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ABSTRACT

This paper introduces a parameterization method for generating trajectories with smooth con-
trol commands based on a trigonometric series, where the formulation is nonlinear with respect
to the series coefficients. The proposed method aims to achieve a steadier behavior when a path
constraint is temporarily active, which is often encountered with e.g., a minimum-time perfor-
mance index. To this end, first, the control derivatives are parameterized instead of the control
variables. Furthermore, the newly developed formulation includes a filtering function depending
on the original trigonometric series. This function reduces the series value when it is within a
specifiable neighborhood of zero. The performance of the proposed method is tested in two nu-
merical benchmark problems in which a minimum-time and a minimum-effort cost function are
considered, respectively.
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1 Introduction
Generating trajectories is an essential practice in aerospace engineering. Depending on whether

the dynamics of the model are taken into consideration in the process, trajectory generation methods
can be categorized differently: One class of methods considers only kinematics and constructs trajecto-
ries directly using a combination of lines, arcs, or/and clothoids, where the curvature behavior can be
constrained accordingly [1–4]. Among the solutions utilizing geometric components, Dubins path de-
termines the minimum-time trajectory for vehicles moving at a constant speed with a minimum turning
radius. The theory is well established [5] and still plays an important role in trajectory generation these
days [6–8]. On the other hand, accounting for the dynamics of the aircraft, trajectories are also gener-
ated via numerically solving optimal control problems [9, 10]. In this regard, an optimal trajectory is
searched in a way that a performance index is minimized, and it is found effective for many constrained
problems [11–14].

This paper deals with the smoothness of a trajectory that is quantified by the number of the existing
continuous derivatives. The smoothness is often only guaranteed to a specific order when the trajectory
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is generated using the geometric components or optimal control methods with a fully discretized con-
trol grid. Modern trajectory controllers, however, utilize high-order derivatives as well [15–17]. Thus,
they pose requirements on the smoothness of the trajectory. In practice, these discontinuities usually
undesirably affect the performance, as most processes are continuous.

For generating smooth trajectories with infinitely differentiable controls, a trigonometric series-
based parameterization method has been proposed [18], which is referred to as the original form through-
out this paper. In Ref. [19], it has been applied to a flight level changes problem to provide smooth control
commands as functions of the climb distance. In Ref. [20], the periodicity of controls is guaranteed by
construction, through leveraging the periodicity of the trigonometric functions for the dynamic soaring
application. A hierarchical structure based on the trigonometric series has been developed to enable
a seamless transition connecting two steady flight conditions with strictly zero derivatives [21]. The
trigonometric series parameterization is particularly suitable for a transition phase where the controls
vary, but it has a drawback: The parameterized variable cannot stay temporarily constant, e.g., when a
path constraint is active. Studies reveal that this issue may be insignificant when very slowly varying
controls are generated, which is feasible even for a low-order series [22]. It can still be improved, as os-
cillations result in additional control effort and potentially compromise the objective. In this paper, a new
solution based on the trigonometric series is proposed for alleviating this issue. This new formulation
is nonlinear with respect to the series coefficients. It focuses on parameterizing the control derivatives
because a control can be of an arbitrary value when it stays constant, while the derivative is always zero.
Therefore, the proposed method aspires to further reduce the derivative to close to zero when the control
is slowly varying in the original form. This is achieved by introducing a smooth filtering function that
only takes effect in a neighborhood of zero. The new form still guarantees infinite differentiability of the
control commands, but is expected to generate a steadier control profile when a path constraint is active.

The rest of the paper is organized as follows: Section 2 introduces the preliminaries and the main
results of this paper. For evaluating the effectiveness of the proposed method, two applications are
shown, the first of which is presented in Section 3, where a minimum-time problem of a vehicle moving
in a horizontal plane is considered, and the second of which is described in Section 4 and is concerned
with the same formulation but with a minimum-effort objective. The conclusions are drawn in Section 5.

2 Parameterization for Smooth Trajectory Generation
A trajectory optimization problem is very often of the following form:

minimize
uuu(t),θθθ

J (xxx(t) ,uuu(t) ,θθθ , t)

subject to ẋxx(t) = fff (xxx(t) ,uuu(t) ,θθθ , t)
ggg(xxx(t) ,uuu(t) ,θθθ , t)≤ 0

(1)

where xxx ∈ Rm, uuu ∈ Rn, and θθθ ∈ Rp are the state, the control, and the parameter vector, respectively.
Furthermore, fff and ggg denote the model dynamics and all constraints of the optimization problem, re-
spectively.

The fundamental idea of the proposed method is to reduce the change rate of the control when it is
small. The time derivative of the control vector is defined as

u̇uu(t) = vvv(t) (2)

Due to the introduction of the control derivative, vvv becomes a new control variable and uuu is then a part
of the state vector.
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Fig. 1 Schematic representation of the filtering function φ

Selectively reducing the control derivative relies on introducing a filtering function, which is formu-
lated based on the Gaussian kernel here.

φi (z) =−e−(z/bi)
2
+1 (3)

where the subscript i denotes the i-th control component, and bi is a tunable parameter. The exponent
can be chosen among positive even integers. This paper chooses 2 for sufficient smoothness. For demon-
stration purposes, the function profile is schematically shown in Fig. 1. The function value of φ rapidly
decreases from about 1 to zero as z approaches zero in a neighborhood of zero. The value of bi specifies
this neighborhood of zero, and bi needs to be selected individually for each control component. More-
over, in gradient-based optimization methods, it might be helpful for avoiding invalid numbers (e.g.,
division by zero) to implement the Gaussian-based filtering function in the following form:

φi (z) =−e−(z/bi)
2
+1+ ε

where ε > 0 is a small constant.

If the original formulation of the trigonometric series parameterization in [18] applies, a control
derivative (the symbolism ˜ denotes a dummy variable) is expressed in the following form:

ṽi (t) = (a0)i +
N

∑
n=1

(
(an)i cos

(
nπ

Tf
t
)
+(bn)i sin

(
nπ

Tf
t
))

= sssN (t)ccci, i = 1,2, . . . ,n (4)

where N is the order of the series and

sssN (t) =

[
1,cos

(
π

Tf
t
)
, . . . ,cos

(
Nπ

Tf
t
)
,

sin
(

π

Tf
t
)
, . . . ,sin

(
Nπ

Tf
t
)] (5)

ccci = [(a0)i , . . . ,(aN)i ,(b1)i , . . . ,(bN)i]
T . (6)

Here, ccci is the coefficient vector corresponding to the i-th control variable, which needs to be determined
using optimization. The trigonometric series parameterization in Eq. (4) shows that the control derivative
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is a linear function of ccci and infinitely differentiable with respect to time, i.e., of C∞. As a remark, the
frequencies of the trigonometric functions can be utilized to shape the time behavior of the parameteri-
zation [19], and yet this paper sticks to the original form given in [18] for the sake of simplicity.

Next, the main result of this paper is given as a modified version of Eq. (4) utilizing the filtering
function as

vi (t) = φi (sssN (t)ccci)sssN (t)ccci = pppNi (t,ccci) (7)

A comparison with Eq. (4) shows that vi (t) = φi (ṽi (t)) ṽi (t). Then, it is intuitive that φi plays a role
in reducing the absolute value of the derivative when it is close to zero. As φi is a smooth function,
this expression is still of C∞. It is to be noted that the formulation in Eq. (7) is no longer a linear
function of the series coefficients as in Eq. (4) but a nonlinear function. This nonlinear nature may affect
some applications or algorithms that require the linearity with respect to the series coefficients, which is
featured in the original form.

Therefore, the vector of the control derivatives can be expressed by

vvv(t) = PPPN (t,ccc) (8)

where

PPPN (t,ccc) =


pppN1 (t,ccc1) 0 . . . 0

0 pppN2 (t,ccc2) . . . 0
...

... . . . ...
0 0 . . . pppNm (t,cccm)

 (9)

ccc =
[
(ccc1)

T ,(ccc2)
T , . . . ,(cccm)

T
]T

(10)

Hence, by incorporating the parameterization, the new trajectory optimization problem can be formulated
as

minimize
ccc,θθθ

J (xxx(t) ,uuu(t) ,θθθ , t)

subject to ẋxx(t) = fff (xxx(t) ,uuu(t) ,θθθ , t)
u̇uu(t) = vvv(t)
vvv(t) = PPPN (t,ccc)
ggg(xxx(t) ,uuu(t) ,θθθ , t)≤ 0

(11)

Here, it can be seen that the optimal control formulation in Eq. (11) includes two additional constraints
representing the parameterization in comparison to the typical optimal control formulation in Eq. (1).
Instead of determining the optimal control histories, the solution to Eq. (11) consists of the series coef-
ficients, ccc. Next, two applications are shown as benchmark problems assessing the effectiveness of the
proposed method.

3 Application A: Minimum-time Problem
The first application is a minimum-time problem which can be found in [23, Ch. 3.3]. This applica-

tion can represent any vehicle (e.g., a car or an unmanned aerial vehicle) moving in one plane.
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3.1 Problem formulation
The equations of motion for the vehicle are expressed by

ẋ(t) =V (t)cos χ (t) ,
ẏ(t) =V (t)sin χ (t) ,

V̇ (t) = V̇cmd (t) ,
χ̇ (t) = χ̇cmd (t)

(12)

where x and y are the position coordinates and V and χ are the speed and course angle of the vehicle.
The vehicle is controlled by the along-track acceleration and the turn rate, i.e., V̇cmd and χ̇cmd on a finite
horizon

[
0, t f

]
, where t f is the final time. The state and control vectors are given as

xxx = [x, y,V, χ]T (13)

uuu =
[
V̇cmd, χ̇cmd

]T (14)

Each state variable is subject to boundary constraints, and control variables comply with box constraints.
These are given by

xxx(0) = xxxinitial, xxx
(
t f
)
= xxxterminal

xxxmin ≤ xxx(t)≤ xxxmax

uuumin ≤ uuu(t)≤ uuumax

(15)

Additionally, a non-sliding constraint [24] is included as

−|ac|max ≤ χ̇cmd (t) ·V (t)≤ |ac|max (16)

The objective is to minimize the final time, so the cost function is considered as

J = t f (17)

3.2 Implementation
This paper presents three solutions, which are generated by the original trigonometric series param-

eterization in [18] (denoted by “Original”), the proposed new parameterization (denoted by “Proposed”),
and a full trapezoidal discretization (denoted by “Optimal”). All three solutions are obtained using FAL-
CON.m, an efficient optimal control tool [23]. FALCON.m enables an automatic transcription of the
optimal control problem described in Section 3.1. The trigonometric series parameterizations are intro-
duced as path constraints. Specifically for the proposed method, the model needs to be augmented by
introducing control derivatives as in Eq. (11). The reason why the results generated using full trapezoidal
discretization is considered “Optimal” is that it avoids the suboptimality caused by the global path con-
straint representing the parameterization. For consistency, the series orders are both five for the original
and the proposed form, respectively.

3.3 Optimization results
The optimized results are shown in this section. The trajectories and the velocity components are

shown in Fig. 2. All three of them appear to be very similar. A closer look at the state and control histories
depicted in Fig. 3 reveals further details. Using control parameterization methods, the kinks in the state
time histories no longer exist, indicating no discontinuity in them. Furthermore, the proposed approach
does not produce undesired small oscillations in the velocity time histories as the original method does
in roughly the time frame [10, 27]s. This substantiates a notable improvement of the proposed approach,
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Fig. 2 Application A: Trajectories and velocity components
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Fig. 3 Application A: State and control histories

which can also be confirmed by the control histories in the same figure. While the optimal acceleration
provided by the full discretization shows a bang-bang-like phenomenon, the other two solutions are
smooth. In particular, the proposed approach produces an acceleration command that stays temporarily
close to zero, which correspondingly leads to a constant speed at the boundary condition. This is one of
the main improvements over the original form. This phenomenon holds for the turn rate commands as
well – the advantage of the parameterization methods in smoothness is thus clear.

The statistics are displayed in Table 1. In addition to the objective, i.e., the final time t f , there are two
additional quantities,

∫ t f
0 V̇ 2

cmd dt and
∫ t f

0 χ̇2
cmd dt showing the efforts for speed and course angle control.

Concerning the objective, while the sub-optimality of 0.34% is already minor for the original approach,
it reduces to 0.10% for the proposed form. It is to be noted that

∫
V̇ 2

cmd dt and
∫

χ̇2
cmd dt are not optimized,

as the cost function solely optimizes the final time. Both parameterization methods achieve less control
efforts for the two control variables in comparison to the optimal solution. Comparing with the original
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Table 1 Statistics of Application A

Case Objective [s]
∫ t f

0 V̇ 2
cmd dt

[
m2/s3] ∫ t f

0 χ̇2
cmd dt [1/s]

Original [18] 31.4608 0.0554 0.2602

Proposed 31.3862 0.0339 0.2750

Optimal 31.3535 0.0862 0.2772
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Fig. 4 Application B: Trajectories and velocity components

approach, the proposed method does not excel comprehensively in this regard, but there is an evident
reduction of the control effort for the speed, whose constraint has been active for most of the time.

4 Application B: Minimum-effort problem
The second application concerns with the same problem as presented in the previous section, but it

has a different objective to minimize the total control effort.

J =
∫ t f

0
V̇ 2

cmd dt +
∫ t f

0
χ̇

2
cmd dt (18)

In general, this performance index generally does not lead to a bang-bang-like structure for the opti-
mal solution. Therefore, this application is investigated to provide another perspective on the proposed
nonlinear trigonometric series approach. Again, N = 5 is used for both parameterization methods.

The generated trajectories and velocity components are displayed in Fig. 4. While the trajectories
shown in Fig. 2 are already similar, the trajectories in Fig. 4 can be barely distinguished, indicating very
similar control profiles and performance indexes. The time histories of states and controls are shown
in Fig. 5. In addition, the time histories of control derivatives are displayed in this figure. The speed
and course angle time histories are quite similar for all three cases. From the time histories of χ̇cmd, it
can still be noticed that the kinks visible at around t = 10 s and t = 21 s for the optimal solution are
eliminated when using parameterization methods. These kinks correspond to the steps shown in χ̈cmd
histories, and yet the profiles are similar in magnitude.

The corresponding statistics for the simulation results are given in Table 2. In comparison to the
original form, the proposed one achieves a slightly better objective, with a minor increase in the final
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Fig. 5 Application B: State and control histories

Table 2 Statistics of Application B

Case Objective
(∫ t f

0 V̇ 2
cmd dt +

∫ t f
0 χ̇2

cmd dt
)
[m2/s3] Final time [s]

Original [18] 0.2691 (0.0103 + 0.2588) 32.1054

Proposed 0.2685 (0.0109 + 0.2575) 32.1194

Optimal 0.2680 (0.0105 + 0.2576) 32.0989

time. However, the differences across all three setups are not significant enough to draw any conclusion
on the performance superiority.

The simulations in this section suggest that the proposed form still accomplishes the goal of gen-
erating smooth controls for the minimum-effort problem, but there is no fundamental difference to the
original form. Given the additional nonlinearity, the proposed form might not be preferred.
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5 Conclusions
Based on the trigonometric series, this paper developed a new parameterization method for generat-

ing smooth trajectories. The parameterization is nonlinear with respect to the series coefficient because
of the introduction of the filtering function. The filtering function is designed to reduce the oscillations
that are inevitable in the original formulation given in [18]. Performance evaluation has been done using
a generic optimal control software for a simple optimal control problem with different objective func-
tions. It exhibits clear advantages in terms of smoothness and optimality when the optimal controls have
a bang-bang-like structure in a minimum-time problem, while its performance is not significantly dif-
ferent for a minimum-effort problem. Hence, as it has been investigated so far, although the proposed
approach does not feature universally superior performance over the original formulation for all per-
formance indexes, it can provide a notable improvement and is worth trying when path constraints are
expected to be active for significant time intervals. Future works include further studies of the proposed
form on other aerospace applications.
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