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ABSTRACT

Model-scale rockets differ from their real-size counterparts in important ways. For one, the
lack of significant thrust throttling limits retro propulsion landing capabilities. This paper studies
its feasibility by employing model-scale non-throttleable solid-propellant engines. Our landing
strategy comprises an aerodynamic passive descent followed by a thrust vector control touchdown,
and thus thrust is modulated not by magnitude but by direction. This strategy imposes additional
levels of under-actuation and nonlinearities that cannot be easily tackled with linear approaches.
We propose a Nonlinear Model Predictive Controller as a solution and test its performance and
robustness in simulation in different scenarios.
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1 Introduction
In the recent past, almost every component of a rocket sent into orbit was designed to be used just

once. The first rocket stage, spanning between 70 to 80 percent of the total cost, was destroyed in the
atmosphere during reentry. The reusable rocket paradigm [1, 2] aims to reduce the number of resources
lost. While still a relatively new technology, reusable rockets have multiple benefits, including time,
capital, and material saving, which have turned space exploration into a more accessible and sustainable
endeavor.

Landing and launching from Earth are particularly challenging due to the high levels of aerodynamic
and thermal stress induced by its dense atmosphere on the vehicle’s structure, which is further worsened
by the existence of uncertain and time-varying wind perturbations. These effects become more adverse
for the next generation of launchers, as they present lighter and more flexible structures, leading to
stronger control-structure couplings.

As a rocket’s size and weight decrease, its architectural complexity issues shift: scale models are
assembled with single-use engines, cardboard bodies, and lightweight molded clay nozzles. Their flight
domain differs too: altitude and speed values are lower with different aerodynamics. Thus, scale models
don’t suffer as much from aerothermal stresses. However, low inertia makes model-scale rockets highly
unstable against applied forces and torques. Additionally, the reduced size of the vehicle restrains the
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available computing power and allows only for solid-propellant — thus non-throttleable — motors.
Accordingly, adapted versions of the control algorithms are necessary to stabilize the rocket in real-time.

This work focuses on model-scale rocketry and we carry out this project in collaboration with the
Space Section student club of ISAE-SUPAERO with the ultimate goal of safely recovering flight data
recorded onboard a model-scale rocket. We believe that model-scale vehicles are good candidates for
benchmarking design techniques and, additionally, provide challenging control problems (we difer them
from reduced-size demonstrators [3] that are designed for exploring specific hypotheses). As for their
recovery, parachutes are commonplace but novel techniques are still being investigated [4]. At the same
time, no program successfully achieved touchdown using solid-propellant retro propulsion to the best of
the authors’ knowledge. The main reason is the solid propellant motor often cuts out too early or too late
while tracking a fixed open-loop trajectory. A compelling control problem is then evident: is it possible
to robustly land a non-throttleable rocket?

To the best of the authors’ knowledge, there is no previous scientific work on this particular question.
This work explores the existence problem by providing a two-phase guidance strategy for autonomous
landing similar to its throttleable counterpart in [5]. The first consists of an initial aerodynamic control
phase defined in Sec. 2, leading the rocket from the apogee of the trajectory to a predefined altitude
and speed where engine ignition takes place. This comprises aerodynamics studies similar to [6, 7].
Although we use passive control, previous work [8] uses Nonlinear Model Predictive Control (NMPC)
to optimize and track trajectories.

Fig. 1 Rocket and fins CAD model.

The second phase is defined in Sec. 3, where the
rocket is safely guided from the ignition point to the
ground using NMPC. NMPC is commonplace in au-
tonomous rocket landing research and its high compu-
tational cost is its main drawback. Therefore, a myr-
iad of papers [9–12] investigate numerical tricks involv-
ing convexication of the problem or relaxation of con-
straints. Additionally, Ref. [13] studies NMPC in the
context of an electric throttleable model-scale reusable
rocket with successful experimental flights. Finally,
Sec. 4 concludes with remarks for future work.

2 Aerodynamic Passive Descent Phase
We propose an alternative aerodynamic actuator to

the commonplace grid fins, consisting of four quarters
of a cylinder, deployable as shown in Fig. 1. By independently changing their opening angles, this system
enables roll, pitch, and yaw control — similarly to grid fins — and stabilizes the rocket passively during
its descent. Additionally, it adds velocity control while descending. This control over speed is vital for
transitioning to the second landing phase using a model-scale solid-propellant engine with limited thrust.

2.1 System Description
The fins used for this study are designed to maximize drag at full deployment and minimize it when

retracted. Therefore, they have little impact on the lift-off dynamics when closed and act as part of
the rocket’s external skin. At the apogee, the fins open at slight angles to create just enough drag to
reduce acceleration at high altitudes while controlling its orientation and direction. By applying slightly
different angles to the four fins, the symmetry of the aerodynamic forces on the rocket is broken, thus
inducing controllable moments in roll, pitch, and yaw. As the rocket descends and reaches its terminal
velocity, the fins will further open to slow it down as adaptable airbrakes.
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Fig. 2 Body and fin frames.

The fins being radially asymmet-
rical, as shown in Fig. 1, they indi-
vidually create orthoradial lift. Due to
the fins’ chosen symmetries around the
rocket’s central axis, this lift enables a
decoupled control of roll, pitch, yaw,
and velocity by coordinating the angles
of the four fins.

The model-scale rocket considered
for the experiment measures 70 cm long
with a fuselage diameter of 7.4 cm. The
total mass is 3 kg with a center of iner-
tia at 25% of the rocket’s length, as the
engine represents the large majority of the total mass. The fins measure 10 cm long and are 5.32 cm
wide and are attached at 9/10th of the rocket’s height, each fin being a quarter of a cylinder of 7.6 cm
diameter. The fins’ links are rotated at an angle of 15◦ around the cylinder’s axis with respect to the
center of the fin.

As shown in Fig. 2, a fin frame is centered on the middle of each fin and with a rotation of 30◦

around the body frame Xb axis. This angle of 30◦ enables the fins to close into a full cylinder around
the fuselage while having the individual asymmetry in the XfYf plane needed to induce lift along Zf. The
angle between the fin’s Yf axis and the fuselage of the rocket is hereafter referred to as κ , with κi holding
the angle of the i-th fin, such that

κ = π −XXXb ·YYY f (1)

2.2 Aerodynamic Coefficients Identification
A 3D fins model was used to run computer fluid dynamics (CFD) simulations on StarCCM+. We

set the simulation to assume air in a steady segregated flow, at constant density, and under k-omega
turbulence. The meshing is rectangular with a base size of 5 mm and a re-meshing around the fin of
1.25 mm (25% of base size). Under these conditions, the simulation results yielded a terminal velocity
with fully closed fins at around 80 ms−1.

(a) XZ plane at κ = 90° (b) XY plane at κ = 90°

(c) XZ plane at κ = 70° (d) XY plane at κ = 70°

Fig. 3 Fin airflow for two planes and for two κ angle values.

Figure 3 shows the velocity pro-
files around the fin in the XfZf and XfYf
planes for a fully deployed fin (Figs. 3a
and 3b) and at an angle of 70◦ (Figs 3c
and 3d). The asymmetric vortexes be-
hind the fin create lift along the Zf-axis,
as needed, and along the Yf-axis when
the κ angle is less than 90◦. The lift
induced along the Yf-axis is not consid-
ered for the aerodynamic model defined
below, as the ∆κ angles in-between the
fin angles are small compared to the κ

angles.

The simulations run for several κ

angles returned the evolution of the
drag and lift coefficients Cxf and Czf for
a fin at 100 ms−1 as follows
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• At κ = π/2, {
Cxf = 1.55
Czf = 1.28

(2)

• For κ < π/2, {
Cxf = 1.55sinκ

Czf = 1.28sinκ
(3)

To simplify the dynamics model, we only take into account the drag and lift coefficients of each fin
and the drag coefficient of the bottom section of the fuselage. All moments’ coefficients are neglected.
Therefore, the forces applied to the rocket are its weight and drag only. Additionally, the resultant
moments are the roll, pitch, and yaw torques induced by the unequal lever arms and drag forces applied
on each fin when the κi angles are unequal.

2.3 Dynamics Model for Aerodynamic Passive Control
Employing the Euler angles formulation for attitude, the dynamics simulator was implemented on

Simulink. The body frame (Xb,Yb,Zb) is oriented such that Xb aligns with the symmetry axis of the
rocket and is directed towards the nose cone. The system actuators are defined as

u = (κ1,κ2,κ3,κ4) (4)

where κi is the angle between the fuselage and the Yf axis of the i-th fin. The resulting system state is
defined as

x = (Xe,Ye,Ze,φ ,θ ,ψ, Ẋb,Ẏb, Żb, φ̇ , θ̇ , ψ̇) (5)

where (Xe,Ye,Ze) is the position of the center of mass in the Earth frame, (φ ,θ ,ψ) are, respectively, roll,
pitch and yaw angles, and (Ẋb,Ẏb, Żb) are the linear velocity components described in the body frame.

The dynamical equations of motion can be described in the Earth frame as a function of the drag
forces applied on the fins:

maaa = mggg+FFFd (6)

where FFFd is the drag applied on the four fins and the fuselage in the Earth frame. Defining the Direction
Cosine Matrix (DCM) between the Earth frame and the body frame in the φ/θ/ψ order, Eq. 6 can be
rewritten as

maaa = mggg+DCM−1
( 4

∑
i=1

FFFdi +FFFdb

)
(7)

where ggg is the gravitational acceleration, aaa = (Ẍe,Ÿe, Z̈e) is the rocket’s acceleration in the Earth frame,
Fdi is the drag on the i-th fin and Fdb is the drag on the fuselage. The force Fdb is modeled as

Fdb =
1
2

ρSbV 2
airCxb (8)

where ρ is the air density at the rocket’s altitude (calculated according to the 1976 COESA Atmosphere
Model), Sb is the reference area taken as the bottom section of the rocket, and Vair is the airspeed. The
coefficient Cxb is the drag coefficient for a circular plane section of a cylinder, estimated to Cxb = 1 for
the values of the Reynolds number in the model-scale flight conditions.

For writing the expression of the drag force Fdi — which depends on the κ angle of the fin but also
on the angle of attack α and the sideslip angle β — fin-linked angles of attack and sideslip angles are
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Fig. 4 Rocket orientation angles in Earth frame and angle of attack α and sideslip angle β .

defined as (
α1

β1

)
=

(
cosπ/6 −sinπ/6
sinπ/6 cosπ/6

)(
α

β

)
(9)(

α2

β2

)
=

(
cosπ/6 sinπ/6
−sinπ/6 cosπ/6

)(
α

β

)
(10)

(
α3

β3

)
=

(
−cosπ/6 sinπ/6
−sinπ/6 −cosπ/6

)(
α

β

)
(11)(

α4

β4

)
=

(
−cosπ/6 −sinπ/6

sinπ/6 −cosπ/6

)(
α

β

)
(12)

where the π/6 angle is justified by Fig. 2.

The drag force Fdi is then expressed in the fin frame as

Fdi =
1
2

ρSbV 2
airCxf sinκi cosαi cosβi (13)

Finally, as shown by Eq. 13, the κi angles create differences in forces that yield pitch and yaw mo-
ments that tilt the resultant drag, creating horizontal force components that translate the rocket. Similarly,
the lift force applied on each fin can be expressed in the fin frame as

Fli =
1
2

ρSbV 2
airCzf sinκi cosαi cosβi (14)

As previously mentioned, due to the orientation of the four lift forces, the resultant lift is negligible
compared to the total drag. Only roll moments induced by lift forces are then considered. The point of
application of those forces are taken as the center of the fins, which leads to

Mφ =
4

∑
i=1

1
2
(D+Lf sinκi)Fli (15)
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Mθ =
1
2
[(D+Lf sinκ1)− (D+Lf sinκ2)− (D+Lf sinκ3)+(D+Lf sinκ4)]sinπ/6Fdi (16)

and

Mψ =
1
2
[(D+Lf sinκ1)+(D+Lf sinκ2)− (D+Lf sinκ3)− (D+Lf sinκ4)]cosπ/6Fdi (17)

Simulation of the above equations of motion for our rocket configuration in free fall yields the results
in Fig. 5, in which the desirable passive stability and low terminal speed are achieved.

Fig. 5 Simulation of the trajectory (in m) and earth-relative speed (in ms−1) with fully deployed fins and
initial 2◦ pitch and initial 1◦ yaw.

3 Second Phase: Thrust Vector Control Landing
The second phase brings the rocket to zero touchdown speed using only Thrust Vectoring Control

(TVC). Naturally, aerodynamic actuators have low aerodynamic efficiency in the final low-speed ap-
proach. Thus, the purpose of this section is to study the existence of a feasible descent trajectory that
robustly drives the rocket to a state within predefined landing bounds using TVC. Finally, this section
studies the controller’s performance and robustness in non-ideal scenarios.

The landing trajectory is implemented with Nonlinear Model Predictive Control (NMPC). NMPC
is an optimal approach to simultaneously solving trajectory generation and control given state and ac-
tuator constraints. NMPC is directly applicable to non-linear plants and mitigates some higher-order
controllability issues in linearized systems.

A significant challenge faced in this phase is the lack of a throttleable engine due to solid propellant
usage. Accelerations are obtained instead by thrust direction modulation. NMPC should deflect thrust
directions to achieve zero altitudes with low speed so that the landing gear can dampen the residual
vertical speed and leave the rocket vertically on the ground.
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3.1 Dynamics Model of the TVC Rocket
Due to the symmetry of the problem, a longitudinal three degrees-of-freedom rigid body model

reduces the NMPC optimization search space. Naturally, this assumes that the preceding aerodynamic
phase of the landing procedure yielded zero terminal angular motion. The actuating forces on the ve-
hicle are then the engine thrust, the drag force, and the weight (the pressure and gravity centers are
approximated to the same position in the body axes).

The Phase 2 model assumes constant gravity and flat Earth. The resulting equations of motion are

u̇ = T cosδ +
1
2

ρSV 2Cxb −gsinθ −qw (18)

ẇ =−T sinδ +gcosθ +qu (19)

q̇ =
−T sinδ (XCG −XTHR)

Iy
(20)

θ̇ = q (21)

and (
ẋ
ż

)
=

(
cosθ −sinθ

sinθ cosθ

)(
u
w

)
(22)

where x and z denote horizontal and vertical positions of the vehicle. The state θ is the angle of the
rocket in the longitudinal plane of motion. The states u,v and q represent the linear velocities in the X
and Z body axes and the angular rate, respectively. The input variable δ denotes the gimbal angle with
respect to the rocket (positive for a pitch-down maneuver).

Table 1 Characteristic parameters of the vehicle.

Mass [kg] Inertia [kgm2] Length [m] Surface [m2] Diameter [mm] XCG [m] XTHR [m]
3 0.12 0.70 0.0043 74 0.17 -0.35

Finally, T denotes the thrust. After searching off-the-shelf model rocketry engines for constant and
predictable burn profiles, the optimum engine chosen for this experiment provides 30 Newtons of thrust
(Class E) over 5 seconds. Table 1 lists the remainder of relevant rocket physical parameters.

3.2 Controller Design

The finite-horizon optimal control input δ̂ (t0,xxx0) for the state xxx0 at instant t0 is

δ̂ (t0,xxx0) = min
δ (·)

∫ t0+T

t0
J(xxx(τ),δ (τ))dτ (23)

constrained to the nonlinear dynamics of the system ẋxx = f (xxx,δ ), as derived before, and respecting

xxx(t0) = xxx0 xxx(T ) = xxxtgt (24)

aaa(t0)≤ ψ

(
xxx(t0),δ (t0)

)
≤ bbb(t0) (25)

and
ccc ≤ φ

(
xxx(t),δ (t)

)
≤ ddd (26)
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where
xxx(t) =

(
x(t) z(t) θ(t) u(t) v(t) θ̇(t)

)T
(27)

The vector φ is a trajectory constraint which is enforced over the entire time horizon while ψ is an
instantaneous constraint for a specific time instant. At first, to check trajectory feasibility, a initial state
is specified as xxx0 = (0,−15,π/2,−5,0,0), which is a potential final instant of Phase 1. We consider a
landing successful if it fulfills the inequalities in Table 2.

Table 2 Successful landing requirements.

−20 m ≤ xtgt ≤ 20 m 0 m ≤ ztgt ≤ 0.2 m 85◦ ≤ θtgt ≤ 95◦

−0.4 m/s ≤ utgt ≤ 0.4 m/s −0.1 m/s ≤ wtgt ≤ 0.1 m/s −2 deg/s ≤ qtgt ≤ 2 deg/s

Therefore the vector ψ contains these inequalities, as well as the initial state restrictions. The input
is constrained between ±20 degrees, which is our maximum mechanical thrust vector mount deflection.
Since no state constraints are being set along the trajectory, the vector φ only contains this actuator angle
restriction. Finally, the cost function is

J(xxx,δ ) =
1
2

x̂xxT Qx̂xx+
1
2

δ
T Pδ (28)

with x̂xx = xxx− xxxtgt = (x,z,θ −π/2,u,w,q) and xxxtgt = (0,0,π/2,0,0,0) the target state at touchdown. The
weighting matrices are Q = diag(0.5,60,150,50,70,90) and P = 1, and were chosen by trial-and-error.

3.3 Simulation Results
The results are divided into two sections. Firstly, we numerically confirm the existence of a solu-

tion for the problem. Finally, the second experiment examines the controller’s performance and solver
convergence given varying initial state conditions.

3.3.1 Reference Trajectory Generation
To compute the optimal landing trajectory from the initial state xxx0 = (0,15,π/2,−5,0,0), MATLAB

and its Model Predictive Control Toolbox are used. The sampling time is set to 100 ms since it is the
commonplace model-scale servomotor command update frequency. Additionally, given the target has
to be reached in 5 seconds (i.e., nominal engine burning time), the prediction horizon is set to 50. The
control horizon is set to the prediction horizon as our current goal is to prove the existence of a solution,
and we defer real-time feasibility studies to future work.

In Fig. 6, it can be observed the trajectory provided by the controller in the pitch plane for three dis-
tinct values of the input signal weight. Additionally, the optimal states and input for P = 1 are displayed
during the 5 seconds that lasts the maneuver. Note that the first prediction is computed at t = 0s, mea-
suring the initial state x0, which explains why the vertical speed increases until the first optimal control
action is applied at t = 0.1s. In Table 3, the trajectories provided are well within the bounds to determine
a successful landing: little deviation angle from 90 degrees pitch and a low vertical speed that can be
dampened safely by the vehicle’s landing apparatus.

3.3.2 Landing from Non-Nominal Phase-Transition States
This section studies the robustness of the approach in view of distinct initial phase transition con-

ditions. Feasibility is checked with altitude fixed to 15 m and vertical speed to 5 ms−1 while w, θ and
q vary from their ideal states at the ignition point. Their testing ranges are θ ∈ {90,60,120} in deg,
w ∈ {0,−1,1} in ms−1 and q ∈ {0,−5,5} in degs−1.
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Fig. 6 Descent trajectories for P=0.5, P=1 and P=5 in the pitch plane (left) and optimal state/input signals
for P=1 during the 5-second landing maneuver (right).

Table 3 Final states reached for different input signal weights P.

xfinal [m] zfinal [m] θfinal [deg] ufinal [m/s] wfinal [m/s] qfinal [deg/s] J(xxx,δ )
P=0.5 −0.096 3.36 10−9 86.76 0.12 −0.086 0.80 1.54
P=1 −0.27 3.36 10−9 87.28 0.11 0.040 0.80 2.18
P=2 −0.29 3.36 10−9 86.71 −0.012 −0.10 0.80 4.57

The results in Figs. 7, 8 and 9 show the impact of drifting away from the nominal initial state x0
when the engine is ignited. Feasible solutions exist for some of the test points that have been proposed.
In tables 4, 5 and 6, it can be observed that the worst effect is induced as the vehicle presents a non-zero
initial angular rate, setting the final vertical speed outside the acceptable range: stabilizing the rotating
motion and fulfilling the target velocity constraints in such little time precludes controller convergence.
With that said, such study provides maximum values so that the rocket can correct itself and still land
safely. These limits naturally define the accuracy required in the first phase, and a second rocket design
iteration is scheduled as future work based on the preliminary data shown herein.

4 Conclusion
An approach to implement autonomous landing of model-scale rockets is proposed and explored.

The novel combination of Aerodynamic Passive Control for high altitudes and TVC using Model Pre-
dictive Control for low altitudes seems to properly guide the vehicle from the apogee to the ground with
zero speed touchdown. NMPC transparently handles the new model-scale challenges regarding engine
non-throttleability and strict time-to-touchdown requirements.
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Table 4 Final states reached for varying initial pitch angle values θ .

xfinal [m] zfinal [m] θfinal [deg] ufinal [m/s] wfinal [m/s] qfinal [deg/s]
θ0 = 60◦ −8.02 7.41 10−10 90.47 −0.29 0.011 1.03
θ0 = 90◦ −0.27 3.36 10−9 87.28 0.11 0.040 0.80

θ0 = 120◦ 0.41 3.76−9 89.65 0.019 0.0020 −0.039

Fig. 7 Optimal descent trajectories for varying initial values of θ .

A second design iteration is scheduled as future work to accommodate the TVC initial state require-
ments with the resulting Aerodynamic Passive Control terminal speeds.
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