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ABSTRACT

The paper addresses the time-varying directional stabilization problem for a small, fixed-wing
unmanned aircraft with using nonlinear feedback control of the thrust and the three control mo-
ments about the roll, pitch, and yaw axes. The control law makes use of the passivity property
gained by modeling the aircraft as a port-Hamiltonian system. The static state feedback control
law is designed following an energy-shaping approach to leverage the open-loop system’s port-
Hamiltonian structure in order to construct a control Lyapunov function. The proof of stability
requires only basic assumptions about the aerodynamic forces and moments, rather than explicit
formulas, and it ensures asymptotic stability of the desired flight condition within a sizeable region
of attraction. The directional stabilization algorithm is then extended by including a line-of-sight
guidance law and varying the direction as a function of position relative to a desired path, rather
than as a function of time. The resulting control law and the associated proof of stability follow
similarly to that of the time-varying directional stabilization problem.

1 Introduction
Recent advancements in fixed-wing unmanned aircraft systems (UAS) technology have resulted in

more agile aircraft, such as the Kratos XQ-58 Valkyrie and Boeing Airpower Teaming System, which are
capable of aggressive maneuvering. Such aircraft require advanced control laws to take full advantage
of their agility. Conventional approaches to flight control of fixed-wing aircraft rely on linearizing the
vehicle dynamics about an equilibrium motion, such as wings-level flight at constant speed. The utility
of control schemes, such as linear-quadratic or H∞ control, that rely on a small perturbation model is
limited to a neighborhood of the nominal flight condition. One can develop a family of controllers that
are parameterized by desired speed, climb angle, turn rate, etc., but the performance and stability of the
resulting closed-loop system will generally depend on the rate of parameter variation.

To obtain effective closed-loop performance with stability guarantees over a larger operating en-
velope, one may instead consider nonlinear control design methods such as dynamic inversion [1–3]
or adaptive control [4–6]. Dynamic inversion, or feedback linearization, requires a well-characterized
model of the nonlinear dynamics. Such a model may be impractical to obtain over the full flight envelope,
particularly for an aircraft whose configuration and inertial parameters vary substantially between flights.
Model reference adaptive control and adaptive backstepping can accommodate a variety of uncertainties,
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including uncertain nonlinearities, assuming the system satisfies certain structural conditions. The re-
sulting dynamic state feedback controllers are often computationally sophisticated, however, which can
limit their utility for low-cost platforms such as small unmanned aircraft.

The design proposed in this paper is based on modeling the aircraft as a port-Hamiltonian system
(PHS) [7], an extension of Hamiltonian systems in classical mechanics to systems with inputs, outputs,
and dissipation. PHS are characterized by an energy-like scalar function, which often is the total system
energy, along with a pair of matrix-valued functions that describe how this energy is distributed and
dissipated. Modeling the system as a PHS facilitates nonlinear, energy-based control design and allows
using established energy-shaping techniques for PHS [8], such as interconnection and damping assign-
ment, passivity-based control (IDA-PBC) [9]. Passivity-based control (PBC) has proven to be effective
in various applications such as the control of electric motors [10] and quadrotors [11–16].

Of the many mechanical system applications of PBC described in the current literature, perhaps
the closest to the proposed application of fixed-wing aircraft flight control is the use of PBC to control
unmanned underwater vehicles (UUVs). Woolsey and Techy [17] developed a cross-track control law
for a slender, underactuated UUV using potential energy shaping. Fahmi and Woolsey [18] adapted
this notion of potential energy shaping for directional stabilization of a fixed-wing aircraft. The closed-
loop performance exhibited undesirable excursions in the aerodynamic angles, however, particularly in
sideslip. In a different approach to energy shaping, Valentinis et al [19] developed a feedback controller
for a slender, underactuated UUV by shaping the target dynamics and suppressing the influence of un-
actuated degrees of freedom. In [20], Valentinis et al expanded the scope of control design to include
precision guidance along a helical trajectory. More recently, Valentinis and Woolsey [21] developed a
passivity-based controller for a non-neutrally buoyant, underactuated submarine in ascending motion.

With the exception of [21], the studies mentioned above ignore the force of gravity, which is bal-
anced by the hydrostatic force for a neutrally buoyant vehicle. While hydrodynamic forces such as lift
and drag certainly affect underwater vehicle motion, these forces can be considered perturbations to
the nominal state of motion in which the vehicle proceeds at constant speed with zero lift. The task
of the control system is to reject these and other perturbations. In contrast, fixed-wing aircraft rely on
aerodynamic lift to counter gravity in steady flight and to execute maneuvers. Fahmi and Woolsey [22]
focused on stabilizing the aircraft velocity by exploiting some remarkable properties of the aerodynamic
force when expressed in a port-Hamiltonian framework. The approach to control design was inspired by
the canonical transformation approach proposed by Fujimoto et al [23]. However, the resulting control
system’s rate of convergence to the desired motion, a prescribed inertial velocity, is too slow for ac-
ceptable cross-track control performance. This paper extends the work presented in [22] by addressing
time-varying directional stabilization. The resulting control design method then allows us to address the
cross-track control problem for piecewise linear path following.

2 Port-Hamiltonian Systems
The design presented in this paper extends the work presented in [22], which is based on the tra-

jectory control design described by Fujimoto et al [23], which in turn relies on a general theoretical
framework for under-actuated electro-mechanical systems. Similar to the IDA-PBC method described
by Ortega et al [9], this framework can be considered a generalization of IDA-PBC for time-varying
systems. A port-Hamiltonian system has the following form:
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ẋxx = [JJJ(xxx)−DDD(xxx)]
∂H

∂xxx

T

+ggg(xxx)uuu (1)

yyy = gggT(xxx)
∂H

∂xxx

T

(2)

where xxx(t) ∈ Rn is the state vector, the matrix JJJ is a skew-symmmetric interconnection matrix which
encapsulates the energy conserving interactions between the state variables, and DDD is a positive semi-
definite matrix which accounts for the energy dissipating interactions. (Note that the dissipation matrix in
earlier work was designated with the letter RRR. To distinguish between dissipation and rotation matrices,
though, we use the letter DDD for “dissipation” here instead.) The Hamiltonian H : Rn → R accounts for
the energy, physical or otherwise, that is stored within the system. The vectors uuu(t), yyy(t) ∈ Rm are the
system input and output vectors, respectively. They are conjugate in the sense that their inner product
represents the power applied to the system. The system input matrix ggg(xxx) also appears in the system
output, ensuring conjugacy of the input and output, as mentioned above. The port-Hamiltonian system
is passive [7] with the Hamiltonian as a storage function:

dH (xxx)
dt

= yyyTuuu− ∂H (xxx)
∂xxx

DDD(xxx)
∂H (xxx)

∂xxx

T

≤ yyyTuuu (3)

The goal of the work presented in this paper is to use the port-Hamiltonian system structure of a
flight dynamic model for a fixed-wing aircraft in order to construct a nonlinear, static, state feedback
control law that drives the aircraft to a desired state of motion: steady flight along a specified piecewise
linear path.

3 Vehicle Motion Model
The flight dynamic model described in this section is detailed in [22]. We consider a rigid fixed-

wing aircraft with three control moments in roll, pitch, and yaw and with a single control force that acts
along an axis fixed in the aircraft. Let an orthonormal triad pointing north, east, and down define an
“inertial enough” reference frame fixed at a point on the Earth’s surface. Also, define an orthonormal
triad centered at the aircraft center of mass with axes pointing toward the nose, along the right wing,
and out the belly of the aircraft and let this triad define a body-fixed reference frame. Let ωωω = [p, q, r]T

represent the angular velocity of the body frame with respect to the inertial frame, but expressed in the
body frame. The vector hhh = [h1, h2, h2]

T = IIIωωω denotes the body angular momentum, with III being the
matrix of moments of inertia. The translational velocity of the aircraft with respect to the inertial frame,
but expressed in the body frame, is represented by the vector vvv = [u, v, w]T and the corresponding
translational momentum is ppp = [p1, p2, p2]

T = mvvv where m is the aircraft mass. We also define the
scalars V = ∥vvv∥ (the airspeed) and P = ∥ppp∥ = mV . It is sometimes convenient to express the body
velocity components in spherical coordinate form (u, v, w)→ (V, β , α):

α = arctan4

(w
u

)
and β = arcsin

( v
V

)
(4)

where arctan4 denotes the 4-quadrant arctangent. We can use the aerodynamic angles, β and α , to define
a proper rotation matrix which maps vectors from the wind frame, where the aerodynamic forces are
defined, to the body frame [24]:

RBW(α,β ) = e−êee2αeêee3β (5)
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Here, eeei is the ith unit basis vector for R3 and the overhat symbol, ·̂, denotes the 3× 3 skew-symmetric
“cross-product equivalent matrix” which satisfies the relation âaabbb = aaa×bbb for all aaa, bbb ∈ R3.

The orientation of the aircraft with respect to the inertial frame can be expressed using a common
Euler angle parametrization for the rotation matrix that maps free vectors from the body frame to the
inertial frame:

RRRIB(φ ,θ ,ψ) = eψ êee3eθ êee2eφ êee1

The rotational kinematic equations are well defined for this parametrization provided θ ̸= ±π

2 . Alter-
natively, one may adopt a notation similar to that used in [25] and define the tilt vector ζζζ = RRRIBeee3 and
the forward vector λλλ = RRRIBeee1 in order to express the attitude kinematics. This parametrization is valid
provided ζζζ = ±eee1, i.e., provided that the longitudinal (roll) axis of the aircraft is not aligned with the
inertial vertical axis. (This condition is equivalent to the one for the Euler angle parametrization.) With
these definitions, one may write

RRRIB(λλλ ,ζζζ ) =
[
λλλ , ζ̂ζζ λλλ , ζζζ

]T
(6)

The aircraft kinematics can then be expressed as

ζ̇ζζ =ζζζ ×ωωω (7)

λ̇λλ =λλλ ×ωωω (8)
q̇qq =RRRIBvvv (9)

The dynamic equations for flight in still air are

ḣhh =hhh×ωωω + τττa + τττc (10)
ṗpp =ppp×ωωω +mgζζζ + fff a + fff c (11)

where τττa and τττc are the aerodynamic and control moments, respectively, and fff a and fff c are the aerody-
namic and control forces. The aircraft is fully actuated in attitude but the control force acts in a fixed
direction, relative to the body. We assume that thrust is aligned with the x-axis of the stability frame,
which is obtained pitching the body x-axis down by the desired angle of attack αd. Thus, fff c = FcRRRBWdeee1
where Fc ∈ R is the force magnitude and RRRBWd = RRRBW (αd,0). This assumption is uncommon, as it re-
quires that the propulsor be aligned with the nominal body velocity vector, but it overcomes an analytical
impasse in the stability analysis. We compare this assumption with more common assumptions about
the propulsive force in Section 6.

Instead of using explicit analytical expressions for aerodynamic effects, we adopt a general set of
assumptions about them for stability analysis. Specifically, we assume the aerodynamic force and mo-
ment are governed by quasi-steady flow and depend only on the rotational and translational velocity. The
aerodynamic moment has damping components which resist rotational velocity and other components
which depend on the translational velocity, such as the “weathervane” moments in pitch and yaw. These
velocity-dependent components of the aerodynamic moment are omitted from the model during control
design and then restored by subtracting them from the final control moment obtained through the design
process. A simple aerodynamic moment model that captures the primary effects of roll, pitch,and yaw
damping is: τττa =−DDDω(vvv)ωωω , where DDDω ≻ 0.

The aerodynamic force is typically expressed in wind frame components: the drag force, which
opposes velocity; the lift force, which acts normal to drag and in the aircraft plane of symmetry; and
the side force, which is normal to the two other components. These components are assumed to depend
solely on the aerodynamic angles. In reality, small aerodynamic forces also arise in response to aircraft
rotation. For example, an aircraft rotating in yaw will experience a small side force due to the vertical
stabilizer. (This small force, acting about the center of gravity through a large moment arm, provides
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a yaw damping moment.) We ignore these small aerodynamic forces due to rotational motion in the
control design and analysis, although we retain the aerodynamic moments that they generate. These
small aerodynamic forces are included in the simulation model, however.

For a given (constant) air density ρ and wing planform area S, the aerodynamic force expressed in
the body reference frame can be written as:

fff a(vvv) =−1
2

ρSV 2RBW(α,β )CCC(α,β ) (12)

where CCC(α,β ) = [CD(α,β ),CS(α,β ),CL(α,β )]T contains the indicated nondimensional aerodynamic
force coefficients. These are assumed to exhibit the following properties:

• The drag coefficient, CD(α,β ), is a positive function and even in both arguments.
• The side force coefficient, CS(α,β ), is a smooth, odd function with respect to β . It is positive

(resp., negative) when when eiβ lies in the first (resp., fourth) quadrant of the complex plane.1

• The lift coefficient, CL(α,β ), is a smooth function and nondecreasing with respect to α .

While the third condition given above allows a diminishing slope of the lift coefficient near the stall
angle of attack, it prohibits the decrease in lift coefficient that occurs with increasing angle of attack
beyond the stall condition. Thus, while the aerodynamic model is quite general in its representation of
normal flight conditions, the subsequent analysis and results require (and help to ensure) that the aircraft
operates below the stall condition.

Using the definitions of aerodynamic angles in equations (4) and (5), we can reformulate the aero-
dynamic forces as follows:

fff a(vvv) =−ρ̄


uVCD − uvV√

u2+w2CS − wV 2
√

u2+w2CL

vVCD +V
√

u2 +w2CS

wVCD − vwV√
u2+w2CS +

uV 2
√

u2+w2CL

 (13)

where ρ̄ = 1
2ρS is assumed to be constant and the drag, side-force and lift coefficients depend on the

velocity vvv. Equation (13) can be further decomposed as follows:

fff a(vvv) =
(

ĴJJv −DDDv

)
vvv (14)

where JJJv = ρ̄V√
u2+w2 [wCS,VCL,−uCS]

T accounts for a force orthogonal to the velocity vector (i.e., a
turning force) and where the matrix DDDv = ρ̄VCDI≻ 0 accounts for the dissipation of translational kinetic
energy. (The symbol I represents the 3×3 identity matrix.)

Let ννν = [P, β , α] be the vector of translational dynamic state variables, equivalent to the body
velocity. The equations of motion can be rewritten as

ν̇νν = BBBRRRT
BW ṗpp, (15)

where BBB(P, β ) = diag
(
1, P−1, (Pcosβ )−1). Let the input vector be the concatenation of the con-

trol moments and the control thrust uuu =
[
τττT

c , Fc
]T. Also, let ηηη =

[
ζζζ

T
, λλλ

T, qqqT
]T

be the configuration
vector, where qqq denotes the position of the aircraft in inertial space. We now define the state vector

xxx =
[
hhhT,νννT,ηηηT

]T
, the concatenation of configuration and momentum.

1Note that the sign of CS is opposite the standard convention for lateral force coefficient.
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As shown in [22], the dynamics (7-11) and (15) can be written in the PHS form (1-2) with

H =
1
2

hhhTIII−1hhh+
P2

2m
−mgeeeT

3 qqq (16)

and with

JJJ =


ĥhh RRRBW êee1BBB ζ̂ζζ λ̂λλ 000

BBBêee1RRRT
BW ĴJJν 000 000 −BBBRRRT

BW RT
IB

ζ̂ζζ 000 000 000 000
λ̂λλ 000 000 000 000
000 RIBRRRBW BBB 000 000 000

 , DDD =


DDDω 000 000 000 000
000 DDDν 000 000 000
000 000 000 000 000
000 000 000 000 000
000 000 000 000 000

 , ggg =


I 0
0 BBBRRRT

BW RRRBWdeee1

0 0
000 0
0 0


(17)

where JJJν = BBBRRRT
BW JJJv = − ρ̄

m

[
0, CL

cosβ
, −Cs

]T
and DDDν = ρ̄VCDeee1eeeT

1 . Recall that RIB depends on both

λλλ and ζζζ while RRRBW depends on both α and β . Note that this PHS formulation holds for aerodynamic
coefficients CD, CS, and CL of any functional form. The assumptions following (12) come into play when
analyzing closed-loop stability for the control law to be designed in Section 4.

4 Directional Stabilization
The procedure followed in this section follows similarly to the one detailed in [22] and is based on

the work of Fujimoto et al [23], whose paper details a trajectory tracking control strategy where a passive
error dynamic system is constracted from a port-Hamiltonian system through canonical transformation.

The goal in this section is to stabilize the aircraft’s motion to non-slipping flight while following a
time-varying inertial direction specified by a desired course angle, χd(t), and a climb angle, γd(t) ̸=±π

2 .
To ensure that the aircraft does not incur any sideslip during its motion, a desired bank angle, µd(t), is
also prescribed. These time-varying reference signals are obtained from the cross-track error.

To avoid specifying a particular functional form of the aerodynamic force coefficient, the desired
angle of attack αd is specified and the corresponding desired airspeed is then determined. Specifying
the angle of attack does not require knowledge of the force coefficient functions and it helps one avoid
prescribing a flight condition approaches or exceeds the stall limit. Choosing a sensible nominal flight
condition and then prescribing bounds on the operational envelope, by restricting motion to a sub-level
set of a Lyapunov function to be developed, can ensure the aircraft does not approach the stall condition.
A change in the lift force required at the desired steady state would be reflected by a change in the desired
airspeed rather than the desired angle of attack.

The desired attitude is chosen to attain the desired inertial velocity provided that the desired aerody-
namic angles are attained. The approach adopted in this work is to modify the aircraft’s attitude to track
the reference inertial velocity direction while maintaining the desired aerodynamic angles. As such, the
desired attitude vectors can be expressed as ζζζ d = RRRBWdRRRT

d eee3 and λλλ d = RRRBWdRRRT
d eee1, where the rotation

matrix RRRd = eχdêee3eγdêee2eµdêee1 , parameterized by the desired course, climb, and bank angles χd, γd, and µd,
respectively, is defined such that RRRdeee1 expresses the desired direction of motion in the inertial frame.

The desired angular velocity is ωωωd(t)=RRRBWdω̄ωω(t) where ω̄ωω(t)=
(
µ̇deee1 + e−µdêee1

(
γ̇deee2 + χ̇de−γdêee2eee3

))
.

In this expression, the desired bank angle is chosen to counteract the effects of χ̇d and γ̇d on sideslip
at steady state:

µd(t) = tan−1
(
− Vdχ̇d cosγd

gcosγd +Vdγ̇d

)
(18)
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The desired airspeed satisfies: mVd(t)ω̄2 − ρ̄V 2
d (t)CLd + mgeeeT

3 RRRT
BWd

ζζζ d = 0, where ω̄2 = eeeT
2 ω̄ωω =

γ̇ cos µ + χ̇ cosγ sin µ . Inserting equation (18) in the equation gives:

(ρ̄CLd)
2V 4

d = m2 (gcosγd +Vdγ̇d)
2 +(mVdχ̇d cosγd)

2 (19)

While one might find an analytical solution for Vd from this fourth order polynomial, the expression is
complicated. We instead differentiate the expression to obtain the differential equation

V̇d =
2m2 ((gcosγd +Vdγ̇d)(Vdγ̈d −gγ̇d sinγd)+V 2

d
(
χ̇dχ̈d cos2 γd − χ̇2

d cosγd sinγd
))

(ρ̄CLd)
2 −2m2Vd

(
γ̇d (gcosγd +Vdγ̇d)+ χ̇2

d cos2 γd
) (20)

and compute the numerical solution online, as it is required by the control law.

In certain cases, it is more convenient to express the desired climb and course angles in terms of the
desired airspeed and turn radius. We denote the climb and course radius as rγ(t) and rχ(t), respectively,
and denote the climb and course rates as γ̇ =Vd/rγ and χ̇ =Vd/rχ . Using this structure, the desired bank
angle and airspeed can be expressed as:

µd = tan−1

(
mcosγd/rχ√

(ρ̄CLd −mcosγd/rχ)(ρ̄CLd +mcosγd/rχ)

)
(21)

Vd =

√
mgcosγd√

(ρ̄CLd −mcosγd/rχ)(ρ̄CLd +mcosγd/rχ)−m/rγ

(22)

While ωωωd represents the desired angular velocity at steady state, using it as a reference signal may
not satisfy conditions required for stability. Instead, we design state-dependent “target” quantities, de-
noted with the subscript “t”, that converge to their respective desired values at steady state:

ωωω t(α,β ,ζζζ ,λλλ ) = RRRBWdω̄ωω − k
(

kv

2
RRRBW

(
sin2α̃

cosβ
eee2 − sin2βeee3

)
− kζ ζ̂ζζ dζζζ − kλ λ̂λλ dλλλ

)
(23)

where α̃ = α −αd and where k > 0 and kv, kζ , kλ > 1 are design parameters. Define the function

Hc =
1
2
(hhh− IIIωωω t)

TIII−1(hhh− IIIωωω t)+
m
2
(V −Vd)

2 +
kv

2
(
sin2(α −αd)+ sin2

β
)
− kζ ζζζ

T
ζζζ d − kλ λλλ

T
λλλ d +Φc

(24)
where Φc =

1
2

(
kζ (ζζζ

T
ζζζ +ζζζ

T
d ζζζ d)+ kλ (λλλ

T
λλλ +λλλ

T
d λλλ d)

)
is a positive function of conserved quantities that

is obtained using the energy-Casimir method. The control-modified Hamiltonian Hc can be broken down
as Hc = Ht +Hv +Hη +Φc, where Ht =

1
2(hhh− IIIωωω t)

TIII−1(hhh− IIIωωω t)+
m
2 (V −Vd)

2 represents the error
in the system’s kinetic energy, Hv =

kv
2

(
sin2(α −αd)+ sin2

β
)

represents the error in the aerodynamic

angles and Hη =−kζ

2 ζ Tζd − kλ

2 λ Tλd represents the restoring artificial potential energy for the attitude.

Theorem 1. The control law

τττc =−
[
I −III ∂ωωω t

∂ ppp −III ∂ωωω t
∂ηηη

]
(JJJ−DDD)

∂H̃

∂xxx

T

− III
∂ωωω t

∂xxx
(JJJ−DDD)T

[
000 ∂Hv

∂p
∂ (Hη+H )

∂xxx

]T
− ∂ωωω t

∂ t
−C (ωωω −ωωω t),

(25)

Fc =

m [000,−eee1,000] (JJJ−DDD)
[
ωωωT

t ,VVV deeeT
1 −

∂Hv
∂ννν

,−∂ (mgeeeT
3 qqq)

∂ηηη

]T
−V̇d +

kv(V−Vd)mg
2VVd

(
eeeT

2 ζζζ d sin2β +
eeeT

3 RRRT
BWd

ζζζ d sin2α̃

cosβ

)
cos α̃ cosβ

,

(26)
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where H̃ = H −Hc and C ≻ 0, asymptotically stabilizes the desired equilibrium.

Remark 1. Implementing the control law requires knowledge of the aerodynamic force and moment
coefficients, but the proof does not require their explicit functional form. See comments following (12).

Proof of Theorem 1. Taking Hc as a candidate Lyapunov function, we find

Ḣc =
∂Hc

∂xxx

(
(JJJ−DDD)

∂H

∂xxx

T

+ggguuu

)
+

∂Hc

∂ t

=
∂Hc

∂xxx

(
(JJJ−DDD)

∂H̃

∂xxx

T

+ggguuu

)
− ∂Hc

∂xxx
DDD

∂Hc

∂xxx

T

+
∂Hc

∂ t
(27)

With the proposed control moment, τττc, in equation (25) and the proposed control force, Fc, in equa-
tion (26), the time derivative of the proposed Hamiltonian function becomes:

Ḣc =−∂Hc

∂xxx
DDD

∂Hc

∂xxx

T

− (ωωω −ωωω t)
TC (ωωω −ωωω t)+

∂ (Hc −Ht)

∂ t

+
kv(V −Vd)g

2VVd

(
ζ2d sin2β +

eeeT
3 RRRT

BWd
ζζζ d sin2α̃

cosβ

)
+
[
01×3

∂Hv
∂ννν

∂Vd
∂ηηη

]
(JJJ−DDD)

[
ωωωT

t VdeeeT
1 −

∂Hv
∂ννν

∂V
∂ηηη

− ∂Vd
∂ηηη

]T
(28)

Taking advantage of the structure and sparsity of JJJ reduces equation (28) to

Ḣc =−∂Ht

∂xxx
DDD

∂Ht

∂xxx

T

− (ωωω −ωωω t)
TC (ωωω −ωωω t)+

∂ (Hc −Ht)

∂ t

+
kv(V −Vd)g

2VVd

(
eeeT

2 ζζζ sin2β +
eeeT

3 RRRT
BWζζζ sin2α̃

cosβ

)
+
[
01×3

∂Hv
∂ννν

∂Vd
∂ηηη

]
(JJJ−DDD)

[
ωωωT

t VdeeeT
1

∂V
∂ηηη

]T
(29)

Expanding (29) and substituting for the control thrust Fc from equation (26) gives:

Ḣc =−(ωωω −ωωω t)
T(C +DDDω)(ωωω −ωωω t)− ρ̄VCD(V −Vd)

2

+ kv
sinβ cosβ

m

(
−meeeT

3 RRRBW ωωω t − ρ̄VdCS +
mgeeeT

2 RRRT
BW ζζζ

V
− tanβ

V
F̄c

)

+ kv
sin α̃ cos α̃

mcosβ

(
meeeT

2 RRRBW ωωω t − ρ̄VdCL +
mgeeeT

3 RRRT
BW ζζζ

V
− tan α̃

V cosβ
F̄c

)
− kζ

(
ζζζ

T
d ζ̂ζζ ωωω t +ζζζ

T
ζ̇ζζ d

)
− kλ

(
λλλ

T
d λ̂λλωωω t +λλλ

T
λ̇λλ d

)
+

kv(V −Vd)g
2VVd

(
ζ2 sin2β +

eeeT
3 RRRT

BWζζζ sin2α̃

cosβ

)
(30)

where F̄c = Fc cos α̃ cosβ would be the proposed control law were the thrust pointing along the velocity
vector. The time rate of the desired attitude vectors can be expressed in terms of ω̄ωω as

ζ̇ζζ d = ζ̂ζζ dRRRBWdω̄ωω, λ̇λλ d = λ̂λλ dRRRBWdω̄ωω (31)
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Inserting the equations from (31) in (30) and reducing the equation further gives

Ḣc =−(ωωω −ωωω t)
T(C +DDDω)(ωωω −ωωω t)− ρ̄VCD(V −Vd)

2

+ kv
sinβ cosβ

m

(
−meeeT

3 RRRBW ωωω t − ρ̄VdCS +mg

(
eeeT

2 RRRT
BW ζζζ

V
+

(V −Vd)ζ2d

VVd

)
− tanβ

V
F̄c

)

+ kv
sin α̃ cos α̃

mcosβ

(
meeeT

2 RRRBW ωωω t − ρ̄VdCL +mgeeeT
3

(
RRRT

BW ζζζ

V
+

(V −Vd)RRRT
BWd

ζζζ d

VVd

)
− tan α̃

V cosβ
F̄c

)
+
(

kζ ζζζ
T
ζ̂ζζ d + kλ λλλ

T
λ̂λλ d

)
(ωωω t −RRRBWdω̄ωω) (32)

Next, we substitute ωωω t from (23) above, observe that RRRBW = RRRBWd +(I−RRRBWdRRRT
BW )RRRBW , and substitute

ω̄2 and ω̄3 from (23) and µd from (18) to obtain:

Ḣc =−(ωωω −ωωω t)
T(C +DDDω)(ωωω −ωωω t)− ρ̄VCD(V −Vd)

2

+ kv
sinβ cosβ

m

(
meeeT

3
(
I−RRRT

BW RRRBWd

)
ω̄ωω − ρ̄VdCS

+mgeeeT
2

(
(I−RRRT

BWd
RRRBW )RRRT

BW ζζζ d +RRRT
BW (ζζζ −ζζζ d)

V

)
− tanβ

V
F̄c

)

+ kv
sin α̃ cos α̃

mcosβ

(
−meeeT

2
(
I−RRRT

BW RRRBWd

)
ω̄ωω − ρ̄Vd(CL −CLd)

+mgeeeT
3

(
(I−RRRT

BWd
RRRBW )RRRT

BW ζζζ d +RRRT
BW (ζζζ −ζζζ d)

V

)
− tan α̃

V cosβ
F̄c

)

− k
∥∥∥∥kv

2
RRRBW

(
sin2α̃

cosβ
eee2 − sin2βeee3

)
− kζ ζ̂ζζ dζζζ − kλ λ̂λλ dλλλ

∥∥∥∥2

(33)

One can verify that
∥∥eeeT

2 (I−RRRT
BW RRRBWd)

∥∥ ≤
√

2|sinβ | and that
∥∥eeeT

3 (I−RRRT
BW RRRBWd)

∥∥ ≤
√

2|sin α̃|. The
terms which include (I−RRRT

BW RRRBWd) result from deviations in the aerodynamic angles when all other
variables are at their steady state values. For a stable aircraft and a well-posed ω̄ωω , these terms are
dominated by the restoring effect of the lift and side force. Based on the assumptions on the aerodynamic
coefficients, one may conclude that both CS sinβ and (CL −CLd)sin α̃ are non-negative. Furthermore,
assuming that CS sinβ ≥ ks sin2

β and (CL −CLd)sin α̃ ≥ kL sin2
α̃ , one may show that

Ḣc ≤−(ωωω −ωωω t)
T(C +DDDω)(ωωω −ωωω t)− ρ̄VCD(V −Vd)

2

− [|sinβ |, |sin α̃|]KKKv [|sinβ |, |sin α̃|]T + kvg
V

(
|sinβ |cosβ +

|sin α̃|cos α̃

cosβ

)
∥ζζζ −ζζζ d∥

− k
∥∥∥∥kv

2
RRRBW

(
sin2α̃

cosβ
eee2 − sin2βeee3

)
− kζ ζ̂ζζ dζζζ − kλ λ̂λλ dλλλ

∥∥∥∥2

(34)

where

KKKv =
kv

m

cosβ

(
ρ̄VdKS +

F̄c
V cosβ

−
√

2mg
V

)
−m∥ω̄ωω∥√

2

(
cosβ + cos α̃

cosβ

)
−m∥ω̄ωω∥√

2

(
cosβ + cos α̃

cosβ

)
cos α̃

cosβ

(
ρ̄VdKL +

F̄c
V cos α̃ cosβ

−
√

2mg
V

) (35)

Note that the first term of (34) is non-positive since DDDω ⪰ 0 and C ≻ 0, in addition to the fact that CD
is positive so that −ρ̄CDV (V −Vt)

2 ≤ 0. For reasons stated earlier, KKKv ≻ 0. Therefore, the first term in
the second line of inequality (34) is non-positive. Similarly, the last term of the inequality is non-positive
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as well. To ensure that Ḣc is non-positive, one must choose

k ≥

√
2kvg

kζ∥KKKv∥min(V )
max

(
cosβ ,

cos α̃

cosβ

)
(36)

The conditions for Lyapunov stability must hold within level sets of Hc. Because the value of the
Lyapunov function is minimum at the desired state of motion, by choosing a sufficiently small level
set, one can ensure that the minimum airspeed (i.e., minV ) is sufficiently large that one may choose a
feasible value of k and therefore that Ḣc ≤ 0, showing that the desired equilibrium is stable. □

5 Cross-Track Control
Having established a control law which asymptotically stabilizes the motion of a fixed wing aircraft

to a smoothly time-varying, non-vertical inertial direction, it is possible to achieve cross-track control
by varying the direction of motion with respect to position instead of time. In this work, only piecewise
linear paths are considered, e.g., the linear segments connecting a sequence of three-dimensional way-
points. We use line-of-sight guidance as used, for example, by Encarnação and Pascoal [26], Børhaug
and Pettersen [27], and Techy and Woolsey [25].

To simplify the presentation, suppose the desired linear path segment passes through the origin of
the inertial frame and let RRRd = eχdêee3eγdêee2 , where the desired climb and course angles define the desired
velocity direction, with a desired bank angle of zero. Let ddd be a vector from the center of mass of the
aircraft to a “look-ahead” point along the desired linear path segment:

ddd = Lkeee1 − (I− eee1eeeT
1 )RRR

T
d qqq (37)

The parameter Lk is a prescribed look-ahead distance from the point on the line nearest the aircraft to
the look-ahead point. The vector ddd is the vector difference of this look-ahead vector and the cross-track
error vector; it defines the direction the aircraft should fly to converge smoothly to the path segment.

Now define a target rotation matrix RRRt = eχtêee3eγtêee2eµtêee1 based on the cross-track guidance law, where

γt =−sin−1
(

eeeT
3 ddd
∥ddd∥

)
(38)

χt = sin−1
(

eeeT
2 ddd
∥ddd∥

)
(39)

µt = tan−1

 meeeT
2 d̄dd cosγt/cos χt√

(ρ̄CLd −meeeT
2 d̄dd cosγt/cos χt)(ρ̄CLd +meeeT

2 d̄dd cosγt/cos χt)

 (40)

Vd =

√√√√ mgcosγt√
(ρ̄CLd −meeeT

2 d̄dd cosγt/cos χt)(ρ̄CLd +meeeT
2 d̄dd cosγt/cos χt)−meeeT

3 d̄dd/cosγt

(41)

and where

d̄dd =
1

∥ddd∥

(
I− ddddddT

dddTddd

)(
I− eee1eeeT

1
)

RRRteee1 (42)
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Let the desired attitude vectors in (6) be ζζζ d = RRRT
IBd

eee3 and λλλ d = RRRT
IBd

eee1, where RRRIBd = RRRdRRRtRRRT
BWd

. The
desired angular velocity, expressed in the wind frame, is

ω̄ωω = µ̊teee1 + e−µtêee1
(

γ̊teee2 + χ̊te−γtêee2eee3

)
(43)

where, for an arbitrary, smooth function δ (qqq) of the aircraft position,

δ̊ (qqq) =
∂δ (qqq)

∂qqq
RRRIBdRRRBWdeee1Vd =

∂δ (qqq)
∂qqq

RRRdRRRteee1Vd (44)

Remark 2. Using ˚(·) rather than the true time derivative ensures that the desired angular velocity ω̄ωω

obtained from the cross-track guidance geometry does not depend on the true angular velocity ωωω . Rec-
ognizing a separation of time scales – i.e., that the aircraft attitude converges instantly to a commanded
orientation, relative to the time scale of cross-track convergence – we have defined the desired angular
velocity ω̄ωω solely in terms of the cross-track error.

The original definition in equation (23) is used for the target angular rate ωωω t, but using equation (43)
for ω̄ωω . To prove stability of the cross-track control system, the following candidate Lyapunov function
is proposed: Hc = Ht +Hv +Hη +Φc, where

Ht =
1
2
(hhh− IIIωωω t)

TIII−1(hhh− IIIωωω t)+
m
2
(V −Vd)

2 (45)

Hv =
kv

2
(
sin2(α −αd)+ sin2

β
)

(46)

Hη =−
kζ

2
ζ

T
ζd −

kλ

2
λ

T
λd − kqeeeT

1 ddd/∥ddd∥ (47)

Φc =
1
2

(
kζ (ζζζ

T
ζζζ +ζζζ

T
d ζζζ d)+ kλ (λλλ

T
λλλ +λλλ

T
d λλλ d)+2kq

)
(48)

Note that the proposed Lyapunov function for cross-track control is the same as that for time-varying
directional stabilization except for the addition of the expression kq(ddd/∥ddd∥− eee1)

T(ddd/∥ddd∥− eee1)/2.

Theorem 2. The control law structure given in equations (25) and (26), but using equations (38-48),
asymptotically stabilizes the desired steady motion.

Proof. The proof follows similarly to that in Section 4 up until equation (32). The time derivative
of the Lyapunov function becomes:

Ḣc =−(ωωω −ωωω t)
T(C +DDDω)(ωωω −ωωω t)− ρ̄VCD(V −Vd)

2

+ kv
sinβ cosβ

m

(
−meeeT

3 RRRBW ωωω t − ρ̄VdCS +mg

(
eeeT

2 RRRT
BW ζζζ

V
+

(V −Vd)ζ2d

VVd

)
− tanβ

V
F̄c

)

+ kv
sin α̃ cos α̃

mcosβ

(
meeeT

2 RRRBW ωωω t − ρ̄VdCL +mgeeeT
3

(
RRRT

BW ζζζ

V
+

(V −Vd)RRRT
BWd

ζζζ d

VVd

)
− tan α̃

V cosβ
F̄c

)

+
(

kζ ζζζ
T
ζ̂ζζ d + kλ λλλ

T
λ̂λλ d

)
ωωω t −Vd

(
kζ ζζζ

T ∂ζζζ d
∂ddd

+ kζ λλλ
T ∂λλλ d

∂ddd

)(
I− ddddddT

dddTddd

)(
I− eee1eeeT

1
)

RRRIBRRRBW eee1

+
kqVd√

dddTddd
eeeT

1

(
I− ddddddT

dddTddd

)(
I− eee1eeeT

1
)

RRRIBRRRBW eee1 (49)
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Based on the definitions of ω̄ωω , ζζζ d and λλλ d, the following equalities hold:

ζ̂ζζ dω̄ωω =Vd
∂ζζζ d
∂ddd

(
I− ddddddT

dddTddd

)(
I− eee1eeeT

1
)

RRRIBdRRRBWdeee1 (50)

λ̂λλ dω̄ωω =Vd
∂λλλ d
∂ddd

(
I− ddddddT

dddTddd

)(
I− eee1eeeT

1
)

RRRIBdRRRBWdeee1 (51)

Applying further reduction similar to those done in (33) and (34) gives:

Ḣc ≤−(ωωω −ωωω t)
T(C +DDDω)(ωωω −ωωω t)− ρ̄VCD(V −Vd)

2

− [|sinβ |, |sin α̃|]KKKv [|sinβ |, |sin α̃|]T + kvg
V

(
|sinβ |cosβ +

|sin α̃|cos α̃

cosβ

)
∥ζζζ −ζζζ d∥

− k
∥∥∥∥kv

2
RRRBW

(
sin2α̃

cosβ
eee2 − sin2βeee3

)
− kζ ζ̂ζζ dζζζ − kλ λ̂λλ dλλλ

∥∥∥∥2

− Lk

(dddTddd)2

(
(eeeT

3 ddd)2 +(eeeT
2 ddd)2 cosγt

)
+

Lk
√

2
∥ddd∥2

(
∥ζ̂ζζ ζζζ d∥+∥λ̂λλλλλ d∥+ |sin α̃|+ |sin β̃ |

)
(52)

where KKKv is defined in equation (35). The first three lines of (52) are the same as in (34), which has been
shown to be negative. The first term of the last line is a non-positive quadratic term in the cross-track
error while the other terms are first order couplings between the cross-track error vector and the attitude
error terms, as well as the error in the aerodynamic angles. The Lyapunov rate (52) has non-positive
quadratic components in all those terms which are sufficiently large to ensure that Ḣc < 0, showing that
the desired equilibrium is asymptotically stable. □

6 Simulation
To demonstrate the cross-track control law, we simulate its performance using a flight dynamic

model obtained from flight tests of the My Twin Dream aircraft, as described in [28].

(a) Trajectory

horizontal

vertical

(b) State history

Fig. 1 Left: Desired path (dotted black) and actual path (solid blue), with aircraft position and attitude
denoted at two second intervals. Right: State history for the trajectory shown at the left.

In the simulation, the aircraft starts in inverted flight 100 ft west of and 75 ft above an inertial
reference with an airspeed of 40 ft/s and with α = 10◦ and β = 5◦. The desired path is along the positive
eee1 axis of the inertial frame (e.g., “due North”). Initial values for state variables other than velocity were
chosen randomly. The results shown in Figure 1 reflect the analytical stability results presented earlier,
although the simulation model incorporates aerodynamic interactions which were ignored in the control
design and analysis, such as aerodynamic force terms involving angular rates.
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Figure 1(a) shows the vehicle trajectory (solid line) using the proposed controller subject to the pre-
viously stated initial conditions. The aircraft’s orientation is indicated at equal time steps by a 3D aircraft
model (although the geometry is not that of the MTD). The feedback controlled trajectory converges to
the desired flight profile. Figures 1(b) show the time history of rates and attitude variables.

7 Conclusion
A nonlinear, energy-based control design was presented for a small, fixed-wing aircraft which sta-

bilizes the aircraft’s flight to a non-vertical, piecewise linear path characterized by a course and climb
angle. The cross-track control law is built upon directional stabilization results for a time-varying course
and climb angle. The control law requires knowledge of some aerodynamic parameters, but the stability
analysis uses very general assumptions about the aerodynamic forces and moments.

The nonlinear, energy-shaping control law, and the Lyapunov-based proof of nonlinear stability,
leverages the passivity properties enjoyed by the port-Hamiltonian system model.

Ongoing work involves demonstrating the control law presented here in flight tests. Follow-on work
will focus on extending the results to curvilinear path-following.
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