needed.

Within their Performance Based Navigation (PBN) document, the ICAO introduced PBN, which
defines operational navigation requirements by navigation specifications [2]. Hereby, specifications may
either be Area Navigation (RNAV) or Required Navigation Performance (RNP), where the latter addi-
tionally incorporates on-board performance monitoring and alerting functionalities. In order to qualify
for RNAV or RNP navigation specifications, ICAO prescribes navigation systems to meet a set of accu-
racy, integrity, availability and continuity requirements.

Currently, different companies and interest groups are developing ideas for future airspace designs,
for example see [3], [4], [5]. For example, aircraft entering managed air traffic zones following the U-
space are suggested by SESAR Joint Undertaking to meet the Required U-space Navigation Performance
RUNP-5m navigation specification, which requires the navigation equipment to ensure an accuracy of
±5m and an integrity of greater than 1−1×10−7h with a Time-To-Alert of less than 1 second.
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Furthermore, existing navigation systems face new challenges within the urban environment. These
systems mainly rely on GNSS for its coverage, accuracy and costs [6]. However, these benefits require
open-sky conditions and reveal new challenges for GNSS based aircraft navigation in urban areas by
representing GNSS challenging or even GNSS denied environments [7]. At low heights, GNSS perfor-
mance is prone to errors, caused by masking and multipath errors, which can lead to biases of up to 70
meters [8].

Combining higher requirements for urban airspace, defined by future airspace concepts, and the
challenges for existing navigation systems within the urban environment, mitigations must be identified
to overcome the GNSS degradation in urban areas.

Currently, related work focuses either on the elaboration of alternatives of GNSS in urban areas or to
integrate additional sensors into the navigation systems. The FAA suggests an optimized DME network,
Wide-Area Multilateration and a Pseudolite network as three alternative navigation systems in [9]. All
these systems use ground based infrastructure. Especially Pseudolite networks, which transmit signals
similar to GNSS, can improve the vertical position estimation and suffer less from atmospheric errors
[10]. Another study concludes that ”multi-sensor navigation is one of the most promising complemen-
tary solutions” [1, p. 2] to enhance GNSS based navigation, while GNSS still remains the reference
navigation system. The authors summarize the alternative navigation systems as Inertial Sensors, LI-
DAR, odometers, magnetometers as well as vision based measurements and the ground based systems,
introduced by the FAA. Additionally, a-priori information can be added e.g. by aiding LIDAR and
GNSS measurements with 3D environment maps [6]. As GNSS shall remain the reference navigation
system, one important task of additional sensors is to provide GNSS performance monitoring as well as
performance prediction and sensor switching [1].

Within this work, a parallel filter integration of multiple sensors is proposed. Hereby, a camera with
a monocular VO algorithm is fused with an existing IMU and GNSS fusion algorithm. Additionally,
integrity monitoring functionalities are provided. A mode switching logic is developed to switch to dead
reckoning fusion, if GNSS positioning is unreliable. A χ2 test statistic ensures the overall integrity of
both filters.

The filter design follows a similar approach to the work of Groves [7] and Wendel [8], while the
Visual Odometry concepts are based on the work of Szeliski [11] and Corke [12].

2 Sensor and Data Source Limitations
This section primarily aims on introducing error sources of the specific sensor types and data sources

and how to model them in order to incorporate them within a navigation filter.

2.1 Inertial Measurement Unit
IMUs measure specific forces f b

ib and angular rates ωb
ib of the body frame relative to the inertial

frame within the body frame. Using Strapdown Integration, those values can be integrated to obtain the
pose (position and orientation) and the velocity (e.g. within the earth frame as re

eb, Ce
b and ve

eb), which
forms an INS. Navigation based on IMU, Inertial Navigation, is used because of the fault characteristics,
high update rate of more than 50Hz and low short-term noise [7].

Bias drifts ḃa and ḃg can be modeled in three different ways. For high quality IMUs, biases are
considered to be stable, i.e. the bias drift is zero ḃa = ḃb = 0 [8]. If the bias drift can not be neglected,
it can either be modeled as a first order Gauß-Markov-Process or a Random-Walk Process [8]. As
the velocity and the position are integrated from both measured values, their errors grow with time.
Especially, the integration of random noise leads to random-walk errors within the integrated dimensions.
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IMUs can be divided into marine, aviation, intermediate, tactical and consumer grade IMUs, which
differ in quality, but also in their costs [7]. Typical accelerometer biases for consumer grade IMUs
are > 0.03ms−2 and for aviation grade IMUs 3× 10−4 ms−2. However, the author also mentions the
difference in costs associated with different grades, i.e. 8C for consumer grade and 80 000C for aviation
grade IMUs.

2.2 Global Navigation Satellite System
GNSS are navigation systems that enable a user to localize himself within the 3-D space by receiving

radio-frequency (RF) signals from orbiting satellites. These systems consist of a space, a ground and a
user segment. The space segment of a navigation system comprises satellites or SV, which, in their
entirety, are called constellation. Currently, there are different constellations of satellites orbiting the
earth and providing global coverage, namely GPS, GLONASS, BeiDou and Galileo [13].

As introduced in Section 1, urban environments represent areas with large structures, which can re-
flect or block the GNSS RF signals. The reception of a reflected signal is referred to as NLOS reception.
Structures that prevent a line-of-sight (LOS) reception create a volume between them and the antenna,
which is called shadow.

Fig. 1 Azimuth and elevation plot of SV (orange) and their ID
with urban structures (blue) throwing a shadow onto the antenna
during reception

Figure 1 shows recorded mea-
surements from a driving car with
the associated camera frame shown in
Figure 7 within the Appendix. The
shadows reach elevation angles of up
to 46 degrees. It can be seen that
no constant masking angle can be de-
fined to simultaneously exclude the
NLOS SV and keep the LOS SV.
Making the masking angle dependent
on the location and azimuth angle
is a known technique called Shadow
Matching, where a 3-D city model is
used as reference. For further reading
on Shadow Matching see [14].

2.3 Monocular Visual Odom-
etry

A variety of vision-based pose
estimation algorithms exist, ranging
from optical flow measurements to feature tracking to feature recognition techniques [11]. Within this
work, a single camera is used that tracks features over consecutive video frames.

In order to derive the pose change between two frames of a video stream, distinct features must be
found and tracked. Features can be points, edges, planes or other types [11].

Consider 3-D point P is identified within two consecutively recorded images or video frames labeled
with indices 0 and 1 by tracking a feature. The camera, which recorded those images, was located at
positions c0 and c1. All three points, c0, c1 and P define a plane, which is called the epipolar plane.

The projections from P into the image coordinates are labeled p0 and p1 respectively. The epipolar
constraint can be derived as
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pT
1 E p0 = 0. (1)

Hereby, E is the Essential Matrix, which can be decomposed into

E = [t]xR, (2)

where t is the normalized translation vector and R the relative orientation change [11]. By tracking
eight or more features between two images, the Eight-Point Algorithm can be used to derive the essential
matrix to fulfill Equation (1). Knowing E, the translation and the relative pose change can be calculated
by performing Singular Value Decomposition. Here, sequential keyframes of the camera are undistorted,
FAST features are tracked and the essential matrix is estimated through Nister’s algorithm [15].

Different variations and extensions of VO and the associated challenges are discussed in [16]. The
most significant issues and potential solutions are:

• The authors claim that even though optical cameras are providing meaningful information at low
cost, image based pose estimation is highly sensitive to effects of outdoor environments. Espe-
cially, lighting, illumination changes, blurred images, shadows, water and snow are challenges for
VO. Furthermore, forward facing cameras are prone to image disturbances by wind and sunlight
driven changes.

• As image based pose change estimation is prone to noise, cumulative errors are introduced within
the integrated dimensions analogously to an IMU. However, the authors claim that modern al-
gorithms are relatively more accurate than GPS and Inertial Sensors. The bias drift of VO is
generally lower as for low-cost IMUs.

• Furthermore, the authors conclude that monocular VO is easy to deploy as no synchronization has
to be implemented as with stereo VO. However, monocular VO suffers from scale uncertainty, i.e.
the translation vector t in Equation (2) has a Euclidean norm of 1. Therefore, a simple integration
will lead to position solutions, that are ultimately wrong. According to the authors, the absolute
scale can be derived through a-priori knowledge of distances of features within the image, motion
constraints or through other sensors, e.g. an IMU.

• According to [17], RANSAC a common technique to handle outliers in VO, which is generally
prone to noise and outliers. RANSAC, applied to VO, selects a minimal random subset of features
to generate a motion hypothesis, e.g. 8 features for the 8-point algorithm. Multiple hypotheses
for different random sets are generated and a score is calculated corresponding to how well the
hypothesis fits the rest of the observations. The hypothesis with the best score is selected as the
winner. With Preemptive RANSAC, the efficiency is increased by avoiding the score calculation
of implausible hypotheses.

3 Integrity Monitoring
As introduced in Section 1, requirements are set for navigation systems to qualify for use in aviation.

One of these requirements is the integrity of a navigation solution. The ability of a system to detect
erroneous navigation solutions and consecutively warn the user is called Fault Detection (FD). More
advanced systems may also recover from (FDR), isolate (FDI) or exclude the failures (FDE) and try
to resume normal operation [7]. Within this Section, detection methods for faults of individual sensor
sources are introduced. Additionally, a test statistic is presented, which is required to determine integrity.
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3.1 Measurement Innovation Monitoring
To detect failures of sensors, consistency checks can be performed. Kalman Filter innovations can

be filtered (Innovation Filtering) or analyzed using sliding window operations (Innovation Sequence
Monitoring). One such consistency check is the well known Receiver Autonomous Integrity Monitoring
(RAIM), which is widely used in GNSS receivers. In [18], the range comparison and position compar-
ison methods were presented as two RAIM methods. For the range comparison methods, at least five
satellites are required. For each minimal subset of four satellites, the user position is estimated and the
pseudo-range of the other satellites are predicted. The difference between the predictions and the true
measurements are then used for failure detection.

The measurement innovation δ z−k of a Kalman Filter and the associated covariance matrix C−
δ z,k are

defined as:

δ z−k = zk −Hkx̂−k , (3)

C−
δ z,k = HkP−

k HT
k +Rk. (4)

The normalized innovation vector yk can be calculated for each entry j

y−k, j =
δ z−k, j√
C−

δ z,k, j, j

, (5)

which follows a zero-mean unit-variance Gaussian distribution under ideal conditions and values of
consecutive epochs are i.i.d.

During periods of large state uncertainties, e.g. during the initial convergence of the filter, the
measurement innovations suffer from large oscillations. Additionally, the variance is large, which is
the same for noisy measurements during the run-time of the filter. However, faulty measurements, i.e.
biases, affect the innovation before the error covariance matrix is updated. Subsequently, immediate large
discrepancies can be distinguished from both other situations as peaks of the normalized innovation. A
qualitative representation over the run-time of a filter is shown in Figure 2.

Fig. 2 Qualitative history of normalized measurement innovations dur-
ing different situations, Source: [7, p. 709]

When a measurement inno-
vation peak exceeds a prede-
fined threshold, it can be ex-
cluded from the Kalman Filter
calculation pipeline, which is re-
ferred to as Innovation Filter-
ing. For small discrepancies or
ramps that grow over time, In-
novation Sequence Monitoring
can be used. Hereby, the mov-
ing average µk of the normalized
measurement innovation vector
is calculated and compared to
a sample size dependent thresh-
old.
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3.2 Innovation Test Statistic
In order to acquire a test statistic for the whole filter at a given epoch k, the χ2 distributed test

statistic

s2
δ z,k = (δ z−k )

T (Cδ z,k−)
−1

δ z−k (6)

is adopted from [19]. As the innovation is normalized by Cδ z,k− , s2
δ z,k is unitless, which allows

Equation (6) to be applied to filters with innovations comprising different dimensions. As the test statis-
tic, given in Equation (6), is calculated as the sum of squared residuals being Gaussian distributed, it
becomes clear that s2

δ z,k follows a χ2 distribution. The degrees of freedom, m, correspond to the dimen-
sion of the measurement vector. To detect slowly growing faults, batch processing can be performed by
calculating the mean residuals over 30 minutes and more [20]. However, as this paper focuses on short
term faults in urban environments, Equation (6) is further used.

In the absence of a fault, δ z−µ follows a zero-mean Gaussian distribution, which makes it possible
to state a null- and alternative hypothesis for the fault-free and biased case [19]. The hypotheses can be
defined as

H0 : E(δ z−µ ) = 0, (7)

Hα : E(δ z−µ ) ̸= 0. (8)

Using the probability relationship

P{s2
δ z,k < χ

2
m,1−α∥H0}= 1−α (9)

with a given significance level α , the null-hypothesis can be accepted or rejected. When rejected,
the hypothesis indicates the presence of a fault within the filter.

4 Proposed Navigation Filter
This section presents the architecture, which is followed by the derivation of the individual Kalman

Filter models. The first filter follows the design of [7], whereas the second filter is proposed as a novel
design. Finally, the selected method for the purpose of integrity monitoring is provided and mode-
switching conditions are presented.

4.1 Navigation Filter Architecture
The proposed navigation filter consists of two independent cascaded error-state Kalman Filters,

whose outputs can be interchanged, such that the most reliable error estimates are fed back to the INS.
An overview of the architecture is given in Figure 3.

The system consists of an IMU, a GNSS receiver and navigation processor providing pseudo-range
measurements and SV positions, and a camera. Using a VO algorithm, consecutive camera images are
transformed into angular rate and trend vector measurements according to the VO algorithm introduced
in Section 2. IMU specific force and angular rate measurements are fed to the INS.

Within the INS, the typical strapdown inertial computations are performed as introduced in Sec-
tion 2. Before the attitude update and specific force frame transformation are carried out, both measured
values, f̃ b

ib and ω̃b
ib are corrected for the estimated biases through the closed loop channel as shown in
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Figure 3. Furthermore, depending on the filter, the position, velocity and attitude are also corrected,
i.e. the previous navigation solution is corrected for the estimated error vector. The inertial navigation
solution, consisting of position estimate r̂e

eb, velocity estimate v̂e
eb and attitude estimate Ĉe

eb, is therefore
the corrected reference navigation solution.

Fig. 3 Proposed filter architecture showing three sensor sources, the two
parallel Kalman Filters and the MSU

Both the INS/GNSS EKF
and the INS/VO EKF uti-
lize that corrected navigation
solution within their struc-
ture. A Mode Switching Unit
(MSU) continuously moni-
tors integrity conditions of
the INS/GNSS filter and can
switch to the INS/VO fil-
ter, if necessary. Depend-
ing on the current operation
mode, the INS is corrected by
the error-state estimates of ei-
ther the INS/GNSS Extended
Kalman Filter or the INS/VO
Extended Kalman Filter. Fur-
thermore, the system gives an
output of the overall integrity status of the navigation filter.

Following the recommendation of [1] that GNSS shall remain the main source for navigation, the
INS/GNSS filter acts as the primary filter as it does not suffer from cumulative errors or drift over time.
The INS/VO filter acts as bridging over periods, when the INS/GNSS filter is unavailable or unreliable,
which is called coasting. Hereby, the INS/VO filter reduces the drift compared to an INS implementation.

4.2 INS/GNSS Extended Kalman Filter
Within this paper, a modified version of the tightly coupled INS/GNSS integration described in [7]

is derived. The integration within the ECEF frame is modified to incorporate multiple and arbitrary
constellations but is limited to pseudo-range measurements.

The state vector consists of the attitude error δψe
eb, velocity error δve

eb, position error δ re
eb, ac-

celerometer bias ba, gyroscope bias bω , GNSS receiver clock bias δc and GNSS receiver clock drift
δ ċ. In order to utilize different constellations at once, the clock errors have to be estimated for all L
constellations individually. The state vector x can then be modified as

x = (δψ
e
eb,δve

eb,δ re
eb,ba,bω | δc1,δ ċ1, . . . ,δcL,δ ċL)

T . (10)

The state transition matrix is defined as

Φ =

(
ΦINS 0

0 ΦGNSS

)
, (11)

with ΦINS and ΦGNSS given in Appendix 6. Hereby, ΦGNSS is also modified for the multi constella-
tion assumption.

From the GNSS navigation processor, the positions of the SVs are known within the earth frame. By
subtracting the corresponding estimated pseudo-ranges from the M measured pseudo-ranges ρ̃1, ρ̃2, ..., ρ̃M
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at the current epoch, the differences δ ρ̃s are calculated and used as measurement vector for the filter.
Measurement vector z is therefore given as

z = (δ ρ̃1,δ ρ̃2, ...,δ ρ̃M)T . (12)

This work uses pseudo-range measurements only, not carrier-phase measurements. Therefore, the
measurement matrix Hk for M measurements is given by:

Hk =


01,6 (ue

1)
T 01,9 11 0 . . . 1L 0

01,6 (ue
2)

T 01,9 11 0 . . . 1L 0
...

...
...

...
...

...
01,6 (ue

M)T 01,9 11 0 . . . 1L 0

 , (13)

where ue
m is the normalized line of sight vector from the GNSS antenna to the SV and 1l being only

1, if the measurement is made with a SV of constellation l, i.e. the clock error states of constellation l
are correlated with the measurement.

Lack of measurements for one of the constellations can lead to singularities within the Kalman Filter
calculations. Therefore, if no measurement is available for GNSS constellation l, the corresponding
entries within the H and P matrices and the state vector x are eliminated. Once a new measurement,
containing constellation l, is available, the entries will be restored. Depending on the duration of the
outage, the process noise matrix P has to account for the grown uncertainty of the clock error states
within that duration. For this paper, the default values of initialization are restored in such cases.

Except for the position error, the state vector elements are assumed to be subject to uncorrelated
noise according to [7], i.e. there are only entries on the diagonal matrix of the noise covariance matrix
Q.

4.3 INS/Visual Odometry Extended Kalman Filter
The error-state INS/Visual Odometry Extended Kalman Filter is a novel design, which is described

within this section. The state estimates are the velocity error δve
eb, attitude error δψe

eb, accelerometer
bias ba and gyroscope bias bg as given in

x = (δve
eb,δψ

e
eb,ba,bg)

T . (14)

To derive the state transition matrix, the propagation of the error state estimates is derived. Ne-
glecting accelerometer bias and noise first, the dependency of the velocity error δve

eb propagation on the
attitude error δψe

eb can be modeled as

δ v̇e
eb = [δψ

e
eb]x f̄ e

ib, (15)

where [δψe
eb]x is the small angle rotation error of the INS and f̄ e

eb is the true specific force corrected
for the accelerometer bias. As both specific force f̃ b

ib and accelerometer bias b̂a are given within the
body frame, the estimate of the rotation between body frame and earth frame Ĉe

b from the INS must be
applied:

δ v̇e
eb = [δψ

e
eb]x Ĉe

b f̄ b
ib (16)
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In order to bring the equation into the state transition form, the cross-product property of the skew-
symmetric matrix [·]x is utilized, i.e. for two arbitrary vectors a,b ∈ R3 the equality a× b = −b× a
holds:

δ v̇e
eb =−Ĉe

b[ f̄
b
ib]xδψ

e
eb (17)

Furthermore, the velocity error depends on the accelerometer bias ba and the accelerometer noise
wa, which also need to be rotated from the body frame into the earth frame. Therefore, for the velocity
error state propagation, following relationship can be found:

δ v̇e
eb =−Ĉe

b[ f̄
b
ib]xδψ

e
eb −Ĉe

bba −Ĉe
bwa (18)

Note, the actual value of the specific force f̄ is not available. According to [8], the following
approximation can be made:

f̄ b
ib ≈ f̂ b

ib = f̃ b
ib − b̂a (19)

Analogously to the previous process, the attitude error propagation can be analyzed. It is dependent
on the attitude error δψe

eb as well as on the gyroscope bias bg and the gyroscope noise wg:

δψ̇ = [ω̄]xδψ
e
eb −bg −wg (20)

Both biases are suffering from dynamic effects as introduced in Section 2. Thus, the bias is modeled
as a first-order Gauß-Markov sequence, which is described in [21]. It is characterized by the correlation
time constants τa and τg as well as wba and wbg respectively:

ḃa =−ba

τa
+wba (21)

ḃg =−
bg

τg
+wbg (22)

Ultimately, the system matrix F and system noise distribution matrix G are

F =


0 −Ĉe

b[ f̄
b
ib]x −Ĉe

b 0
0 [ω̄]x 0 −I3

0 0 − 1
τa

I3 0
0 0 0 − 1

τg
I3

 , G =


−Ĉe

b 0 0 0
0 −I3 0 0
0 0 I3 0
0 0 0 I3

 . (23)

As measurement vector, the difference between the measured and estimated velocity ṽ and v̂ as well
as the difference between measured and estimated angular rate ω̃ and ω̂ are considered. The filter update
is performed once every new keyframe is available. Therefore the measurement vector z is given as

z = (ṽ− v̂, ω̃ − ω̂)T = (δ ṽ,δω̃)T (24)

Monocular VO can only measure the velocity ṽ up to a scale, which was introduced as the trend
vector t̃ in Section 2. As the Euclidean norm of t̃ is 1, the approximation

9Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



ṽ = ∥v̂∥ t̃ (25)

was made. Obviously, the assumption introduces a time correlation as v̂ is based on the calculation
of the previous epoch, while t̃ is measured at the current epoch. However, for low dynamic operations
the effect is assumed to be negligible. During the tests, presented in Section 5, no time correlated effects
were observed. No noise correlation is considered, i.e. noise covariance matrix Q is a diagonal matrix.

4.4 Integrity Monitoring and Mode-Switching
For both filters, the innovation test statistic from Equation (6) is calculated. Individual significance

levels α are selected. If the fault-free hypothesis of the INS/GNSS Extended Kalman Filter is rejected,
the MSU switches to the INS/Visual Odometry Extended Kalman Filter. Hereby, the position, attitude
and velocity error estimates as well as the bias estimates of the last valid INS/GNSS estimation are
given as aiding reference for the INS/VO filter. As both filters run in parallel, the INS/GNSS filter can
recover. Upon recovery, the INS/GNSS filter is set as reference navigation filter again. Therefore, the
INS/GNSS filter remains the prioritized filter, whereas the INS/VO filter bridges the coasting phases
with reduced drift compared to the uncorrected INS. Furthermore, the INS/GNSS Extended Kalman
Filter uses Innovation Filtering to detect biases of individual measurements. If a threshold is surpassed
by the corresponding normalized innovation, the SV is considered to be faulty and is excluded for a
constant period of time Texc from further measurements of the filter.

5 Results
In this sectiion, the chosen hardware is presented and a characteristic test dataset is introduced. The

proposed filter is then applied to the dataset and the results are discussed.

5.1 Test Setup
As IMU, the InvenSense consumer grade MEMS IMU ICM-20948 was selected. The monochro-

matic camera camera consists of the Daheng Imaging Mercury MER-133-54U3M-L body with 1280x960px
resolution and a 2mm M12 lense. As multi-constellation and multi-frequency GNSS receiver, the u-blox
ZED-F9P was chosen along with the u-blox ANN-MB antenna. An Odroid XU4 single board computer
records the measurements with timestamps to assure synchronization of the data. While the IMU mea-
surements are recorded at 100Hz, the camera records at 15Hz and the GNSS measurements are provided
once every second. Even though the setup is suitable for online estimation, the data was recorded onto
a memory card and analyzed offline only. As no ground truth of the position, attitude or velocity can
be determined for an UAV without additional sensors, a setup was planned for a ground vehicle based
setup, which is shown in Figure 8 in the Appendix. By reconstructing the actual path, a ground truth
trajectory was generated from map sources, which can be used as a measure of the position error during
the analysis.

Using the ground vehicle based test setup, different datasets were recorded. A characteristic urban
dataset was selected for further analysis. Within the duration of 2:58min, speeds between walking speed
and 50km/h were recorded. The track is 1.33km long and consists of five 90 degree turns within the
environment of buildings with heights between four and five floors. See a sample camera frame in
Figure 7 within the Appendix.
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5.2 Analysis
As expected, the INS and the VO Integration, are prone to drift. The former position solution

accumulates a position error of 1.9km in the end. Additionally to the drift, the VO Integration suffers
from scale ambiguity, i.e. no speed information is available, which causes the position estimation to be
unusable.

With the INS/VO Kalman Filter, introduced in Section 4.3, the drift can be significantly reduced to
a maximum position error of less than 70m, which can be seen in Figure 4. As shown in Appendix 6,
the filter is not fully observable during constant velocity phases, e.g. during the long constant velocity
episode of the dataset after the third turn. Therefore, the drift rate is greater within this period.

Fig. 4 INS/Visual Odometry Extended Kalman Filter applied to the
dataset

The result of the INS/GNSS
Extended Kalman Filter with-
out Innovation Sequence Mon-
itoring is shown in Figure 5.
Other than VO or an IMU,
GNSS based position estimation
does not show cumulative er-
rors within the position domain.
However, it suffers from notice-
able noise in the position do-
main. Figure 6 shows the re-
sult of the proposed filter archi-
tecture. Timestamps are shown
that indicate the time in sec-
onds from the beginning of the
dataset. Based on the dynami-
cally calculated threshold value for the χ2 test statistic of the INS/GNSS Filter, the INS correction
estimation source is either the INS/GNSS Filter or the INS/VO Filter. Position estimations based on the
INS/GNSS Filter are shown as magenta points and those based on the INS/VO Filter as cyan points.

Fig. 5 INS/GNSS Extended Kalman Filter applied to the dataset

It can be seen that the fu-
sion of both filters makes use of
the complementary advantages
of both architectures. The track
estimation is smoother com-
pared to the INS/GNSS filter
and it is less affected from drift
than the INS/VO filter solution
alone. During the Kalman Filter
convergence, the INS/VO filter
takes over at 10s. The reference
is still based on noisy measure-
ments as the Innovation Filter-
ing is not active until an initial
convergence. As the reference is
noisy and the INS/VO Filter is prone to cumulative errors, the drift until 29s is observable.

Between 37s and 100s, the raw INS/GNSS position estimation is unreliable as shown in Figure 5.
As the user enters the shadow of the buildings located south of the road at 37s, which is shown in Figure
1, the signal reception of the satellites with ID 121, 14 and 28 becomes NLOS. The Innovation Filtering
excludes these satellites together with those with low elevation angles. Hereby, an exclusion time Texc of
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15s is chosen. By excluding pseudo-range measurements of these individual SV, the Innovation Filtering
enables a smoother position estimation. Using Innovation Filtering, the pseudo-range residuals remain in
a band of ±10m after the initial convergence of the filter. The distributions of the pseudo-range residuals
of a satellite can be fitted to a Gaussian distribution. Hereby, the mean is not zero but varies between
−2.1m and 3m and the standard deviation is between 3m and 4.2m with a mean of 2.1m.

Fig. 6 Results of the combined INS/VO Extended Kalman Filter (cyan
colored) and INS/GNSS Extended Kalman Filter (magenta colored) with
Innovation Filtering and Mode Switching; Position estimations anno-
tated with timestamp of the dataset

Both χ2 hypotheses tests
use a significance level α of 5%
for the threshold calculation. If
a value is greater than zero, the
fault-free hypothesis is rejected
and the filter integrity can not be
ensured. It can be seen that the
complementarity of both filters
is reflected by the test statistics
as some integrity failures are ac-
companied by low test statistic
values of the other filter. Even
though the complementary be-
havior of both filters increases
the continuity thereby, there are
periods of both statistics being
above the threshold. When both
filters suffer from a fault-free
hypothesis rejection, a dual integrity failure occurs. The duration during which the integrity of both
filters can not be guaranteed is 23 seconds of 178 seconds of the total dataset, while the integrity of the
INS/GNSS filter alone cannot be ensured for 102 seconds. The continuity could therefore be improved
through the parallel filter design.

6 Conclusion
With the development of a test setup, a representative dataset was generated to verify the assumed

benefits of the proposed filter architecture. Through Innovation Filtering and the subsequent exclusion of
individual pseudo-range measurements, the INS/GNSS pose estimation was improved and showed less
noise. However, the integrity could not be ensured for over half of the duration of the dataset. Running
the INS/GNSS and INS/VO filter in parallel those periods could be bridged and the integrity could be
ensured for 87% of the total duration. Additionally, the pose estimation accuracy could be increased
compared to the individual filters alone.

As only monocular vision is implemented, the velocity vector measurement is calculated as the
scalar multiplication of the measured trend vector with the a-posteriori speed estimate of the previous
filter iteration. Therefore, a time dependence was introduced, which could cause errors or even instability
of the filter, once the user dynamics are high enough. Even though the dataset was recorded with a ground
based vehicle with kinematic constraints, no assumptions were made within the filter algorithms, which
makes the results transferable to an UAV. Therefore, future work will focus on proving the benefits of
the proposed filter for an UAV.

In summary, this paper presented a novel filter architecture, utilizing GNSS, an IMU and a monoc-
ular VO algorithm. Hereby, the complementary advantages were used to improve the integrity and
continuity properties of the pose estimation within an urban environment.
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Appendix

Representative NLOS Reception - Camera Frame

Fig. 7 Camera frame of the representative NLOS reception at 41s

Observability of the INS/VO Kalman Filter
Observability determines the rate or even ability of the state estimates of a system to converge [21].

The deterministic observability can be shown if the observability matrix MDT I is of rank n, where n is
the state vector dimension:

MT
DT I =


H

HΦ

...
HΦn−1

 (26)

For the further analysis, two representative cases are distinguished.

No Angular Rate
Under the assumption of no angular rate, i.e. the specific force f̄ b

ib in Equation (23) is any arbitrary
acceleration, including 03, and the angular rate ω̂ in the same equation is zero. If at least one acceleration
component is given, the observability matrix has rank 11, which is a rank deficiency of 1. In cases, where
no acceleration is given, the rank is 9. In both cases the system is not fully observable.

Constant Angular Rate
If at least one acceleration and one angular rate component is non-zero, the rank of the observability
matrix is 12 and the system is fully observable.

A potential example can be seen in Figure 4, where the position estimations during the first three
90-degree (case 2) turns are relatively drift-free, whereas a constantly growing drift is visible during the
turn-free track thereafter (case 1).
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Vehicle Based Test Setup

Fig. 8 Test setup for the ground vehicle based recordings

INS/GNSS State Transition Matrix
The state transition matrix of the INS is adopted from [7]:

ΦINS =


I3 −Ωe

ieτs 03 03 03 Ĉe
bτs . . . 03 Ĉe

bτs

Fe
21τs I3 −2Ωe

ieτs Fe
23τs Ĉe

bτs 03 . . . Ĉe
bτs 03

03 I3τs I3 03 03 . . . 03 03

03 03 03 I3 03 . . . I3 03

03 03 03 03 I3 . . . 03 I3

 (27)

Hereby, matrices Fe
21 and Fe

23 are given as

Fe
21 = [−(Ĉe

b f̂ b
ib)]x, (28)

Fe
23 =−

2γ̂e
ib(r̂

e
eb)

T

re
eS(L̂b)|r̂e

eb|
, (29)

where γ̂e
ib is the estimated gravity and r̂e

eS(L̂b) the estimated latitude dependent estimate of the geo-
centric radius at the surface of the earth [7].

The transition matrix of the GNSS related states is modified from the matrix given in [7]. To take
L different constellations into account, the matrix ΦGNSS of [7] has to be given for every constellation.
Therefore, the state transition matrix can be constructed from the original state transition matrix proposed
by Groves Φ

′
GNSS as
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ΦGNSS =


Φ

′
GNSS,1 0

. . .

0 Φ
′
GNSS,L

 . (30)

Hereby, Φ
′
GNSS,l is independent from the constellation and given by Groves as

Φ
′
GNSS,l =

(
1 0
τs 1

)
. (31)
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