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ABSTRACT

This paper proposes a mid-course guidance algorithm for dual-pulse rocket air-to-air missiles
based on the trajectory optimization framework. Pseudospectral Sequential Convex Program-
ming (PSCP) is utilized to solve the trajectory optimization problem for dual-pulse rocket mis-
siles with control inputs of the angle-of-attack and ignition time of the second pulse. Multi-phase
pseudospectral discretization enables us to treat the ignition time control problem by introduc-
ing an optimization parameter corresponding to the time interval between two pulses. Convex
sub-problems are composed to solve the non-convex discretized trajectory optimization problem
by linearizing the nonlinear dynamic constraints with a variable trust-region method and a line
search method. Numerical simulations show promising results that the proposed algorithm can
provide an accurate optimal solution within a few seconds in MATLAB.

Keywords: Mid-course Guidance, Dual-pulse Rocket Missiles, Trajectory Optimization, Pseudospectral Sequen-
tial Convex Programming (PSCP)

1 Introduction
Air-to-air missiles(AAMs) are one of the most significant combat systems in modern warfare.

AAMs can destroy enemy flight machines such as fighter aircraft and missiles before they complete the
missions. In order for AAMs to intercept the assigned targets successfully, a proper guidance algorithm
is necessary. Entire guidance algorithms can be distinguished into three phases: the initial guidance
phase, the mid-course guidance phase, and the terminal guidance phase. In the initial guidance phase,
missiles are stabilized after separation from the fighter and align their flight path angle for the mid-course
guidance phase. Then, a mid-course guidance algorithm brings the missiles around the targets to achieve
the seeker’s lock-on condition. Once the seeker acquires the target during the mid-course guidance
phase, the terminal guidance phase that missiles try to intercept the targets based on the seeker’s infor-
mation begins. To increase the chance of interception in the terminal guidance phase, missiles need to
have optimal operating conditions at handover time from the mid-course guidance phase to the terminal
guidance phase. In this respect, there have been many studies to develop an optimal mid-course guid-
ance algorithm to improve the terminal performance of missiles. A minimum time mid-course guidance
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law was proposed in [1] based on the singular perturbation technique. The singular perturbation-based
optimal mid-course guidance algorithm can also be found in [2–4] from the merit of the real-time ap-
plicability in the singular perturbation technique. In [5], a maximum final velocity mid-course guidance
problem and a minimum time mid-course guidance problem were solved by the steepest ascent method.
A near-optimal mid-course guidance algorithm that facilitates the on-board real-time calculation was
proposed in [6] based on the neighboring optimal control theory. In [7], an analytic mid-course guidance
law maximizing the final velocity was proposed. In [8], a combined optimal guidance law was derived
analytically, which can be applied to both the mid-course guidance and the terminal guidance phases. In
addition, neural network-based optimal mid-course guidance algorithms were proposed in [9–11].

As seen above, various optimal mid-course guidance algorithms have been studied so far. Many
existing mid-course guidance algorithms, including the previously reviewed works, were developed for
solid rocket missiles since conventional AAMs employed a solid rocket motor as a propulsion system.
This feature restricted their maximum range and terminal performance from high drag after the boost-
ing phase. On the other hand, the development of dual-pulse rocket motors enabled igniting two pulses
separately with a variable delay. It gave missiles some freedom to adjust the thrusting pattern to relieve
the energy loss from high drag by controlling the ignition time of the second pulse. From this inspec-
tion, it can be noted that the ignition time of the second pulse should also be optimized with the load
factor to derive the maximal performance of dual-pulse rocket missiles. In this regard, some related
works can be found. Optimal mid-course guidance algorithms for dual-pulse rocket missiles were de-
veloped based on the singular perturbation technique in [12, 13], the steepest ascent method in [14], the
calculus of variations in [15, 16], and the quasi-Newton parameter optimization in [17]. Although sev-
eral optimal mid-course guidance algorithms for dual-pulse rocket missiles were developed in previous
studies, there is a limitation that the exact optimality is not guaranteed since they include certain ap-
proximations (ex. time scale separation, constant altitude) for real-time implementation of the guidance
algorithms.

From this observation, this paper proposes an optimal mid-course guidance algorithm for dual-
pulse rocket air-to-air missiles, which can provide the exact solution with the real-time applicability
based on the trajectory optimization framework using the concept of computational guidance and con-
trol (CG&C) [18]. There are some previous works to solve missile guidance problems based on the
trajectory optimization framework [19, 20], but none of them has ever considered optimizing the thrust-
ing pattern of dual-pulse rocket missiles. In this paper, the mid-course guidance problem for dual-pulse
rocket air-to-air missiles is defined as a trajectory optimization problem, and Pseudospectral Sequential
Convex Programming (PSCP) is employed to solve the trajectory optimization problem. PSCP, which
refers to a combination of Pseudospectral methods and Sequential Convex Programming, is a numerical
optimization method successfully adapted to various problems and recognized for its high accuracy and
real-time applicability [21–24]. In addition, a variable trust-region method and a line search method are
applied in this study to attain the stable convergence property of the algorithm.

The remainder of this paper is constructed as follows: In Section 2, the mid-course guidance problem
for dual-pulse rocket air-to-air missiles is formulated as a trajectory optimization problem. In Section
3, the PSCP formulation of the trajectory optimization problem is presented. In Section 4, simulation
results are given to demonstrate the performance of the proposed method. Finally, the conclusion of this
work is provided in Section 5.
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2 Problem Formulation

2.1 Dynamics and Constraints
This subsection presents the equations of motion, boundary conditions, and flight constraints for

dual-pulse rocket air-to-air missiles. In this study, a two-dimensional engagement in a longitudinal plane
is considered. The missile is regarded as a point mass, then the equations of motion are given as

ẋ =V cosγ (1)
ẏ =V sinγ (2)

V̇ =
−D+T cosα

m
−g0 sinγ (3)

γ̇ =
L+T sinα

mV
− g0 cosγ

V
(4)

where the variables x, y,V, γ, α denote the downrange, altitude, velocity, flight path angle, and angle-of-
attack, respectively. The parameter g0 represents the constant gravitational acceleration. To ensure the
physical limitation of missiles that the angle-of-attack cannot vary too fast, the following state equation
and constraint are additionally imposed.

α̇ = ξ (5)
|ξ | ≤ α̇max (6)

where ξ represents the angle-of-attack rate, and α̇max denotes the maximum angle-of-attack rate. In
addition, the angle-of-attack is also bounded as follows.

αmin ≤ α ≤ αmax (7)

The variables L and D in Eqs. (3) and (4) represent the aerodynamic lift and drag force which can
be computed by the following equations.

L =
1
2

ρV 2Sre fCL (8)

D =
1
2

ρV 2Sre fCD (9)

where the variables CL and CD are the aerodynamic lift and drag coefficients which are functions of
Mach number and angle-of-attack, the variable ρ represents the atmospheric density governed by al-
titude. The parameter Sre f is the reference area. In this study, the following models are utilized to
compute the atmospheric density ρ and the aerodynamic coefficients CL and CD .

ρ = ρ0 e−y/ys (10)
CL =CLα

α (11)

CD =CD0 +KC2
L (12)

The variables T and m in Eqs. (3) and (4) represent the thrust and mass. For dual-pulse rocket
missiles, they are governed by the predesignated profiles described in Eqs. (13) and (14). Here, η1 cor-
responds to the time interval between two pulses.
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T =


T1 , t ≤ ∆tb1

0 , ∆tb1 < t ≤ ∆tb1 +η1

T2 , ∆tb1 +η1 < t ≤ ∆tb1 +η1 +∆tb2

0 , ∆tb1 +η1 +∆tb2 < t ≤ t f

(13)

m =


m0− ṁ1t , t ≤ ∆tb1

m0− ṁ1∆tb1 , ∆tb1 < t ≤ ∆tb1 +η1

m0− ṁ1t− ṁ2 (t−∆tb1−η1) , ∆tb1 +η1 < t ≤ ∆tb1 +η1 +∆tb2

m0− ṁ1∆tb1− ṁ2∆tb2 , ∆tb1 +η1 +∆tb2 < t ≤ t f

(14)

As seen in Eqs. (13) and (14), the entire time domain can be divided into four phases: two boosting phases
and two gliding phases. It should be noted that the boosting phases have the fixed time intervals: ∆tb1
and ∆tb2 , but the gliding phases have the variable time intervals: η1 and η2 as depicted in Fig. 1.

Fig. 1 Thrust and Mass Profile

Note that the total flight time can be represented as the sum of flight time in each phase. In addition,
the variable time intervals η1 and η2 should be greater than or equal to zero.

t f = ∆tb1 +η1 +∆tb2 +η2 (15)
η1 ≥ 0, η2 ≥ 0 (16)

Next, boundary conditions are defined for the mid-course guidance problem. In this study, it is
assumed that the initial states are constrained by the following conditions.

x(t0) = x0 y(t0) = y0 V (t0) =V0 γ (t0) = γ0 (17)

In many cases, terminal constraints are directly connected to the purpose of problems. The major
goal of the mid-course guidance is to lead missiles to a Predicted Intercept Point(PIP) with attaining the
high chance of the interception of targets in the terminal guidance phase. To this end, the following final
conditions are considered in this study.

x
(
t f
)
= x f y

(
t f
)
= y f γ

(
t f
)
= γ f α

(
t f
)
= 0 (18)
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The first two things represent the PIP constraint, and the last two things are for the field-of-view(FOV)
constraint to ensure the seeker captures the target at the lock-on moment. In addition, the last con-
straint can provide the operational margin of the acceleration at the beginning of the terminal guidance
phase. The terminal velocity, instead of being constrained, is set to be an optimization parameter to be
maximized, as explained in the following subsection.

2.2 Maximum Terminal Velocity Problem
This study focuses on the mid-course guidance problem maximizing the terminal velocity of mis-

siles. It is advantageous to maximize the terminal velocity of missiles during the mid-course guidance
phase for attaining high maneuverability in the terminal guidance phase. The performance index to be
minimized can be represented as follows.

J =−V
(
t f
)

(19)

Then, the maximum terminal velocity problem for dual-pulse rocket air-to-air missiles can be formulated
to the following trajectory optimization problem.

P0 : minimize J =−V
(
t f
)

subject to Eqs. (1)− (18)
(20)

The above problem P0 is a continuous optimal control problem with a non-convex structure and free-
final time. The problem P0 is firstly discretized using pseudospectral methods, and then, the discretized
problem is solved by Sequential Convex Programming(̇SCP) in the following section.

3 Pseudospectral Sequential Convex Programming

3.1 System Equation
Based on the equations of motion and the state equation described in Eqs. (1)-(5), let the state vector

and the temporary control input be defined as follows.

z ≜ [x y V γ α] , ũ ≜ α̇ (21)

Then, the system equation can be represented as

ż = f (z)+Bũ (22)

where

f (z) =



V cosγ

V sinγ

−D+T cosα

m
−gsinγ

L+T sinα

mV
−

gcosγ

V
0


, B =


0
0
0
0
1

 (23)

Note that the system equation is given in the form of the control-affine system. This feature makes
the convexification process simpler when applying Sequential Convex Programming (SCP) to the dis-
cretized trajectory optimization problem.
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3.2 Multi-phase Pseudospectral Discretization
In this study, multi-phase pseudospectral discretization is employed to deal with the trajectory op-

timization problem P0, which has a free-final time and the decision variable η1 corresponding to the
time interval between two pulses in the time domain. The entire time domain is divided into four phases
according to the thrust profile in Fig. 1, and Legendre-Gauss-Radau pseudospectral method is applied to
each phase. The first step is to normalize the time domain of each phase by its time interval. Then, the
system equation splits up into the following four system equations according to the phases.

z′p4
=

∆tb1

2
f (zp1)+Bup1 (24)

z′p2
=

η1

2
f (zp2)+Bup2 (25)

z′p3
=

∆tb2

2
f (zp3)+Bup3 (26)

z′p4
=

η2

2
f (zp4)+Bup4 (27)

where zp1 ,zp2,zp3,zp4 denote the state vectors, up1,up2,up3,up4 denote the control inputs for each phase,
f and B are defined in Eq. (23), and z′ represents the differentiation of the state vector with respect to
the normalized time. The control inputs are defined as the product of the temporary control input in
Eq. (21) and half of the time interval for each phase as follows.

up1 ≜
∆tb1

2
ũ, up2 ≜

η1

2
ũ, up3 ≜

∆tb2

2
ũ, up4 ≜

η2

2
ũ (28)

Suppose that the four phases have N1, N2, N3, and N4 numbers of LGR points, respectively, then
the discretized state vectors and control inputs can be expressed as

Zpi ≜
[
Zpi,1,Zpi,2, ...,Zpi,Ni+1

]T
, Upi ≜

[
Upi,1,Upi,2, ...,Upi,Ni+1

]T
(29)

where

Zpi,n ≜ [xpi(τn), ypi(τn),Vpi(τn), γpi(τn), αpi(τn)]
T , Upi,n ≜ upi(τn) (30)

where i = 1,2,3,4. In applying the multi-phase pseudospectral discretization, linkage conditions be-
tween two adjacent phases should be imposed for continuity of state vectors as

Zp1,N1+1 = Zp2,1, Zp2,N2+1 = Zp3,1, Zp3,N3+1 = Zp4,1 (31)

The boundary conditions in Eqs. (17), (18) can be represented using the discretized state vectors as
follows. Here, ∗ means that the corresponding state is not constrained.

Zp1,1 = [x0 y0 V0 γ0 ∗ ]T , Zp4,N4+1 =
[

x f y f ∗ γ f 0
]T (32)

where ∗ means that the corresponding states are not constrained. The state and control constraints in
Eqs. (6), (7) can also be represented using the discretized states and control inputs as follows.

αmin ≤ αpi,n ≤ αmax (33)∣∣up1,n
∣∣≤ ∆tb1

2
α̇max,

∣∣up2,n
∣∣≤ η1

2
α̇max,

∣∣up3,n
∣∣≤ ∆tb2

2
α̇max,

∣∣up4,n
∣∣≤ η2

2
α̇max (34)

where n = 1,2, ...,Ni+1 and i = 1,2,3,4. The remaining things to be discretized are the dynamic con-
straints and the objective function. Denoting the Radau differentiation matrix of each phase to Dpi , the
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system equations in Eqs. (24)-(27) can be replaced by the following algebraic equations [25].

Dp1Zp1 =
∆tb1

2
F(Zp1)+BUp1 (35)

Dp2Zp2 =
η1

2
F(Zp2)+BUp2 (36)

Dp3Zp3 =
∆tb2

2
F(Zp3)+BUp3 (37)

Dp4Zp4 =
η2

2
F(Zp4)+BUp4 (38)

where

F(Zpi)≜
[

f
(
Zpi,1

)
f
(
Zpi,2

)
· · · f (Zpi,Ni)

]T (39)

where n = 1,2, ...,Ni+1 and i = 1,2,3,4. The discretized objective function is simply expressed as

J =−Vp4,N4+1 (40)

All constraints and the objective function of the problem P0 are discretized, and the discretized
trajectory optimization problem can be written as follows.

P1 : minimize J =−Vp4,N4+1

subject to Eqs. (31)− (38)
(41)

Note that the constraints in Eqs. (31)-(34) are convex, but the constraints in Eqs. (35)-(38) are non-
convex from the nonlinear dynamics represented in Eq. (39) and the presence of optimization variables
η1, η2 in Eqs. (36) and (38). In this study, the non-convexity is handled by the successive convexifica-
tion method. The entire process to solve the problem P1, called Sequential Convex Programming, is
examined in the following subsection.

3.3 Sequential Convex Programming
Sequential Convex Programming refers to an algorithm to solve general optimization problems by

solving a sequence of convex sub-problems. There are various convexification methods such as change
of variables, relaxation, and successive linearization/approximation [26]. The successive linearization
method is mainly used in this study to convexify the nonlinear dynamic constraints in Eqs. (35)-(38).
They are given in the form of matrix equations, so for convenience, let us construct the matrix equations
in the form of column vector equations as[

D(n,1)
p1 × I5 · · · D(n,N1+1)

p1 × I5

]
Zr1 =

∆tb1

2
f (Zp1,n)+BUp1,n, n = 1, ...,N1 (42)[

D(n,1)
p2 × I5 · · · D(n,N2+1)

p2 × I5

]
Zr2 =

η1

2
f (Zp2,n)+BUp2,n, n = 1, ...,N2 (43)[

D(n,1)
p3 × I5 · · · D(n,N3+1)

p3 × I5

]
Zr3 =

∆tb2

2
f (Zp3,n)+BUp3,n, n = 1, ...,N3 (44)[

D(n,1)
p4 × I5 · · · D(n,N4+1)

p4 × I5

]
Zr4 =

η2

2
f (Zp4,n)+BUp4,n, n = 1, ...,N4 (45)

where

Zri ≜
[
ZT

pi,1,Z
T
pi,2, ...,Z

T
pi,Ni+1

]T
, i = 1,2,3,4 (46)
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where D( j,k)
pi represents the ( j,k) -th element of Dpi , and I5 denotes the identity matrix of dimension 5.

Hereafter, the coefficient matrices of the left-hand sides are written as Dri . Then, successive linearization
is applied to the right-hand side of the equations. It should be noted that the linearization schemes are
slightly different for the boosting phases in Eqs. (42) and (44) and the gliding phases in Eqs. (43) and
(45) from the existence of optimization variables η1 and η2 . Using the notation of (·)k to represent the
solution obtained in the previous k -th iteration, the dynamic constraints for the boosting phases can be
linearized as

Dr1Zr1 =
∆tb1

2
A
(

Zk
p1,n

)(
Zp1,n−Zk

p1,n

)
+BUp1,n n = 1, ...,N1 (47)

Dr3Zr3 =
∆tb2

2
A
(

Zk
p3,n

)(
Zp3,n−Zk

p3,n

)
+BUp3,n n = 1, ...,N3 (48)

where

A
(

Zk
pi,n

)
≜

∂ f
∂Z

∣∣∣∣
Z=Zk

pi,n

(49)

The linearized dynamic constraints for the gliding phases are given as follows.

Dr2Zr2 =
ηk

1
2

A
(

Zk
p2,n

)
Zp2,n +

1
2

f
(

Zk
p2,n

)
η1−

ηk
1

2
f
(

Zk
p2,n

)
+BUp2,n, i = 1, ...,N2 (50)

Dr4Zr4 =
ηk

2
2

A
(

Zk
p4,n

)
Zp4,n +

1
2

f
(

Zk
p4,n

)
η1−

ηk
1

2
f
(

Zk
p4,n

)
+BUp4,n, i = 1, ...,N4 (51)

The nonlinear dynamic constraints in Eqs. (35)-(38) are transformed to the linearized dynamic
constraints in Eqs. (47)-(51) which are convex. For the convex sub-problems to be composed, the
non-convex constraints of Eqs. (35)-(38) in the problem P1 are replaced by the convex constraints
of Eqs. (47)-(51). When solving non-convex optimization problems using the successive linearization
method, trust-region constraints are required for the linearization process to be valid in constructing con-
vex sub-problems. This study utilizes a variable quadratic trust-region method with a line-search method
introduced in [27]. The variable quadratic trust-region method can be realized by the state constraints
and the augmentation of a penalty term to the objective function. The state constraints are given as(

Zpi,n−Zk
pi,n

)T (
Zpi,n−Zk

pi,n

)
≤ spi,n (52)

where n = 1,2, ...,Ni and i = 1,2,3,4. The augmented objective function is given in Eq. (53). The
augmented objective function converges to the original objective function in Eq. (40) if the iterative
solution converges sufficiently, which is the equivalent to ∥s∥2→ 0.

J =−Vp4,N4+1 +ws∥s∥2 (53)

where

s ≜
[
sp1,1 , ... ,sp1,N1

,sp2,1, ... ,sp2,N2
, ... , sp4,1, ... ,sp4,N4

]
(54)

Then, the non-convex optimization problem P1 can be formulated to the following convex sub-
problem by including the augmented objective function, the linearized dynamic constraints and the
quadratic trust-region constraints.

P2 : minimize J =−Vp4,N4+1 +ws∥s∥2

subject to Eqs. (31)− (34), (47)− (52)
(55)
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Note that the convex optimization problem P2 can be solved efficiently and reliably by commercial
convex optimization solvers such as MOSEOK, SeDuMi, and SDPT3. The solution of the problem P1
can be obtained by solving the problem P2 repeatedly until the iterative solution converges. In addition,
this study applies a line search method after each iteration if the convergence condition is not satisfied.
Line search methods are known that can provide robustness for the SCP algorithm [27]. To this end, let
us define the following merit function that measures both the cost and the violation of original dynamic
constraints.

φ

(
Xk; µ

)
= Jk +µ

4

∑
i=1

Ni

∑
n=1

∥∥∥hpi,n

(
Xk

)∥∥∥
1

(56)

where Xk =
{

Zk,ηk,Uk,sk} is the solution pair, Jk is the cost, and hpi,n
(
Xk) is the residual error

of the original dynamic constraints of Eqs. (35)-(38) at each node in the k -th iteration. Denoting the
(k+1) -th solution pair of the convex sub-problem P2 as Xk+1 , the search direction is computed as
pk = Xk+1−Xk . The (k+1) -th solution pair is updated after the line search along the search direction
with the step length ζ k as

X̂k+1 = Xk +ζ
k pk (57)

This study employs a backtracking line search with a sufficient decrease condition to determine the
proper step length ζ k . The step length is initiated with the value of 1 and decreased at a constant rate as
ζ ← κζ , κ ∈ (0,1) until the sufficient decrease condition is satisfied.

φ

(
Xk +ζ

k pk; µ

)
≤ φ

(
Xk; µ

)
+λζ

k
∇pk φ

(
Xk; µ

)
(58)

where λ ∈ (0,1) is a design parameter related to the desired reduction rate of the merit function, and
∇pk φ

(
Xk; µ

)
is the directional derivative of φ

(
Xk; µ

)
along the search direction pk given by

∇pk φ

(
Xk; µ

)
= lim

ε→0

φ
(
Xk + ε pk; µ

)
−φ

(
Xk; µ

)
ε

(59)

The SCP algorithm to solve the problem P1 can be described by Eqs. (55)-(59). Since the problem
P1 comes from the pseudospectral discretization of the problem P0, we call the entire process to solve
the original problem P0 as Pseudospectral Sequential Convex Programming (PSCP) algorithm. Then,
the PSCP algorithm can be summarized as follows.

PSCP Algorithm

1) Set k = 0 and provide an initial guess for the solution pair X0

2) Using the previous solution pair Xk , construct and solve the convex sub-problem P2
3) Check the convergence condition given in Eq. (60). If the following condition is satisfied, go to

Step 4. If not, go to Step 5.

max
i,n

∣∣∣Zk+1
pi,n − Ẑk

pi,n

∣∣∣⪯ εtol, k ≥ 1 (60)

4) Return the newly obtained solution pair Xk+1 as the optimal solution, and stop the algorithm
5) Apply the line search described in Eqs. (56)-(59), update the iteration number as k← k+1, and

go back to Step 2.
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As shown in Step 1, the initial guess is required for the first iteration of the algorithm. In this study,
the initial guess of states is set to linear interpolation of both endpoints if specified. The downrange,
altitude, and flight path angle are those cases, but the velocity and angle-of-attack are not. The angle-of-
attack is just set to zero at each node, and for the velocity, the maximum value is roughly estimated at
first by the following equation.

Vmax =V0 +
T1∆tb1 +T2∆tb2

m0− ṁ1∆tb1
(61)

Then, linear interpolation between the initial and maximum velocity is utilized for the initial guess.
The variable time intervals are estimated by subtracting the burning times from half of the straight dis-
tance to PIP divided by average speed.

η
0
1 =

√(
x f − x0

)2
+
(
y f − y0

)2

V0 +Vmax
−∆tb1, η

0
2 =

√(
x f − x0

)2
+
(
y f − y0

)2

V0 +Vmax
−∆tb2 (62)

4 Simulation Results
In this section, the performance of the proposed algorithm is demonstrated by numerical simu-

lations. For trajectory optimization of dual-pulse rocket air-to-air missiles, simulation parameters are
given as follows. The parameters for the exponential atmosphere model are set to ρ0 = 1.225kg

/
m3 and

hs = 7254.24m . Missile operating parameters are selected as αmin = −20deg , αmax = 20deg , α̇max =
4deg

/
s , T1 = T2 = 8000N , m0 = 135kg , ṁ1 = ṁ2 = 3.5kg

/
s , and ∆tb1 = ∆tb2 = 5.0s , respectively.

The parameters related to missile configurations are chosen as CLα
= 20.0, CD0 = 0.3, K = 0.2, and

Sre f = 0.0249m2 . The number of LGR points is set to 15 for each phase (i.e., N1 = N2 = N3 = N4 = 15),
and the weight for the variable quadratic trust-region method is set to ws = 0.05. The design parame-
ters for the line search are selected as κ = 0.7, µ = 100, and λ = 0.3. The stopping criteria for the
SCP algorithm in Eq. (60) is selected as εtol = [50m, 50m, 1.0m/s, 0.01deg, 0.025deg ] . The consid-
ered engagement scenario is to reach the PIP at (x f , y f ) = (10km, 7km) with the terminal flight path
angle γ f = −10deg and angle-of-attack α f = 0deg from the initial states of x0 = 0km , y0 = 10km ,
V0 = 350m/s , and γ0 = 10deg .

Then, MATLAB with MOSEK [28] is utilized to solve the convex sub-problem P2. The trajectory
optimization is performed on a desktop with an Intel(R) i7-9700 3.00GHz processor, and each iteration
takes around 0.05 seconds to solve the problem. It takes 22 iterations for the SCP algorithm to solve
the discretized trajectory optimization problem P1. The convergence patterns for the performance index
J , the magnitude of state variations ∥s∥2 , the variable time intervals η1 and η2 , and the engagement
trajectory are depicted in Fig. 2. The results show that the performance index gradually approaches its
final value as the engagement trajectory and variable time intervals converge along with the iterations.
In addition, Fig. 2(b) shows that the magnitude of state variations converges to zero. Note that the mag-
nitude of state variations ∥s∥2 is augmented to the objective function as described in Eq. (53). It means
that even though we solve the problem P2 having the augmented objective function, the converged opti-
mal solution has the same value with the original objective function since ∥s∥2 = 0 at the last moment.
To check the validity of the optimal solution, this study compares the optimization results obtained by
the proposed algorithm (PSCP) and the general-purpose MATLAB software, GPOPS-II [29]. The results
of engagement trajectory, velocity, flight path angle, angle-of-attack, and thrust profile are compared in
Fig. 3, and it can be seen that the optimal solutions obtained by the proposed algorithm and GPOPS-II
are almost identical. It verifies that the proposed algorithm can provide an accurate optimal solution in
trajectory optimization for dual-pulse rocket air-to-air missiles.
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(a) Performance index (b) Magnitude of state variations

(c) Engagement trajectory (d) Variable time intervals

Fig. 2 Convergence patterns for the performance index, magnitude of state variations, engagement trajec-
tory, and variable time intervals

(a) Engagement trajectory (b) Velocity profile (c) Flight path angle profile

(d) Angle-of-attack profile (e) Thrust profile

Fig. 3 Comparison results for the engagement trajectory, velocity, flight path angle, angle-of-attack, thrust
profiles between the proposed method (PSCP) and GPOPS-II
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5 Conclusion
This paper presents a way to solve the mid-course guidance problem for dual-pulse rocket air-to-air

missiles based on the trajectory optimization framework. The optimal trajectory of dual-pulse rocket
missiles is established by optimizing the angle-of-attack and thrust profiles. Multi-phase pseudospectral
discretization that considers the entire time domain as two fixed-time domains and two variable-time do-
mains is applied to deal with the trajectory optimization problem, which is a free-final time problem and
has the decision variable in the time domain. Then, convex sub-problems are composed by linearizing
the nonlinear dynamic constraints of the discretized trajectory optimization problem. The solution to the
original problem is obtained by solving the convex sub-problems iteratively with the line search method.
In addition, numerical simulations are conducted to examine the performance of the proposed algorithm.
It is shown that the proposed algorithm obtains the solution after 22 iterations which take about 0.05s in
each iteration using a commercial solver MOSEK with MATLAB. Comparison with the results obtained
by GPOPS-II reveals that the proposed algorithm can provide an exact solution. From these observa-
tions, it can be concluded that the proposed algorithm has potential for trajectory optimization-based
closed-loop mid-course guidance for dual-pulse rocket air-to-air missiles.
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