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ABSTRACT

This work addresses the implementation of a final approach guidance for fixed-wing aircraft using
a nonlinear model predictive control concept with collision avoidance capability. This comprises an
obstacle identification method using Euclidean clustering and least squares approximation. After
the provision of initial trajectories with Dubins paths which consider the flight areas that need
to be avoided, the optimal control problem for the landing path is solved using a direct method
based on a cost function with suitable penalty criteria. Optimization constraints are determined
from flight mechanical limitations, performance requirements and path constraints. Drawbacks
of a model predictive guidance are discussed and accounted for by a waypoint tracking strategy in
combination with feedforward terms derived from the desired trajectory and the aircraft model.
The robustness of the path planning and guidance is investigated with Monte Carlo simulations.
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Nomenclature

α = Angle of attack [rad]
ae,be,ce,de,ee, fe,ge,he, ie, je = Ellipsoid parameters
ax,ay,az = Accelerations in Earth frame [m

s2 ]

AGL = Altitude above ground level [m](
CD CY CL

)> = Aerodynamic force coefficients
g = Gravitational acceleration [m

s2 ]

m = Aircraft mass [kg]
r = Radius [m]
MPC = Model predictive control
NMPC = Nonlinear model predictive control
Φ = Roll angle [rad]
p1, p2, p3, p4, p5 = Weights for objective functional
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T,δF = Thrust [m
s ], Thrust lever

Va, Vk = Absolute values for air and track speed respectively [m/s]
γ = Flight path angle [rad]
χ = Flight path azimuth [rad]
x =

(
x y z

)> = Position wrt. origin of flat and inertial Earth frame [m]

ω =
(
ωv ωγ ωχ

)> = Pseudo control variables
Xa =

(
Xa Ya Za

)> = Forces along aerod. axes: neg. drag, side force, neg. lift [N]
(·) f = Desired final value for state or actuator

1 Introduction
Aircraft landings, especially during adverse weather conditions, pose the largest risk for aviation

accidents [1]. The majority of flight incidents occur during this period and are due to human operating
errors [2, 3]. The automation of this flight phase is an opportunity to reduce the possibilities of mishaps
due to pilot mistakes and increase passenger safety. The automation of the landing approach procedure
is already well established for large commercial aircraft (CS-25). These rely on various navigation
aids that are available at large airports, where these aircraft land. Smaller and lighter aircraft (CS-23)
are usually not equipped with such systems and often operate at smaller airports with less ground-based
facilities. The necessary approach patterns can also be more complex and require a flexible path planning
functionality during landing.

The research on path planning for fixed-wing aircraft has drawn a lot of attention in recent years.
One technique, that emerged over time and is now widely adopted, is the generation of an initial tra-
jectory based on geometrical considerations. This serves as a preliminary guess and starting point for
an optimization that improves the solution path with regard to certain evaluation criteria. In [4], the
derivation of an initial landing trajectory as a starting point for the numerical computation is discussed.
The output of this initial trajectory generation are often sequences of waypoints, which need additional
smoothing as presented in [5] and [6].

There is a wide amount of works that use the Model Predictive Control (MPC) technique to perform
a trajectory optimization and find an optimal path even in the presence of spatial or aerodynamic con-
straints. This method was applied for missile guidance, e.g. in [7], but is also investigated with regard
to fixed-wing aircraft path planning. The deployment of nonlinear MPC for high level path tracking is
tested in flight in [8]. In [9], motion planning for agile aerobatics maneuvers is presented including the
deliberate traverse into angle of attack regions that cause stalls. Long range trajectories are considered in
[10], where the deployment or avoidance of weather phenomenons is important for trajectory generation.
It is observed in [11], that path planning parameters for the model predictive control and geometrical fea-
tures of the corresponding path are correlated. The authors provide methodical guidelines for the choice
of the MPC design parameters. Descent trajectories, which represent the relevant paths in this work, are
developed in [12], where performance improvements for trajectory optimization based on neighboring
extremals are achieved by enabling the restructuring of a nonlinear into a quadratic programming prob-
lem. In the absence of enforced approach patterns, this concept yields an optimal trajectory with regard
to approach duration and mechanical limitations of the aircraft. This provides the option to trigger a
landing procedure at a random aerial position and be guided to the desired runway automatically. In a
similar attempt to reduce the computational effort for the optimization, the dynamic model is simplified
in [13] with a focus on fewer optimization parameters.

However, these works do not include the consideration of virtual obstacles like No-Fly zones or
real obstacles that need to be regarded during a real-world aircraft landing approach. Fig. 1 depicts the
runway and approach patterns for a small airfield in the south-west of Germany. It is apparent, that an
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approach to runway 36 from the western direction entails a very short landing segment after the last
turn and therefore prevents a long, straight descent to the runway. The illustration on the right side of
the figure shows, how this approach pattern can be enforced by virtual No-Fly obstacles and the desired
pattern is achieved during an automatic landing approach with a flexible guidance concept that will be
presented in this work.

Fig. 1 Airfield Donaueschingen-Villingen EDTD [14]

The obstacle avoidance capability for the landing approach guidance is not only helpful to comply
with airspace regulations, but can also improve the autonomous capabilities of an aircraft during emer-
gency landings or at rural airports in rough terrain. In these cases it can be ensured, that objects in ground
vicinity posing a collision risk on the aircraft route are avoided. A method for obstacle detection and
segmentation was presented in [15]. However, this approach is limited to aerial obstacles. In [16], a
concept to fuse electro-optic, infrared, and ADS-B sensors is presented that yields the ability to detect
obstacles and track them during a flight. The detection of aviation obstacle based on low altitude data
from a dense 3D point cloud is presented in [17].

With the aim to develop a real-world applicable method to generate an optimal path towards a
runway without penetrating any prohibited areas regardless of their cause and virtual or physical nature,
this work intends to incorporate the results of recent research in both the field of obstacle classification
and model predictive trajectory generation and develop a system that can safely guide unmanned fixed-
wing aerial vehicles to the desired landing area.

After introducing the aircraft model that is used for the control design, it is explained, how possible
collision objects are identified and clustered. This information is fed into a path planning algorithm,
which is subsequently explained and provides an optimal trajectory by means of Dubins paths and non-
linear model predictive control. In the last section, a simulation campaign is presented that validates the
discussed functionality.

2 Aircraft Dynamics
This section presents the aircraft model and derivation of the equations that represent the basis for

the trajectory optimization and the derivation of suitable path constraints. The aircraft model that is used
in the remainder of this work consists of kinematic and dynamic models for the translational motion
only. The translational kinematics determine the motion of a point mass in three-dimensional space and
describe its dependency on the groundspeed Vk, the flight path angle γ , and the flight path azimuth χ:ẋ

ẏ
ż

=Vk

cos(χ)cos(γ)
sin(χ)cos(γ)
−sin(γ)

 (1)
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The dynamic translational motion assuming a flat, non-rotating Earth is derived from a mass point model
and described by the following system of equations [18]. It is modeled, how track speed Vk, flight path
angle γ and flight path azimuth χ evolve under the influence of the angle of attack α , the thrust command
δF and the roll angle Φ. The model deviates from the original derivation due to the assumption Φ≈ µ ,
because the roll angle can be determined more easily in practice.V̇k

γ̇

χ̇

=
1

mVk

 Vk (cos(α)T (δF)+Xa(α,Va)−mgsin(γ))
−cos(Φ)(Za(α,Va)− sin(α)T (δF))−mgcos(γ)

sin(Φ)
cos(γ) (−Za(α,Va)+ sin(α)T (δF))

 , (2)

where T (δF) represents the engine thrust. The rotational motion is neglected, since an attitude controller
is expected to provide tracking capabilities for a desired attitude.

3 Obstacle Classification and Spline Planning
This work does not consider the sensor-based detection of obstacles. It is assumed, that a system

based on camera, distance measurement, or infrared sensor data is able to provide information about sur-
rounding obstacles via point cloud data, as described for example in [19]. Since the number of obstacles
is not limited and there is no requirement for an already existing segmentation of individual elements, it
is necessary to apply a Euclidean clustering mechanism in order to separate individual objects. This con-
cept groups together all measurement points that are bounded in a neighborhood with a predetermined
maximum distance from each other. The tree search for the nearest next point is performed as described
in [20].

The clustering yields separate groups in the point cloud that are each approximated by ellipsoid
shapes. This reduces the computational effort to consider the information in terms of obstacle avoid-
ance and evasive maneuver planning significantly. The general mathematical description of a three-
dimensional ellipsoid in its quadratic form denotes

aex2 +bey2 + cez2 +dexy+ eexz+ feyz+gex+hey+ iez+ je = 0. (3)

According to [21], the parameters ae− je are determined using a least squares method that minimizes the
residual sum of the squared offsets of each point from the fitted ellipsoid. The obstacle avoidance concept
is primarily based on the minimum distance to the nearest obstacle. This calculation is computationally
expensive using ellipsoid shapes. To increase the computational performance, it is therefore beneficial
to transform the obtained objects by disassembling the ellipsoids into spheres, that cover approximately
the same area, as shown in Fig. 2 exemplary in two dimensions.

The detected obstacles that are now available in the form of parameterized spheres are used to
generate initial trajectories for the path planning and guidance. This is shown in the following section.

4 Nonlinear Model Predictive Guidance
The approach phase during landing is characterized by the requirement on the aircraft to maneuver

agile and to be able to follow a fairly dynamic approach pattern with potential turns shortly before the
runway. This requirement is satisfied with a guidance algorithm based on Nonlinear Model Predictive
Control (NMPC) providing an optimal trajectory until the flare phase close to the runway.
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(a) Ellipse with low eccentricity (b) Ellipse with high eccentricity

Fig. 2 Transformation of elliptic into circular obstacles

4.1 Initial Trajectory using Dubins paths
When an automated landing procedure is triggered, an initial trajectory to the beginning of a prede-

fined runway considering all the known and classified obstacles is planned based on two Dubins paths
that are responsible for the vertical and horizontal plane respectively. This technique promises low com-
putation cost due to the few parameters necessary to define such a trajectory. A detailed presentation of
this method can be seen in [22].

There are several path constraints that confine the possible Dubins paths: These include the mini-

mum turn radius rmin =
V 2

k, f cos(γ(Φmax))

g tan(Φmax)
as a dependency of the maximum admissible roll angle Φmax and

the desired ground speed at the end Vk, f as well as a maximum possible load factor−az
g ≤ nz,max.

After the generation of an optimal Dubins path and its discretization into N equidistant waypoints
along the trajectory, the obstacle avoidance algorithm modifies this path to consider the additional re-
strictions to a suitable path: The function disti, j :R4×R4→R defines the distance of the vehicle position

xi =
(

xi yi zi

)>
on the Dubins path at the discrete time ti under consideration of the size of the UAV

with rUAV to an obstacle parameterized by x j =
(

x0, j y0, j z0, j

)>
and radius r0, j with j ∈ J denoting

one member of the set of identified obstacles:

dist :
(
(xi,rUAV),(x0, j,r0, j)

)
→
√
(xi− x0, j)2 +(yi− y0, j)2 +(zi− z0, j)2− (r0, j + rUAV) (4)

An obstacle on collision course is identified with the minimization problem

j? = argmin
i∈{1,...,N}, j∈J

dist




xi

yi

zi

rUAV

 ,


x0, j

y0, j

z0, j

r0, j


 , (5)

5Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



where the distance function yields a negative result in case of an imminent collision:

dist




xi

yi

zi

rUAV

 ,


x0, j?

y0, j?

z0, j?

r0, j?


< 0 (6)

All discretized waypoints on the trajectory that meet the criterion in Eq. (6) are relocated in the following
way: While the waypoint heights are maintained, the alternative route should follow a circle in the

horizontal plane with radius ra = r0, j? + rUAV and center
(

xi yi

)>
. At the same time, the waypoints

should be moved only in the direction perpendicular to the tangent of the trajectory at the point
(

xi yi

)>
.

These requirements compose the following system of equations with the unknown alternative waypoint

xa =
(

xa ya

)>
: 〈(

xi− xi−1

yi− yi−1

)
,

(
xa− xi

ya− yi

)〉
= 0 (7)

(xa− x0, j?)
2 +(ya− y0, j?)

2 +(za− z0, j?)
2− r2

a = 0 (8)

The two solutions of this system of equations represent the alternative routes on the left and right hand
side of the collision obstacle, respectively. Mathematically, the shorter option for each waypoint xi can
be identified using

qi = sign
(
(xi− xi−1)(y0, j?− yi)− (yi− yi−1)(x0, j?− xi)

)
. (9)

To guarantee that all waypoints that are modified to avoid the collision with obstacle j? follow the same
detour direction, Eq. (9) is extended to a recursive form:

qi = sign
(
sign

(
(xi− xi−1)(y0, j?− yi)− (yi− yi−1)(x0, j?− xi)

)
+2qi−1

)
with q1 = 0 (10)

In Fig. 3, an initial trajectory with obstacle avoidance is shown. The resulting discretized trajectory is
converted into segments of cubic splines using the concept in [23].
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(a) Obstacle avoidance in 2D
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(b) Obstacle avoidance in 3D

Fig. 3 Cubic spline with circular obstacle avoidance
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4.2 NMPC Optimization
Using the generated cubic spline trajectory as an initial estimate, the calculation of the optimal

trajectory considering path constraints and boundary conditions represents an optimum control problem
subject to the dynamic model. Aligned to the approach in [13], we introduce the following pseudo
variables: V̇k

γ̇

χ̇

=

ωv

ωγ

ωχ

 (11)

Combined with Eq. (1), this system of equations represents the dynamic model X(t), which serves to-
gether with the input signal to be optimized Ū(·; t) at time step t as the foundation for the optimal control
problem that is solved by minimizing the objective functional

J(X(t),Ū(·; t)) =
∫ t+T

t

(
p0

√
ẋ(τ)2 + ẏ(τ)2 + ż(τ)2︸ ︷︷ ︸

L1

+
1
T

(
p1(τ

2 +(T − τ)2)ωγ(T )︸ ︷︷ ︸
L2

+ p2ωv(τ)
2 + p3ωγ(τ)

2 + p4ωχ(τ)
2︸ ︷︷ ︸

L3

+ p5
(
Vk(τ)−Vf

)2︸ ︷︷ ︸
L4

))
dτ (12)

This functional contains four Lagrange-type criteria that influence the optimality of the calculated path.
These are the trajectory length (L1) and the amount of flight path angle oscillation at the beginning and
end of the flight (L2). The latter part has a positive effect on the overall stability of the total system.
Furthermore, the necessary actuating effort (L3) and the deviation from the desired final speed (L4) are
considered. The influence of the individual parts varies and is specified by the weight factors p{0,...,5}.
For the simulations shown in the latter sections of this work, the following values are used:

p0 = p2 = p3 = 100; p1 = 1000; p4 = p5 = 10

The boundary conditions of the optimum control problem regard the desired aircraft states at the start
(t = t0) and end (t = t f ) point of the trajectory. The aircraft state at the end is characterized by a desired
flight path angle γ f and azimuth χ f at this point and an end position that can be derived from the start
point of the runway assuming a linear path segment with length lfa during the final approach:

x f = xl + lfa cos(χ f ) y f = yl + lfa sin(χ f ) z f = zl + lfa sin(γ f ) (13)

The path constraints with respect to obstacle avoidance are denoted

0≤ dist




xi

yi

zi

rUAV

 ,


x0, j?

y0, j?

z0, j?

r0, j?


 . (14)

It is also useful to enforce a smooth actuator command without discontinuities to decrease actuator
oscillations. This is ensured with the following constraints:

δωv,min ≤ ωv,i−ωv,i-1 ≤ δωv,max (15)
δωγ,min ≤ ωγ,i−ωγ,i−1 ≤ δωγ,max (16)
δωχ,min ≤ ωχ,i−ωχ,i−1 ≤ δωχ,max (17)
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Constraints for the pseudo control variables can be derived from Eq. (2): From the lift-to-weight equi-
librium, one can approximate the minimum speed. The pseudo controls ωγ and ωχ are limited due to
the mechanically constrained deflection of the actuators, the limit of the producible lift and the permitted
maximum roll angle Φmax. The auxiliary conditions on the optimization problem are listed in Table 1.

Parameter Lower limit Upper limit

z z f -

γ γmin γmax

χ χmin χmax

V
√

2mg
ρSCL

Vmax

ωv
Tmin− ρ

2 V 2
k,maxSCD

m −gsin(γmax)
Tmax− ρ

2 V 2
k,minSCD

m −gsin(γmin)

ωγ

αmax
ρ

2 V 2
k,maxSCL+Tmax−mgcos(γmin)

mVk,max

αmax
ρ

2 V 2
k,maxSCL+Tmin−mgcos(γmin)

mVk,max

ωχ

tan(Φmin)(Vk,minωγ,min+gcos(γmin))

Vk,min cos(γmin)

tan(Φmax)(Vk,minωγ,min+gcos(γmin))

Vk,min cos(γmin)

Table 1 Auxiliary conditions

The optimization problem described with the nonlinear dynamics in Eqs. (1, 11) and the objective
functional and conditions described in this section are solved using the IPOPT solver [24] using a classic
Runge–Kutta method (4th order) for integration. Fig. 4 depicts two different landing approaches to the
runway drawn as a black line. The dashed straight line represents the straight approach segment before
the touchdown with length lfa and the path angles γ f and χ f and the red dots illustrate the discretization
of the trajectory into N waypoints xi.

Fig. 4 Trajectories for landing approach

4.3 Feed Forward
The result of the NMPC algorithm are values for all states and pseudo control variables at each

discrete time step over a finite time horizon. Since the desired output is a trajectory and hence the
progression of merely the position states over this time period, the result for other optimization variables
could be disregarded. They are not used as direct control commands for the inner control loops, because
the sampling rate of attitude and rate control is higher than the necessary requirements for the bandwidth
of the model predictive guidance which is limited by computational resources. It is therefore suitable to

8Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



use the next discretized waypoint along the optimized trajectory as the reference position for a waypoint
tracking algorithm that provides the inner loops with command values for attitude and thrust until an
update by the NMPC algorithm is available.

The consideration of the translational dynamics in Eq. (2) is primarily important for the derivation
of the constraints of the pseudo variables and ensures that the resulting trajectory does not require the
aircraft to exceed its flight envelope boundaries. However, from Eqs. (2) and (11), one can derive control
commands for aerodynamic angles and the thrust command:

Tffw = m(ωv +gsin(γ))+
ρ

2
V 2

a SCD (18)

Φffw = arctan(
Vk cos(γ)ωχ

Vkωγ +gcos(γ)
) (19)

αffw = m
Vkωγ +gcos(γ)

cos(Φ)ρ

2V 2
a SCL +FUAV

(20)

The inverted translational dynamics are therefore considered to generate feedforward control terms that
improve the tracking performance. The feedforward term αffw shows a performance improvement espe-
cially during descents and is therefore used only with flight path angles γ < 0.

Because the waypoint tracking controller calculates straight paths between the NMPC waypoints
and hence splits the previously smooth trajectory into a sequence of linear segments, the use of the
mentioned feedforward terms is only beneficial, if the length of these segments does not exceed a critical
threshold after which the feedforward counteracts the tracking control law output. If this requirement is
respected, an improvement in tracking performance as illustrated in Fig. 5 can be observed qualitatively
and quantitatively.
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0 20 40 60

0

20

40

(b) Position error during landing
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Fig. 5 Effect of roll angle feed forward
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5 Monte Carlo Simulations
The suggested MPC guidance algorithm for landing is tested in an extensive Monte-Carlo simulation

campaign that is presented in this section. The aircraft state is varied for the stochastic analysis in the
range that is outlined in Table 2.

Parameter Unit Lower limit Upper limit
x m -1500 1000
y m -500 1500
AGL m 50 250
Va

m
s 20 35

γ deg -8 8
χ deg -180 180

Table 2 Monte Carlo parameter range

All parameters are drawn from a uniform distribution, assuming that there is no preference state
in which an automatic landing procedure is triggered. The probability density for each parameter is
therefore constant across its value range. Fig. 6a shows the result of 250 simulations with randomized
starting conditions.

(a) Landing duration distribution

400

600

800

0

500500
01000

-500

(b) Descent from high altitude

Fig. 6 Monte Carlo simulation results

The optimization algorithm converges against an optimal trajectory for all performed simulations
without violating any auxiliary conditions or path constraints. Depending on the initial state, the duration
of the landing maneuvers ranged between ∆t = 20s and ∆t = 170s.

Special attention should be paid to landings triggered at a significant height above ground. As is
evident from Fig. 6b, due to the limited descent flight path angle it is often not possible to generate a
trajectory that satisfies the objective of the shortest path, but instead considers other parts of the objective
functional J to prolong the descent artificially with an additional turn in order to allow enough time to
lose height.

6 Conclusion
This work shows the successful implementation of a landing guidance concept based on nonlinear

model predictive control. The benefits of the presented concept in terms of flexibility of executable ap-
proach patterns and obstacle avoidance capabilities are demonstrated. A future work may extend the
contents of this paper by alleviating the restriction on ground-based, non-moving obstacles and improv-
ing the functionality towards avoiding other moving vehicles.
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