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ABSTRACT

An output-feedback tube based model predictive controller is formulated and proposed for a
real-time and fully autonomous descent and landing scenario onto small bodies and asteroids.
With computational power being limited on deep space probes, the proposed guidance and control
method relies solely on solving a quadratic optimisation problem online. Robustness is achieved
through the off-line design of robust positively invariant sets, whereby the spacecraft is guaranteed
to follow a nominal trajectory as generated from the solution of the quadratic optimisation prob-
lem. A full design synthesis of the tube based controller is proposed, accounting for both model and
measurement uncertainties. Simulations verify the robustness of the strategy, but also highlights
important challenges when limited to only linear systems in a highly nonlinear environment.

Keywords: MPC, Robust-Control, Autonomous

Notation
A polytopic set is denoted by bold math script, X, represented through its half-plane representations

X := {x ∈ Rn|Ax ≤ b}. The addition of two polytopic sets are given as the minkowski sum, X⊕Y =
{x+ y|x ∈ X,y ∈ Y}. The subtraction of two polytopic sets is similarly represented as the pontryagin
difference X	Y= {x|x⊕Y⊆ X}. Subscript k, as in xk, represents discrete time, whereas the subscript
i, as in xi represents future predicted value. In the case where both is needed xi

k, then i is given as
superscript. Finally, accented variables, ¯(·), ˆ(·), ˜(·), represent vectors of similar dimensions as base.
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1 Introduction
Landing onto small bodies and asteroids pose several challenges for Guidance, Navigation and Con-

trol (GNC). The environment is highly nonlinear due to irregularities in gravitational fields, together
with other forces such as solar pressure and third body perturbations. Estimation of the true position and
velocity of a spacecraft around small bodies and asteroids are also non-trivial, and as a result, a proposed
GNC system should not only be robust to significant modelling errors, but also to estimator uncertain-
ties. Additionally, small body operations usually occur in deep space with significant communication
delays, and a GNC system that is independent and able to operate autonomously under such conditions
is desirable.

Of recent missions, Hayabusa2 performed a touch-and-go on the near Earth asteroid Ryugu in 2019,
where a partial ground, partial onboard strategy of the GNC for a powered descent onto the asteroid was
utilised [1]. NASA’s Osiris-Rex similarly successfully performed a touch-and-go on the asteroid Bennu
in 2020, utilising a series of set-point onboard calculated braking manoeuvres in order to follow a pre-
calculated trajectory onto the surface [2]. Whereas both missions were successful, the reliance on ground
control and lack of autonomous adaptability indicates room for improvement. Future autonomous GNC
methodologies for powered descent should have the onboard ability to adapt under uncertain and un-
expected flight conditions, together with computational tractability and robust performance [3]. Recent
reviews of GNC for small bodies highlight the necessity of a transition from offline to online computabil-
ity, but also the need of improved robustness due to the higher degrees of uncertainties in small body
environments [4, 5]. Similarly, whereas current practical applications of small body operations rely
on separating the guidance and control algorithms, advances in optimisation-based algorithms makes
them more attractive for the guidance and control within the aerospace field, especially for small body
operations [6–8].

Model Predictive Control (MPC) is an optimisation based guidance and control algorithm that has
been attracting increased research interest as a computational approach for descent and landing [9].
MPC solve the guidance and control problem in real-time through successive solution of optimization
problems, subject to operational state and input constraints. For this, convex problems are advantageous
due to numerous reasons, among others, faster solution times and the guaranteed existence of global
solutions. Yet few problems are of an innate convex nature, and the problem of descent and landing is no
exception. As such, the application of optimization based GNC methodologies have warranted several
convexification techniques, enabling proposal of fully convex strategies. The authors of [10] proposed
a convex Second Order Cone Program (SOCP) for a fuel-optimal trajectory for asteroid descent and
landing. Similarly, [11] proposed a SOCP problem in combination with classical MPC. A quaternion
six-degree-of-freedom MPC for precision landing has also been demonstrated in [12]. Convex MPC
has further been shown to efficiently solve both circumnavigation and precision landing with superior
constraint performance when compared to more traditional approaches [13]. Whereas [11] utilised a
SOCP based MPC, a computationally simpler Quadratic Problem (QP) based MPC with robustness
guaranteed through utilisation of robust tubes has been shown to solve the descent and landing problem
in the presence of model uncertainties [14]. With increased availability of efficient solvers for convexified
problems, among both SOCP and QP [15], the use of optimisation based guidance and control algorithms
on spacecrafts are becoming more tractable.

For a guidance and control methodology to be applicable, it should not only be robust towards
modelling uncertainties, but also to measurement and estimator uncertainties. With output feedback, the
authors of [13] utilised an input observer to correct uncertainties while utilising MPC for the descent
and landing. Negative interactions between the observer and MPC reduced the effectiveness of this
approach. Crucially, for predictive methodologies, uncertainties in the initial states may produce huge
uncertainties in predicted future states, giving way for methods such as stochastic MPC [16]. Stochastic
MPC allow for future prediction of uncertainties, at the expense of an increased computational cost. A
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different approach leveraging the advantages of invariant sets is the so-called tube MPC. The tube MPC
has been explored in the context of rendezvous [17], and similarly, [14] explored tube linear MPC with
state-feedback in the scenario of asteroid descent and landing. This paper is an extension of [14] to the
output-feedback scenario, utilising the advantages of invariant sets to contain the spacecraft trajectory
along a predicted trajectory while subject to both model and estimator uncertainties.

The paper is structured as follows; Section 2 frames the problem of the asteroid descent and landing
in the content used for this work. Section 3 presents theory on the Output-Tube MPC (OTMPC) that is
used as the guidance and control system for the spacecraft. Section 4 contains the primary contribution
of this paper, the adoption of the OTMPC to the scenario of asteroid descent and landing. Simulations
showing the viability of the methodology are presented in section 5, for a final conclusion in section 6.

2 Problem Statement; Small Body Descent & Landing
The spacecraft is assumed to be equipped with thrusters providing propulsion along the principle

axes. The target asteroid is assumed to be rotating at a non-insignificant fixed angular rate about its
axis of largest inertia. The relative position and velocity vector of the spacecraft, [r,v], is expressed in
a rotating asteroid centred fixed frame, whereas a linearised coordinate system, with vector [rr,vr], is
aligned with the fixed frame, but shifted to a linearisation point r = rr+ rr,0. The equations of motion for
the spacecraft in the fixed frame are given as

r̈ =−2ω× ṙ−ω× (ω× r)+∇U(r)+
T
m
, (1)

were T is the spacecraft thrust vector, ω is asteroid rotation vector, m is the mass of the spacecraft, and
∇U(r) is the gravitational forces. Several methodologies for representing the non-linear gravitational
potential around small bodies exists, but for this research, the gravitational potential has been represented
by a sum of a series of optimised mascons U = G∑

Nm
i=1

mi
rrriii

[18], giving the gravitational forces as the
derivative of the potential. Defining the collected state vector as ξ (t) = [r(t),v(t)]>, and assuming that
other forces such as third body perturbations and solar pressure are negligible, the equations of motion
can be written as

ξ̇ (t) =

[
0 1

−2S(Z) −S(Z)2

]
ξ (t)+

[
0

∇U(rrr(t))

]
+

[
0

T (t)
m

]
, (2)

where S(·) indicates a skew symmetric matrix. Linearising (2) at an artificial equilibria (ξr,0,Tr,0), gives
a linearised set of equations in the linearised coordinate frame,

ξ̇r(t) =

([
0 1

−2S(Z) −S(Z)2

]
+∇∇U(r(t))|r=rr,0

)
ξr(t)+

[
0

Tr(t)
m

]
+w, (3)

where w is a vector of model uncertainties stemming from the linearisation procedure. Furthermore, the
linearised equations of motion is discretised with a timestep ∆t using an exact discretization method. The
discrete prediction error wk represents the combined discrete model uncertainties of the linear system (3),
compared to (2), and is contained in the set W (5).

The state estimator is assumed to be a non-specific estimator, be it an extended Kalman filter or
other, of which return a reasonable state estimate ξ̂ of the state ξ . Furthermore, the estimator is assumed
to be in steady-state and assumed to be bounded within upper and lower bounds. As such, the state
estimate may be defined as ξ̂ = ξ +ν , ν ∈ V, where V is an outer-bounding hyperrectangle containing
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the estimator uncertainty.

ξ̂ ∈ ξ ⊕V, V := {ν |AVν ≤ bV} (4)
w ∈W, W := {w|AWw≤ bW} (5)

The matrices AV, AW, bV, and bW are matrices appropriately chosen that reflect the bounds on the model
and estimator uncertainties. The measurement noise is assumed to be randomly distributed within a
subset of (4).

The initial state of the spacecraft is assumed to be either in a stable orbit, or in a trajectory that
is not irrecoverable. Furthermore, the goal of the spacecraft is to safely hover as close as possible
to a predefined landing point on the surface. Geometrically, the position is constrained to the convex
intersection of a rectangular outer set and a pyramidic convex set with its apex at the desired landing
spot, as shown in Fig. 1. Similarly, to fully constrain the state and thrust vectors, the velocity and thrust
are bounded by rectangular sets, giving the constraint sets for the state and thrust as

ξ ∈ X, X := {ξ |AXξ ≤ bX} (6)
T ∈ U, U := {T |AUT ≤ bU}, (7)

where AX, AU, bX, and bU are appropriately chosen matrices.

Fig. 1 State space for a powered descent on Eros. Surface target as yellow dot, starting point as blue cross.

3 Output-Tube Based MPC
Consider a nominal discrete disturbance free approximation of the state ξ , expressed in the linearised

frame, denoted as ξ̄ = [r̄, v̄], with corresponding set of equations given as the disturbance-free variant of
(3). The error dynamics between the nominal and true dynamics, ek = ξk,r− ξ̄ , are given by

ek+1 = Aξk,r +BTk +wk−Aξ̄ −BT̄k

= Aek +B(Tk− T̄k)+wk. (8)

With the tube MPC feedback law from [19], the input applied to the true system dynamics becomes
Tk = T̄k +Kdrek, which gives the closed loop error dynamics as

ek+1 = (A+BKdr)ek +wk, (9)
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of which, by the selection of Kdr such that (A+BKdr) Hurwitz, converge to a Robust Positively Invariant
(RPI) set of the system,

Definition 3.1 (RPI). For an autonomous system, the set Z is considered an RPI set for the system
xk+1 = Axk +wk and constraint set X,W, if Z⊆ X and Axk +wk ∈ Z∀xk ∈ Z∧∀wk ∈W. Z is contained
in all other RPI sets, then it is the minimal RPI. Similarly, if it contains all RPI sets, it is the Maximal
RPI

I.e, once the trajectory enters the RPI set Z, it will never leave the set. By choosing a feedback gain
Kdr that minimises the volume of the minimum RPI, the system is guaranteed to exponentially approach
a tube, defined by Z, centred around a nominal trajectory generated by the nominal system. Therefore,
consider the following quadratic optimisation program as a solution of the nominal system, subject to a
quadratic cost,

(ξ̄i=0, T̄i=0) =min
ξ̄ ,T̄

ξ̄
>
i=NPfξ̄i=N +

N−1

∑
i=0

ξ̄
>
i Qξ̄i + T̄>i RT̄i (10a)

s.t.

ξ̄i+1 = Aξ̄i +Būi, ∀i ∈ {0,N−1}; (10b)
T̄i ∈ Ū= U−KdrZ, ∀i ∈ {0,N−1}; (10c)

ξ̄i ∈ X̄= X−Z, ∀i ∈ {0,N}; (10d)

ξ̄i=0 = ξk	Z; (10e)

ξ̄i=N ∈ X̄ f = X f −Z, (10f)

where ξ̄ , T̄ is the nominal state and input, Z is an RPI set, preferably the minimal, for the error dynamics
(9), Pf is the infinite horizon cost as given by the Ricatti equation, and X f is a terminal set. The MPC for
the nominal system is thus given by solving the optimisation problem at each discrete step t = k. After
each successive solve, the input Tk = T̄ i=0

k +Kdr(ξk,r− ξ̄ i=0
k ) is applied to the true system. With this,

convergence of the true system to the terminal set is guaranteed with guaranteed constraint satisfaction
[19].

The introduction of a state estimator adds to the uncertainty of the system that needs consideration.
The authors of [20] extended the results of the state-feedback tube MPC design by coupling the estimator
and state dynamics, showing convergence to an RPI for both error and estimator dynamics. However, the
design procedure is not easily extended to larger systems due to increased dimensionality of the problem.
Following the procedures of [21], consider instead an estimator in steady-state, giving an estimate of the
state ξ as ξ̂ = ξ ⊕V, where V is a convex, compact set that contains the origin, as defined in Eq. (4).
Similarly, consider ξ̃ to be a candidate of the estimate ξ̂ , to be determined. Before proceeding, some
notational summary, the pair (ξk,Tk) is the true state and input, (ξ̄k, T̄k) is the nominal state and input, ξ̂k
is an estimate of the true state ξk, and ξ̃k is a candidate of the state estimate to be determined. As state
feedback is no longer available, the output tube-based control law must be modified to reflect the use
of a state estimate. This gives Tk = T̄ i=0

k +Kdr(ξ̂k,r− ξ̄ i=0
k ), which, when applied to Eq. (8), gives the

output-feedback error dynamics as

ek+1 = (A+BKdr)ek +BKdrV+wk, (11)
= (A+BKdr)ek +∆, (12)

where ∆ = BKdrV+wk is the combined uncertainty of the error dynamics. Following similar arguments
as with the state-feedback scenario, the true state ξ , with its estimate ξ̂ may be shown to robustly follow
the nominal trajectory given by ξ .
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However, when progressing from k to k+ 1, it is not necessarily guaranteed that the estimate ξ̂k+1
is inside the predicted tube. That is, it is guaranteed that ξk+1 ∈ ξ̂k+1⊕V, and that ξk+1 ∈ ξ̄ i=1

k ⊕Z,
but not that ξ̂k+1 ∈ ξ̄ i=1

k ⊕Z. In such a scenario, the state estimate may appear to be outside the state
boundaries, which in turn would make the nominal optimisation problem (10) infeasible. The authors
of [21] proposes that there exists a candidate estimate ξ̃k, such that a feasible solution is guaranteed at
all time. Defining Ik to be the intersection of the predicted tube from the previous time step and the
uncertainty of the estimate ξ̂k, that is Ik = (ξ̄ i=1

k−1⊕Z)∩ (ξ̂k⊕V), then the candidate estimate ξ̃k may be
chosen in accordance with the constraints

Ik ⊆ ξ̃k⊕V, (13)

Ik ⊆ ξ̄
i=0
k ⊕Z. (14)

Including the candidate estimate as an optimization variable, subject to the constraints of Ik, the output-
feedback nominal MPC may be formulated as

(ξ̃ , ξ̄i=0, T̄i=0) = min
ξ̃ ,ξ̄ ,T̄ ,

ξ̄
>
N Pfξ̄N +

N−1

∑
i=0

ξ̄
>
i Qξ̄i + T̄>i RT̄i (15a)

s.t.

ξ̄i+1 = Aξ̄i +BT̄i, ∀i ∈ {0,N−1} (15b)
T̄i ∈ Ū= U−KdrZ, ∀i ∈ {0,N−1} (15c)

ξ̄i ∈ X̄= X−Z, ∀i ∈ {0,N} (15d)

T̄i=0 +Kdr(ξ̃ − ξ̄i=0) ∈ U, (15e)

ξ̃ = ξ̄i=0⊕Z, (15f)

ξ̄i=N ∈ X̄ f = X f −Z, (15g)

Ik ⊆ ξ̃ ⊕V, (15h)

Ik ⊆ ξ̄i=0⊕Z, (15i)

which is slightly more computationally expensive, compared to (10), due to the added constraints and
candidate estimate. Also note that the replacement of ξ̂ with ξ̃ allows for the explicit formulation of the
output tube feedback law in (15e). For a further details on the output tube MPC, the reader is referred to
[21].

4 Realisation of OTMPC for Descent and Landing
Due to limitations of available computational power on deep space probes and spacecraft, the result-

ing quadratic optimisation problem should be as simple as possible. Thus, the following will discuss the
adoption and design of the aforementioned output-feedback based tube MPC to the descent and landing
scenario.

4.1 Disturbance rejection and RPI
Using the linear dynamics of Eq. (3), it is necessary to determine the smallest possible RPI, ideally

the minimal one. An arbitrary ε close approximation is possibly using the methods of [22], however, the
number of vertices and facets explodes rapidly with minkowski-sums, making this approach not feasible
in higher dimensions. Additionally, significant complexity to the optimisation program is added with the
large half-plane representations of exact RPI’s. Other methods exists, but at the cost of either complexity
in the number of constraints, or in the challenge of choosing a suitable initial geometry [23]. For this
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research, an RPI chosen as a geometric hyper rectangle is advantageous, as in a d-dimensional problem it
may be represented by a limited set of 2d-inequalities, keeping the complexity of the MPC at minimum.
The hyper rectangle is fitted to a minimal ellipsoidal RPI which is computed by solving the following
Linear Matrix Inequalities (LMI).

Considering the state feedback error dynamics Eq. (9), an RPI must satisfy both Z= {x|x>k Pxk ≤ 1}
and Z = {x|x>k+1Pxk+1 ≤ 1}. Requiring that X̄ = X−Z and Ū = U−KdrZ is not empty sets, and
minimising the volume of of the ellipsoidal RPI, [19] showed that an ellipsoidal RPI may be found
by solving an LMI. However, with output-feedback, the disturbance is dependent on the choice of Kdr,
extending the LMI to a bilinear matrix inequality. A simple two step extension of [19] is proposed to
find a suitable pair P and Kdr. First, solving the following LMI

min
Y,W1,γ1

γ1 (16a) λ1W1 ∗ ∗
0 1−λ1,∗

AW1 +BY wVi W

> 0, ∀WVi ∈ ∆ (16b)

[
ρ2 l>j Y
∗ W1

]
> 0, i = 1, ...,nru (16c)[

1 h>j W1

∗ W1

]
> 0, j = 1, ...,nrx (16d)

giving Kdr = YW1, then the RPI, given by a symmetric shape matrix P, under the disturbance ∆ =
w+BKdrV may be found by solving the following similar LMI

min
W2,γ2

γ2 (17a) λ2W2 ∗ ∗
0 1−λ2,∗

AW2 +BKW2 ∆Vi W2

> 0, ∀∆Vi ∈ ∆ (17b)

[
1 h>j W2

∗ W2

]
> 0, j = 1, ...,nrx (17c)

Thus, the set Z, defined by a hyperrectangle constructed from the eigenvectors of P2 = W−1
2 is an

RPI for the autonomous system Eq. (12). In the LMI’s (16) and (17), the parameters (λ1,λ2) ∈ (0,1)
ensure convexity, stemming from the s-procedure, whereas the parameter ρ ∈ (0,1) ensures that the
set U− BKdrZ is non-empty. Finally, l,h are vectors from the state and input constraint, written as
X= {ξ | |h>i ξ |1 ≤ 1, i ∈ 1, ...,nξ}, U= {T | |l>i T |1 ≤ 1, i ∈ 1, ...,nu},.

4.2 Model and measurement uncertainty
The model uncertainty W must be an outer approximation of the true uncertainty, and is not often

easily determined. A direct direct approach is possible, where W is calculated directly from (3) and (2)
along with maximum bounds on state and input values. Similarly, for the first order Taylor approxi-
mation used in this paper, the uncertainty may be determined by evaluating the second order Taylor at
maximum bounds of the states state-space. However, neither will yield an exact knowledge about the
model uncertainty as the true gravitational potential is rarely precisely known, together with additional
other forces. For this paper, the model uncertainty has been determined as the worst case prediction
error given by the linearised model in the high fidelity environment. Using worst case scenarios, the pre-

7Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



viously mentioned methods may also return a suitable envelope for the model uncertainty in a realistic
scenario. It should be noted that, whereas this work only considers gravitational forces as non-linearities,
other possible additional non-linear forces in a higher fidelity environment should also be captured by
the design of W.

Additionally, bounds on the uncertainty of the estimator is also required. Following [13], the esti-
mate is initially considered to randomly distributed around the true state by a box limited by [bV,r,bV,v]>≈
[1/3,0.5/3]>γ , where γ ≤ 1 is a scaling parameter to increase or decrease the uncertainty of the estimate.
From [24], it is clear that this order of uncertainty or better is feasible using an extended Kalman filter
with landmark based measurements.

4.3 Selection of Z
In the output-feedback scenario, the error dynamics uncertainty is no longer easily defined, as it

depends on the choice of feedback gain Kdr. Prioritizing a small RPI to suppress model uncertainty
may increase the controller induced uncertainty BKdrV of the error feedback system, leaving KdrZ	U
small with possible minimal improvements of the RPI. Similarly, prioritizing manoeuvrability such that
KdrZ	U is large, the suppression of model uncertainty through control becomes challenging. As an
example, for the scenario later proposed in the simulations, one possible RPI where Ū is non-empty and
large for the given linearised dynamics is shown geometrically in Fig. 2. The model uncertainty in this
scenario becomes dominating, whereas the nominal manoeuvrability, as seen by the set U, is large, it
is clear that resulting RPI is also large. This presents the most significant challenge of the output tube
MPC.

Fig. 2 The smallest RPI found, projected in rrr on the left, and vvv on the right.

4.4 OTMPC for descent and landing
For the practical implementation of the quadratic optimisation problem in the 3-degree-of-freedom

descent and landing scenario, some modifications to the OTMPC are warranted. The terminal constraint
Eq. (15g) is commonly omitted during practical applications of MPC, as it is challenging to determine the
feasible region of the MPC. As such, a cost on the state transition, and a sufficiently large terminal cost
is necessitated in order to implicitly satisfy the terminal constraint. Furthermore, due to the state space
X being much larger than the reachable set of the MPC, the prediction horizon N is chosen sufficiently
large, such that the spacecraft is able to stop within the prediction horizon. This is important in scenarios
where a state constraint is inactive at one discrete time, but active in the next. The cost function is further
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modified to (ξ̄i=N−ξl,r)
>P(ξ̄i=N−ξl,r)+∑

N−1
i=0 (ξ̄i−ξl,r)

>Q(ξ̄i−ξl,r)+ T̄>i RT̄i such that the optimum
cost is shifted to the desired landing site, in order to drive the nominal system to the landing site ξl,r.
With this, the quadratic optimisation program may be given as

(ξ̃ , ξ̄i=0, T̄i=0) =min
ξ̄ ,T̄

(ξ̄i=N−ξl,r)
>Pf(ξ̄i=N−ξl,r)+

N−1

∑
i=0

(ξ̄i−ξl,r)
>Q(ξ̄i−ξl,r)+ T̄>i RT̄i (18a)

s.t.

ξ̄i+1 = Aξ̄i +BT̄i, ∀i ∈ {0,N−1}, (18b)
T̄i ∈ Ū= U−KdrZ, ∀i ∈ {0,N−1}, (18c)

ξ̄i ∈ X̄= X−Z, ∀i ∈ {0,N}, (18d)

T̄i=0 +Kdr(ξ̃ − ξ̄i=0) ∈ U, (18e)

ξ̃ = ξ̄i=0⊕Z, (18f)

Ik ⊆ ξ̃ ⊕V, (18g)

Ik ⊆ ξ̄i=0⊕Z, (18h)

where Ik = (ξ̄ i=1
k−1⊕Z)∩ (ξ̂k⊕V).

5 Simulation
Consider the scenario of the descent and landing on the asteroid Eros, visited in a fly-by mission

by Near Shoemaker in 2000. Assuming the spacecraft mass is 2000kg, the maximum thrust along each
principle axis being 50N, a prediction horizon N = 60, and discrete time ∆t = 20s. Two scenarios have
been considered, with the first scenario starting in a 32km, 0◦ inclination orbit, similar to [14]. The
second scenario is a Monte-Carlo simulation where the initial orbits are randomized. Both scenarios
targets a safe landing at the same point on the asteroid surface.

The initial scenario considers two different RPI designs. Initially, the the RPI was selected as a in
Fig. 2, such as to allow for manoeuvrability of the spacecraft, at cost of increased tube volume. The
second RPI was chosen as the opposite, prioritizing a smaller RPI volume, at the expense of a smaller
nominal input volume U. In Fig. 3, the error dynamics (12) in the first scenario is presented for the larger
RPI. The advantage of the constraint (18f) is seen, as the initial nominal state ξ̄ i=0

k has been selected such
as to maximise the available geometry of the RPI. In turn, this allows the controller to utilise more of the
available input, i.e not only being limited to the set Ū. This effect becomes more evident when compared
to the input trajectory presented in Fig. 5, where the nominal input set U is smaller than the nominal
input set seen in Fig. 4. Whereas the difference in the nominal volume is large, both trajectories have
almost full utilisation of the true input set.
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Fig. 3 The projection of the RPI in x,y and corresponding velocities u,v
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Fig. 4 Spacecraft thrust vector over time. T̄ is the thrust generated by the optimisation problem (18), T is
the realization of the thrust
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Fig. 5 T̄ is the thrust generated by the optimisation problem (18), T is the thrust applied to the system. In
this scenario, the thrust is much more susceptible to disturbances

A brief discussion of the choice of disturbance sets W and V is also warranted. By poor selection of
either, the total combined model and induced estimator uncertainty ∆ =W⊕BKdrV may exceed the a-
priori selected bounds, and there is no longer guarantees that the state ξ will remain in the tube. For these
results, the estimator uncertainties was by definitions always confined to be within V. The uncertainty
model was selected from a Monte-Carlo analysis of the performance of the linear models. Fig. 6 shows
the combined model uncertainty and controller induced uncertainty, in a selection of dimensions, and
it is clear that for these results, the uncertainty sets have been appropriately selected, i.e not overly
conservative nor infeasible. The performance of the controller may only be guaranteed as long as the
bounds are appropriately chosen. However, as the proposed selection of the RPI induces a degree of
conservativeness, it is likely that small errors of the uncertainty sets will not induce a direct failure.

Fig. 6 The combined uncertainty from modelling errors and the additional prediction gained error from
the estimate

The effect of the measurement uncertainty and selections of Kdr is clearly reflected in the input
trajectory. With a smaller RPI, the the controller induced uncertainty, BKdrV, becomes larger. Similarly,
a larger measurement uncertainty set V also induces higher controller uncertainties. This effect is evident
in comparison of the the thrust trajectories of Fig. 4 and Fig. 5, where the latter has a smaller RPI for
higher precision, at the expense of higher induced disturbances in the thrust trajectory.
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The second scenario considers Monte-Carlo simulations where the initial orbits were randomized
within the domain X. In Fig. 7, it is clear that the spacecraft is able to successfully land on the surface
given any feasible initial conditions. Due to the lack of bias compensation, the spacecraft will reach
a terminal position set, centred around an equilibria as determined by (12). By enforcing a terminal
condition, and having a shrinking horizon in the MPC, the steady-state error may be reduced to the RPI.
Similarly, other approaches for bias compensation in MPC may readily be applied in this scenario, in
order to drive the state towards an RPI centred around the target area.

Fig. 7 Multiple trajectories from random initial conditions shows the lander, under the proposed guidance
and control policy, safely reaching the surface.

6 Conclusion
With computational guidance and control, more powerful methodologies become viable, even in

areas where computational power is limited. This paper has explored a robust rendition of utilising
MPC in a quadratic form for its application to asteroid landing. It has been shown that a robust and
computationally fast method, utilising only linear models and constraints in its online implementation, is
able to robustly solve the asteroid descent and landing problem. The limitation of linear constraints and
models does however induce a high degree of conservatism. It is clear that the tube based approach is
performing adequately while having a guaranteed performance, but challenges still remain. The selection
of the RPI set has the biggest impact on the performance of the linear tube based method. An iterative
approach of solving the two-step LMIs presented was partially been explored for some results. Further
research is warranted in the design and computation of feasible RPI-sets that is able to simultaneously
account for both the measurement and model uncertainty. Currently, it is challenging to determine usable
RPI’s, even with minimal estimator uncertainty, without adding significant conservativeness.
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