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ABSTRACT

The air traffic management system is to deal with efficiency, safety, capacity, and environmental
impacts due to the strong growth rate of air traffic over the recent years. Aviation contributes
to climate change through the emission of carbon dioxides (CO2) and aviation non-CO2 effects,
and the corresponding climate impact is anticipated to increase critically. As the non-CO2 climate
effects are highly dependent on the chemical and meteorological background conditions, there is
a potential to reduce their associated climate impacts by planning climate-aware trajectories. To
identify the non-CO2 climate-sensitive regions, in this study, algorithmic climate change functions
requiring some weather-related variables to quantify the climate impacts are employed. The un-
certainty in the standard weather forecast can cause unreliable determination of climate-sensitive
regions and aircraft dynamics and, consequently, unreliable trajectories. To this end, the ensem-
ble prediction system is employed to characterize the uncertainty in the weather forecast. Then,
robust aircraft trajectory optimization problem is formulated, capable of providing robust climate
optimal trajectories taking into account uncertainty in meteorological variables. The optimization
is solved for different sets of user-defined parameters, penalizing the simple operating cost and
climate impact.

Keywords: Climate change; Aircraft trajectory optimization; Algorithmic climate change functions; Robust opti-
mization.

Nomenclature

ATR = average temperature response over 20 years
SOC = simple operating cost
RF = radiative forcing
aCCF = algorithmic climate change function
NLP = nonlinear programming
ATO = aircraft trajectory optimization
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1 Introduction
The emission of carbon dioxides (CO2) and non-CO2 effects due to aviation are contributing consid-

erably to global warming [1]. The non-CO2 effects include nitrogen oxides (NOx), causing changes in
ozone and methane concentrations, water vapor (H2O), hydrocarbons (HC), carbon monoxide (CO), sul-
fur oxides (SOx), and increased cloudiness due to contrail formation [1, 2]. These emissions effectuate
changes in the radiative balance of the Earth’s climate system. Such radiative impact has the potential to
evolve the atmosphere temperature by transforming the climate system into a new equilibrium state [3].

Nowadays, aviation is responsible for only about 5% of the anthropogenic climate impact [1, 3, 4].
However, by taking into account the growth rate of the global air transport industry, the contribution is
estimated to increase critically. The aviation industry experienced significant growth over the period of
1960-2018 in both activity, and climate impacts [5]. Following the recent report on aviation’s growth and
its corresponding anthropogenic climate impacts [5], the revenue passenger kilometers and the emission
of CO2 have been increased from 109 to 8269 billion km/year and 6.8 to 1034 Teragrams CO2/year,
respectively, in which the sharpest trend is referred to the period 2013-2018. The global air transport
industry is predicted to grow at 4.4% yearly in the next 20 years [6]. It is worth mentioning that the
COVID-19 pandemic has affected the expected growth rate and thus increased the uncertainty on the
expected rate [7, 8]. Such strong growth in the global air transport industry outweighs the predicted
annual fuel efficiency enhancement rate of 1–2% [9]. Thus, the aim of developing eco-efficient aviation
becomes increasingly challenging.

The net aviation effective radiative forcing (ERF) for 2018 is estimated to be 100.9mW/m2 (5-95%
likelihood range of (55,145)) [5]. The non-CO2 species contribute to 66% (66.6mW/m2) of net aviation
ERF with 57.4mW/m2 and 17.5mW/m2 caused by contrail cirrus and NOx emission, respectively, as the
main contributors, while this number is 33% (34.3mW/m2) for CO2 emission [5]. Mitigating the climate
impact of CO2 emission requires the development of more efficient aircraft and the use of alternative
fuels or propulsion. In contrast, the non-CO2 emissions which are responsible for approximately two-
thirds of aviation ERF (i.e.,≈ 66%) [5, 10] vary highly with geographic location, altitude, and time of the
emission [11, 12]. Taking into account such information concerning altitude and location dependencies
of non-CO2 aviation climate impacts in the aircraft path planning can potentially improve the net climate
effects.

To mitigate the climate impact of non-CO2 emissions within aircraft trajectory optimization (ATO),
information on climate-sensitive regions needs to be available. Various approaches have been proposed
to directly or indirectly consider the climate impacts of aviation within aircraft trajectory planning, in-
cluding reducing emissions [13], avoiding persistent contrail formation areas [14], reducing RF [15] and
reducing global warming potential (GWP) [11] (interested readers are referred to the survey on different
ways of considering climate impacts in aircraft path planning [16]). In this study, we use the algorithmic
climate change (aCCFs) functions developed within EU-project ATM4E [17, 18]. The aCCFs quantify
the climate impact of ozone and methane resulting from NOx emissions, water vapor emissions, and
persistent contrail formation from some meteorological variables. These functions are computationally
fast, thus, suitable to be employed by aircraft trajectory optimization techniques.

Numerous optimization approaches have been proposed in the literature to find climate-optimal tra-
jectories (see [16] for a classification of these techniques). However, here, we focus mainly on those
studies that employed aCCFs. Mainly two approaches have been considered: meta-heuristic and direct
optimal control techniques. The mathematical basis of the optimization using meta-heuristic to obtain
climate optimal trajectories can be found in [19]. In this study, Yamashita et al. developed the first
version of air traffic simulator AirTraf, as a submodel of the European Center HAMburg general circula-
tion model (ECHAM) and Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC)
model. In the later studies, [3, 18], Yamashita et al. developed the second version of air traffic simulator
AirTraf (AirTraf2.0) to include more routing options such as climate optimal one based on aCCFs. The
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other trajectory optimization technique is the direct optimal control approach. This method has been
numerously employed to determine climate optimal trajectories based on different elements represent-
ing climate impacts (e.g., CCF [20], emission-based climate change functions (eCCF) [21], and PCFA
for contrails [22]). As for aCCF, in [23], the optimization using trajectory optimization module (TOM)
was performed considering 13,000 intra-European flights. TOM uses General Pseudospectral Optimiza-
tion Package (GPOPS) through its MATLAB interface for transcription and IPOPT (interior-point NLP
solver) for solving the resulting nonlinear programming (NLP). The mitigation potentials reported in the
mentioned studies were promising. For instance, it was reported in [23] that a 50% reduction in climate
impact could be achieved with only a 0.75% increase in fuel consumption.

In order to calculate aCCF regarding each emission, some weather-related variables, including
temperature, potential vorticity, geopotential, relative humidity, and outgoing longwave radiation, are
needed. These variables are obtained from standard weather forecasts, and due to many factors, includ-
ing the incomplete knowledge of the state of the atmosphere, nonlinear, sometimes chaotic dynamics,
they are uncertain. Such a presence of uncertainty in the calculation of aCCFs and also aircraft dynamics
(due to the uncertainty in wind and temperature), if not considered, can lead to unreliable aircraft path
planning. To the best of our knowledge, all the studies regarding climate-optimized aircraft trajectory
planning reported in the literature (not limited to those considered aCCFs) are performed in deterministic
manners. To manage and integrate the effects of meteorological uncertainties in aircraft path planning,
reliable weather forecasts that are capable of representing possible deviations in weather conditions are
required. To this end, probabilistic weather forecasting has been introduced to represent uncertainty in
weather forecasts [24]. Among different approaches, the ensemble prediction system (EPS) is known as
the most promising one, generating n individual forecasts [25]. Each forecast indicates a possible real-
ization of weather variables, and in reality, the actual weather condition is expected to lie in the predicted
dispersion of weather variables obtained using ensemble members.

This study, for the first time, addresses robust aircraft trajectory optimization considering climate
impacts. The uncertainty in weather forecast is characterized using the ensemble prediction system,
and the aviation’s climate impacts are quantified using aCCFs. The concept of robustness that we refer
to is the determination of aircraft trajectory considering the performance of all possible realizations of
meteorological variables provided within the EPS weather forecast. In other words, instead of planning
a trajectory based on one forecast in a deterministic manner, we aim to determine a trajectory that is
optimal considering the overall performance obtained from ensemble forecasts. In this respect, from
the operational point of view, the optimized trajectory is tracked as determined, then the performance in
terms of variables such as fuel burn, arrival time, and climate impacts are impacted by uncertainty. This
concept represents a more realistic representation of actual aircraft operations than the deterministic
one. The proposed robust optimal control problem is converted to a higher-dimensional deterministic
optimal control problem using the approach proposed in [26]. Then, the direct optimal control method
is employed to solve the optimization problem.

The rest of the manuscript is arranged as follows. The problem statement is provided in Section
2. Section 3 presents the proposed robust optimization technique. The mitigation potential of our work
in reducing aviation’s climate impacts is explored in Section 4, and some concluding remarks close the
paper in Section 5.

2 Problem statement
In this section, some required preliminaries to formulate and state the robust aircraft trajectory opti-

mization considering the climate impacts are briefly presented. We first present the dynamical model of
aircraft, which is considered as the dynamical constraint of the optimal control problem (Section (2.1)).
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Then, the modeling of climate impacts using aCCF is presented in Section 2.2, which is included in the
performance index of the robust optimal control problem formulation in Section 2.3)

2.1 Aircraft dynamical model
The trajectory of the aircraft needed to evaluate the performance of the flight in the optimization

problem is to be calculated from the aircraft dynamics. As usually considered within air traffic manage-
ment studies, the state of the aircraft is assumed to evolve according to the point-mass model, where the
aerodynamic and propulsive performance of the aircraft is given by the BADA model [27, 28]. In this
case, the equations of motion are received as follows

φ̇

λ̇

v̇tas

ṁ

=


(
vtas cos χ +wy

)(
RM(φ)+h

)−1(
vtas sin χ +wx

)(
(RN(φ)+h)cosφ

)−1(
T(CT )−D(CL)

)
m−1

− fc(CT )

 (1)

where λ is the longitude, φ is the latitude, h is the altitude, vtas is the true airspeed, m is the mass, CT
is the thrust coefficient, and χ is the heading. In addition, (wx,wy) are the components of the wind, RM
and RN are the Earth’s ellipsoid radii of curvature in the meridian and the prime vertical respectively, T
and D are the magnitudes of the thrust and drag forces, and fc is the fuel burn rate. In line with previous
arguments, by choosing directly the heading χ as a control, instead of the bank angle, we are disregarding
the aircraft turn dynamics, which would require more involved computations while in principle having
little to no effect on the solution accuracy. It is worth mentioning that the dynamic of aircraft relies
on some meteorological variables such as components of wind and temperature. As these variables are
obtained from the standard weather forecast, they are not exact. The existence of uncertainty in aircraft
dynamics directly affects aircraft trajectories.

2.2 Climate impact quantified using aCCF
The climate impact of aircraft operations is modeled according to the published findings of the EU-

Project ATM4E [17], which include the so-called aCCF for the non-CO2 and CO2 agents, measuring
global climate impact using the average temperature response integrated over a 20 years (ATR20) [3].
The aCCFs quantify the climate impacts of ozone and methane resulting from NOx emissions, water
vapor emissions, and persistent contrail formation from some meteorological variables obtained from
standard weather forecasts in a computationally fast manner. As the weather forecast is not exact, there
exist uncertainties in the climate impacts quantified using aCCFs. In this paper, we implement the version
of aCCFs reported in [3].

2.3 Problem formulation: Robust ATO considering climate impacts
The objectives of the dynamical optimization problem are interpreted as mathematical expressions

and included in the objective function to be minimized (or maximized). In the context of optimal con-
trol theory, the following general form of the cost functional (or performance index) is considered for
optimizing problems with uncertainty [26]:

J = E
{
M
(
t0,x(t0), t f ,x(t f )

)
+
∫ t f

t0
L
(
t,x(t),u(t),z(t),ζ

)
dt
}

(2)

where M : R×Rnx ×R×Rnx → R and L : R×Rnx ×Rnu ×Rnz,Rnζ → R are the Mayer and La-
grange terms called terminal cost and cost-to-go, respectively. In Eq. (2), nx, nu and nz represent the
dimension of state vector x(·), control vector u(·) and vector of algebraic variables z(·), respectively.
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ζ denotes the vector of uncertain variables assumed to have a known probability distribution functions.
The uncertain variables perturb the state, control and algebraic variables through the system dynamics
as ẋ(t) = f

(
t,x(t),u(t),z(t),ζ

)
(e.g., aircraft dynamical model in this case). The nonlinear function f(·)

is assumed to be a measurable function in ζ (see [26] for more information). Based on the nature of
the optimization problem, several constraints as the type of equality and inequality path and terminal
constraints may be considered.

To determine climate optimal trajectories, climate-sensitive regions need to be defined and included
in the cost functional of the optimization problem. Here, we employ the version of aCCFs reported in
[3] to quantify the climate impacts of each agent mathematically as a function of geographical locations,
altitude, weather conditions, and time (provided in Section 2.2). In addition to the climate impacts, fuel
burn and flight time are crucial factors that are usually considered as objectives to be optimized. All in
all, the following performance index is defined for our purpose:

J = Simple Operational Cost (SOC)+Average Temperature Response over 20 years (ATR)

SOC = E
{

CI
[

Ct ·
[
t f − t0

]︸ ︷︷ ︸
flight time

+C f ·
[
m(t0)−m(t f )

]]
︸ ︷︷ ︸

fuel burnt

}

ATR = E
{

EI
∫ t f

t0

5

∑
i=1

ATRi
(
t,x(t),u(t)

)
dt︸ ︷︷ ︸

ATR of CO2 and non-CO2 emissions

} (3)

for i ∈ {CH4,Cont.,O3,H2O,CO2} as

ATRO3(t,x) = 10−3× aCCFO3

(
t,x) · ṁnox(t)

ATRCH4(t,x) = 10−3× aCCFCH4

(
t,x) · ṁnox(t)

ATRCont.(t,x) = 10−3× aCCFCont.(t,x) · v(t)
ATRH2O(t,x) = aCCFH2O(t,x) · ṁ(t)
ATRCO2(t,x) = aCCFCO2 · ṁ(t)

(4)

where ṁnox(t) = fc(CT ) ·EINOx . Such a definition of cost function allows considering both cost and
climate impact simultaneously as an objective to be minimized. However, there exists a trade-off between
these two objectives determined by the selection of cost and environmental indices, i.e., CI and EI,
respectively. The parameters Ct and C f are used to allow considering different explanations of costs
such as operational cost in USD or Euros. In this work, we assign Ct = 0.75[USD/s], C f = 0.51[USD/kg]
to express cost in USD [3].

The reason that the expected operator is used in the performance index is due to the uncertain vari-
ables considered as objectives. Uncertainties in flight time and fuel burn are related to the uncertainty in
meteorological variables used in the aircraft dynamical model. In addition, the aCCFs are also uncertain
due to the dependency on meteorological variables. For instance, consider the calculation of aCCFs
with the ensemble forecast. In this case, for an EPS forecast containing 50 ensemble members, one can
calculate 50 different aCCFs. An approach to analyzing the degree of uncertainty is to check the vari-
ability. In Section 4, for a specific case study, we will analyze the variability of ensemble members and
the calculated aCCFs. In addition to the dynamical constraint and objective function, there exist some
inequality and equality boundary and path constraints which will be provided in the next section.
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3 Robust climate optimal trajectory optimization
Based on the presented robust optimal control problem formulation, the aim is to determine a control

policy (in the form of closed-loop or open-loop) such that the cost functional Eq. (2) gets minimized
and operational and physical constraints are satisfied. For each realization of uncertain parameters (i.e.,
ζ (δ = δ0)), we can find the optimal solution in a deterministic manner using well-known optimal control
approaches such as the direct method. To this end, one alternative that has been proposed in the literature
to cope with such dynamical optimization problems is to discretize uncertain parameters (i.e., ζk for k =
1, · · · ,n), which can be done using stochastic quadrature rule [26, 32], and then calculate the trajectories
corresponded to each ζk, called trajectory ensemble as:

ẋ1(t)
ẋ2(t)

...
ẋn(t)


︸ ︷︷ ︸

ẋa(t)

=


f
(
x1(t),u1(t),z1(t),ζ1, t

)
f
(
x2(t),u2(t),z2(t),ζ2, t

)
...

f
(
xn(t),un(t),zn(t),ζn, t

)


︸ ︷︷ ︸

fa

(
xa(t),ua(t),za(t),t

)
(5)

where the augmented vector of control and algebraic variables are defined as ua(t) =
[
u1(t), · · · ,un(t)

]T

and za(t) =
[
z1(t), · · · ,zn(t)

]T
. The performance index and constraints are also approximated in a sim-

ilar manner (interested are referred to [26]). In this paper, we will employ a similar approach to [26]
to determine robust aircraft trajectory with respect to uncertainties in the meteorological variables quan-
tified using ensemble forecast. We use the aircraft dynamics presented in Section 2.1 with uncertain
components of wind. By employing the ensemble forecast, the uncertainty is directly given in a discrete
distribution fashion with equal weighting coefficients, which can be used to create the trajectory ensem-
ble. However, there exist some issues with the direct application of this approach in aircraft trajectory
optimization, and some reformulations are required and beneficial.

Within aircraft trajectory planning, it is required to obtain unique trajectories for latitude, longitude,
airspeed, and altitude, satisfying predefined initial conditions. To this end, the control policies are to
be obtained such that these states of aircraft dynamics follow a unique profile for all possible realiza-
tions of weather variables represented using ensemble members. Another issue is with the time as the
independent variable, which will be obtained unique for all ensemble members. The uniqueness of time
in all scenarios means that the aircraft’s position is fixed with respect to time, considering all possible
realizations of wind. In this case, the effects of uncertainty on the trajectories (e.g., uncertainty in the
wind) cannot be reflected efficiently because the range of feasible solutions is limited. To cope with the
mentioned issues associated with addressing uncertainties in the weather forecast, first, groundspeed vgs
and the course ψ are defined as additional algebraic and control variables, respectively, by taking into
account the following relation

vgs cos(ψ) = vtas cos(χ)+wy, vgs sin(ψ) = vtas sin(χ)+wx. (6)
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After these implementations, the trajectory ensemble is created with the following augmented state-space
representation of the aircraft dynamical model containing uncertainty [26]:

d
ds



φ

λ

vtas

m1
...

mn

t1
...

tn



=



cos(ψ)
(
RM(φ)+h

)−1

sin(ψ)

((
RN(φ)+h

)
cos(φ)

)−1

dv

− fc(CT,1)v−1
gs,1

...

− fc(CT,n)v−1
gs,n

v−1
gs,1
...

v−1
gs,n



(7)

with dt
ds = v−1

gs , where the augmented state and control vectors are

xa =
[
φ λ v m1 · · · mn t1 · · · tn

]T

ua =
[
dv ψ χ1 · · · χn CT,1 · · · CT,n

]T (8)

Here the untracked control variables (those that are not restricted to have the same values for all ensemble
members), such as heading and thrust coefficient, are free to have different values for different scenarios.
This is suitable only for real problems where the actual system has low-level controllers that can follow
the determined trajectories in real time at a shorter timescale than that of the optimal control problem.

In this study, as mentioned earlier, the aim is to find an optimal aircraft trajectory in the presence of
meteorological uncertainty and explore the trade-off between flight operational cost and climate impacts.
To this end, we approximate the cost functional Eq. (3) with respect to the augmented dynamical system
(trajectory ensemble) as

J = Expected SOC+Expected ATR

Expected SOC : CI
[

0.75
[1

n

n

∑
i=1

ti(s f )− t0
]
+0.51

[
m0−

1
n

n

∑
i=1

mi(s f )
]]

Expected ATR : EI ·
4

∑
j=1

ATRavg, j(s,xa(s))

(9)
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for j ∈ {NOx,H2O,CO2,Cont.}, where

ATRavg,NOx =
1
n

n

∑
i=1

∫ s f

0
aCCFi,NOx(s,xi(s))EIi,NOx(s,xi(s))ṁi(s)ds

ATRavg,H2O =
1
n

n

∑
i=1

∫ s f

0
aCCFi,H2O(s,xi(s))ṁi(s)ds

ATRavg,CO2 =
1
n

n

∑
i=1

∫ s f

0
aCCFi,CO2ṁi(s)ds

ATRavg,Cont. =
1
n

n

∑
i=1

∫ s f

0
aCCFi,Cont.(s,xi(s))ds

. (10)

where xi(·) is the state vector of the system regarding ensemble member i−th. Notice that the evaluation
of the performance index is now based on the distance flown (s) as the independent variable. To finalize
the formulation of the optimal control problem, the boundary conditions for our proposed trajectory
optimization are defined as follows [

φ ,λ ,vtas
]
(0) =

[
φ0,λ0,vtas,0

][
φ ,λ ,vtas

]
(s f ) =

[
φ f ,λ f ,vtas, f

]
mi(0) = m0

ti(0) = t0

(11)

for i = 1, · · · ,n.

4 Simulation results
In this section, we apply our proposed robust trajectory optimization method to a flight that departs

on May 21st 2018, 00:00 am UTC. In Section 4.1, the variability of meteorological situation forecasted
using ensemble prediction system and its effects on the aCCFs is investigated. Then, we apply our
proposed optimization to a flight from a neighborhood of Madrid to a neighborhood of Belgrade ( Section
4.2).

4.1 Analysis of uncertainty in ensemble weather forecast
Within ensemble weather forecast, we are provided with n individual probable forecasts. In this

study, we employ a weather forecast 3 hours in advance from ECMWF, containing 50 ensemble mem-
bers. To have more reliable quantification of climate impacts in the sense of uncertainty in standard
weather forecast, an approach is to calculate aCCFs for each ensemble member. Fig. (1) shows the
variability of the calculated aCCFs from ensemble members. The variability is defined as the standard
deviation taken from normalized variables. As can be seen, the uncertainty (or variability) on aCCF of
contrails is higher than aCCF of water vapour and NOx emission. The high uncertainty on aCCF of
contrails is related to the high variability of relative humidity within the ensemble weather forecast. This
is because PCFA, having high uncertainty as well, depends on meteorological variables temperature and
relative humidity. The variability of meteorological variables required to calculate aCCFs and aircraft
dynamical model is illustrated in Fig. (9). As can be seen, the variability of temperature is small enough
compared to the variability of relative humidity. In the case of contrail’s aCCF, in some regions, we
have uncertainty up to 50% around mean values. According to [3, 18], which uses aCCFs to quantify
climate impacts, the climate effect of contrails is higher than other species. Consequently, the robustness
analysis is crucial. In the next part, we address this issue by employing our proposed robust optimization
method.

8Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Fig. 1 Standard deviation of aCCFs taken from 50 ensemble members over European region at pressure
level 250hPa (21st 2018, 00:00 am UTC)
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4.2 Robust ATO considering climate impacts
In this section, the proposed optimization algorithm is applied to a flight from a neighborhood of

Madrid to a neighborhood of Belgrade on May 21st 2018, 00:00 am UTC at FL340. The aircraft is an
A330-341 with an initial mass of 2000 tons. As for the simulation, the initial and final true airspeeds
are selected as 240 m/s and 220 m/s, respectively. The rest limiting constraints (e.g., maximum thrust
coefficient and maximum Mach number) are provided within BADA4.0 specification. The direct optimal
control method is employed here to solve the proposed robust aircraft trajectory optimization. The
trapezoidal rule is used for the transcription of dynamical optimization to a nonlinear programming
problem (NLP), which is then solved by IPOPT solver in Python.

Since the order of climate impacts and cost measured using ATR and SOC, respectively, are differ-
ent, to have suitable selections for cost and environmental indices, we use the following relation to scale
these parameters:

CI = α, EI = (1−α)k; k =
SOCclimate−SOCcost

ATRcost−ATRclimate
, , 0≤ α ≤ 1.0 (12)

where for instance, SOCclimate is the SOC calculated when the optimization objective is only the climate
impacts. Notice that the cost and climate impact are the mean values.

Fig. (2) shows the climate impacts associated with each species for different values of parameter α .
Left-hand side figures show the climate impacts at each integration step, while the accumulated ones are
depicted in the right-hand side. From Fig. (2), one can conclude:

• The climate impact of contrails is higher than the other species
• The climate impact of contrails is highly uncertain
• For smaller values of α , the climate impacts of contrail and water vapour decrease, while it in-

crease the climate impact of NOx and CO2 emissions
• For smaller values of α , the range of uncertainty of contrails is squeezed

Fig. (3) depicts the net climate impacts for different values of α . The left-hand side figure shows
only mean ATR values for 0.3 ≤ α ≤ 1.0, without depicting uncertainty ranges. It can be seen that by
decreasing the value of α , the total ATR reduces. In the right-hand side figure, the net ATRs with the
ranges of uncertainty are given for three values of α as used in Fig. (2). Since contrails are responsible
for a great majority of total climate impacts, total ATRs are also highly uncertain. It is worth mentioning
that dispersion of total ATR is decreased with smaller values of α (i.e., α = 0.3). Fig. (4) shows the
share of each species to the total climate impact for different routing options. Since the contrails have
the largest contribution, the optimizer has mainly focused on avoiding contrails-sensitive regions. It is
also beneficial due to the sharp behavior of contrails-sensitive areas, which are normally zero and one
(if identified using PCFA). However, the other species behave smoothly (see, for instance, Fig. (8)). In
some cases, this fact is beneficial for mitigation potential because contrail avoidance may be achieved
with small changes in the lateral path. However, for smooth functions such as methane and ozone, it may
not be that much beneficial (e.g., in Fig. (2), the climate impacts have not been considerably changed).
Fig. (5) shows how the climate impact is reduced by avoiding contrail-sensitive regions.

The climate mitigation potential and its trade-off with the operational cost are depicted in Fig. (6).
In the left-hand side figure, one can conclude that with an increase of 1.5% in the operational cost
quantified using SOC, the climate impact is decreased by approximately 80% considering the average
performance. The right-hand side plot shows the Pareto-frontier with uncertainties using absolute values
(i.e., not given in percentage). For the cost-optimal routing option (α = 1.0), the uncertainty on ATR is
high, while for the climate optimal routing option (α = 0.3), it decreases. By comparing the order of cost
and climate impacts and also their deviations around mean values, one can conclude that the uncertainty
in operational cost is small compared to climate impacts.
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Fig. 2 The average temperature response for each species obtained from different values of α . Shaded
regions show the range of uncertainties.
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5 Conclusion
This paper addressed, for the first time, the robust aircraft trajectory optimization problem consid-

ering climate impacts. The climate-sensitive regions were identified using algorithmic climate change
functions (aCCF) calculated from some weather-related variables. The ensemble prediction system was
employed to characterize uncertainty in weather forecasts, leading to magnified uncertainties in aCCFs.
It was shown that there is relatively high uncertainty in the aCCF of contrails due to the high uncertainty
in relative humidity obtained from the EPS weather forecast. The robust aircraft trajectory optimization
was formulated as an optimal control problem, and the direct optimal control approach was employed to
solve the optimization problem. The effectiveness of the proposed methodology to deal with meteoro-
logical uncertainty in aircraft trajectory optimization was supported by simulations. A case study showed
that by accepting a 1.4% increase in cost, the climate impact could be approximately decreased by 80%
considering mean performance. In addition, with the climate optimal routing option, the dispersion of
climate impacts was also reduced compared to the cost optimal one.

Future works:
The aircraft trajectory optimization considered in this study was performed in three dimensions (3D)
(lateral path + time). As a future work, we aim to extend the results to the full 4D (lateral path + altitude
+ time) problem. In addition, in this study, the average value of the performance index (i.e., SOC and
ATR) was considered to be minimized. Although the minimization of expected ATR reduced the disper-
sion of climate impacts for the considered case study, the minimization of variability (e.g., the standard
deviation of performance index) in addition to the average values may provide more confident results by
avoiding uncertain climate-sensitive regions.

6 Appendix

6.1 Illustration of aCCFs for the considered case study
In this section, some weather variables required to calculate aCCFs and the resulting aCCFs are

depicted for a case study. As mentioned, the meteorological variables required to evaluate these aCCFs
are the potential vorticity, temperature, geopotential, the solar irradiance at the top of the atmosphere,
and outgoing longwave radiation, which are already available from the standard weather forecast. These
variables and the calculated aCCF for March 21st 2018, 00:00 am UTC over the European region at
pressure level 300hPa are depicted in Figs. (7,8), respectively. To compare the contribution of agents
to the total climate impact for this example, we adopt typical transatlantic values to unify the units
of aCCFs based on K/Kg(fuel). These approximated values for NOx emission and contrails are 1.3×
10−2Kg(NO2)/Kg(fuel) and 0.16×Km/Kg(Fuel), respectively [33]. By using these values, we can see
that the contrails and ozone are the main contributors, and the lowest effect corresponds to the water
vapour. By comparing the amplitude of aCCFO3 and aCCFCH4 , it can be concluded that the warming
impact of ozone outweighs the cooling impact of methane for this scenario.

References
[1] David S Lee, David W Fahey, Piers M Forster, Peter J Newton, Ron CN Wit, Ling L Lim, Bethan Owen,

and Robert Sausen. Aviation and global climate change in the 21st century. Atmospheric Environment,
43(22-23):3520–3537, 2009.

[2] Guy P Brasseur, Mohan Gupta, Bruce E Anderson, Sathya Balasubramanian, Steven Barrett, David Duda,
Gregg Fleming, Piers M Forster, Jan Fuglestvedt, Andrew Gettelman, et al. Impact of aviation on climate:

13Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Fig. 7 Weather variables needed to calculate aCCF and aircraft dynamics on March 21st 2018, 00:00 am
UTC over European region at pressure level 300hPa.

14Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Fig. 8 Algorithmic climate change functions on March 21st 2018, 00:00 am UTC over European region at
pressure level 300hPa.

15Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



20°W 5°W 10°E 25°E 40°E 55°E

10°N

20°N

30°N

40°N

50°N

60°N

70°N

Geopotential (STD)

20°W 5°W 10°E 25°E 40°E 55°E

10°N

20°N

30°N

40°N

50°N

60°N

70°N

Potential vorticity unit (STD)

20°W 5°W 10°E 25°E 40°E 55°E

10°N

20°N

30°N

40°N

50°N

60°N

70°N

Temperature (STD)

20°W 5°W 10°E 25°E 40°E 55°E

10°N

20°N

30°N

40°N

50°N

60°N

70°N

Relative humidity (STD)

20°W 5°W 10°E 25°E 40°E 55°E

10°N

20°N

30°N

40°N

50°N

60°N

70°N

Specific humidity (STD)

20°W 5°W 10°E 25°E 40°E 55°E

10°N

20°N

30°N

40°N

50°N

60°N

70°N

Wind (STD)

0.00

0.05

0.10

0.15

0.20

S
T

D
of

n
or

m
al

iz
ed

d
at

a
[-

]

Fig. 9 Standard deviation of some meteorological variables taken from 50 ensemble members over Euro-
pean region at pressure level 250hPa (21st 2018, 00:00 am UTC).

16Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



FAA’s aviation climate change research initiative (ACCRI) phase II. Bulletin of the American Meteorological
Society, 97(4):561–583, 2016.

[3] Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin
Dahlmann, and Christine Frömming. Newly developed aircraft routing options for air traffic simulation in the
chemistry–climate model EMAC 2.53: AirTraf 2.0. Geoscientific Model Development, 13(10):4869–4890,
2020.

[4] Ragnhild Bieltvedt Skeie, Jan Fuglestvedt, Terje Berntsen, Marianne Tronstad Lund, Gunnar Myhre, and
Kristin Rypdal. Global temperature change from the transport sectors: Historical development and future
scenarios. Atmospheric Environment, 43(39):6260–6270, 2009.

[5] David S Lee, DW Fahey, Agniezka Skowron, MR Allen, Ulrike Burkhardt, Q Chen, SJ Doherty, S Freeman,
PM Forster, J Fuglestvedt, et al. The contribution of global aviation to anthropogenic climate forcing for
2000 to 2018. Atmospheric Environment, 244:117834, 2021.

[6] Global Market Forecast. Future journeys 2013. Technical report.

[7] Corinne Le Quéré, Robert B Jackson, Matthew W Jones, Adam JP Smith, Sam Abernethy, Robbie M Andrew,
Anthony J De-Gol, David R Willis, Yuli Shan, Josep G Canadell, et al. Temporary reduction in daily global
co 2 emissions during the covid-19 forced confinement. Nature Climate Change, 10(7):647–653, 2020.

[8] Volker Grewe, Arvind Gangoli Rao, Tomas Grönstedt, Carlos Xisto, Florian Linke, Joris Melkert, Jan Middel,
Barbara Ohlenforst, Simon Blakey, Simon Christie, et al. Evaluating the climate impact of aviation emission
scenarios towards the paris agreement including covid-19 effects. Nature Communications, 12(1):1–10,
2021.

[9] S Solomon. The physical science basis: Contribution of working group i to the fourth assessment report
of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change (IPCC),
Climate change 2007, 996, 2007.

[10] David S Lee, Giovanni Pitari, Volker Grewe, K Gierens, Joyce E Penner, Andreas Petzold, MJ Prather, Ulrich
Schumann, A Bais, T Berntsen, et al. Transport impacts on atmosphere and climate: Aviation. Atmospheric
environment, 44(37):4678–4734, 2010.

[11] Manuel Soler, Bo Zou, and Mark Hansen. Flight trajectory design in the presence of contrails: Applica-
tion of a multiphase mixed-integer optimal control approach. Transportation Research Part C: Emerging
Technologies, 48:172–194, 2014.

[12] Malte Niklaß, Benjamin Lührs, Volker Grewe, Katrin Dahlmann, Tanja Luchkova, Florian Linke, and Volker
Gollnick. Potential to reduce the climate impact of aviation by climate restricted airspaces. Transport Policy,
83:102–110, 2019.

[13] Cesar Celis, Vishal Sethi, David Zammit-Mangion, Riti Singh, and Pericles Pilidis. Theoretical optimal
trajectories for reducing the environmental impact of commercial aircraft operations. Journal of Aerospace
Technology and Management, 6(1):29–42, 2014.

[14] Banavar Sridhar, Hok K Ng, and Neil Y Chen. Aircraft trajectory optimization and contrails avoidance in the
presence of winds. Journal of Guidance, Control, and Dynamics, 34(5):1577–1584, 2011.

[15] Yixiang Lim, Alessandro Gardi, and Roberto Sabatini. Optimal aircraft trajectories to minimize the radiative
impact of contrails and CO2. Energy Procedia, 110:446–452, 2017.

[16] Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Sigrun Matthes, Volker Grewe, Simone Diet-
müller, Sabine Baumann, Hiroshi Yamashita, Feijia Yin, Federica Castino, et al. A comprehensive survey on
climate optimal aircraft trajectory planning. Aerospace, 9(3):146, 2022.

17Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



[17] Sigrun Matthes, Volker Grewe, Katrin Dahlmann, Christine Frömming, Emma Irvine, Ling Lim, Florian
Linke, Benjamin Lührs, Bethan Owen, Keith Shine, et al. A concept for multi-criteria environmental assess-
ment of aircraft trajectories. Aerospace, 4(3):42, 2017.

[18] Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin
Dahlmann, and Christine Frömming. Analysis of aircraft routing strategies for north atlantic flights by using
AirTraf 2.0. Aerospace, 8(2):33, 2021.

[19] Hiroshi Yamashita, Volker Grewe, Patrick Jöckel, Florian Linke, Martin Schaefer, and Daisuke Sasaki. Air
traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0. Geosci. Model Dev, 9(9):3363–3392,
2016.

[20] Benjamin Lührs, Malte Niklass, Christine Froemming, Volker Grewe, and Volker Gollnick. Cost-benefit
assessment of 2D and 3D climate and weather optimized trajectories. In 16th AIAA Aviation Technology,
Integration, and Operations Conference, page 3758, 2016.

[21] Malte Niklaß, V Gollnick, B Lührs, K Dahlmann, C Froemming, V Grewe, and J van Manen. Cost-benefit
assessment of climate-restricted airspaces as an interim climate mitigation option. Journal of Air Transporta-
tion, 25(2):27–38, 2017.

[22] Sander Hartjes, Thijs Hendriks, and Dries Visser. Contrail mitigation through 3D aircraft trajectory opti-
mization. In 16th AIAA Aviation Technology, Integration, and Operations Conference, page 3908, 2016.

[23] Benjamin Lührs, Florian Linke, Sigrun Matthes, Volker Grewe, and Feijia Yin. Climate impact mitigation
potential of european air traffic in a weather situation with strong contrail formation. Aerospace, 8(2):50,
2021.

[24] AMS Council. Enhancing weather information with probability forecasts. Bull. Amer. Meteor. Soc, 89:1049–
1053, 2008.

[25] Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction. Nature,
525(7567):47–55, September 2015. DOI: 10.1038/nature14956.

[26] Daniel González-Arribas, Manuel Soler, and Manuel Sanjurjo-Rivo. Robust aircraft trajectory planning under
wind uncertainty using optimal control. Journal of Guidance, Control, and Dynamics, 41(3):673–688, 2018.

[27] A Nuic. User manual for the base of aircraft data (BADA) rev 3.11. Technical Report 13/04/16-01, Eurocon-
trol Experimental Centre. DOI: 10.1109/dasc.2006.313660.

[28] Eduardo Gallo, Francisco Navarro, Angela Nuic, and Mihai Iagaru. Advanced aircraft performance modeling
for ATM: Bada 4.0 results. In 2006 ieee/aiaa 25TH Digital Avionics Systems Conference, pages 1–12. IEEE,
October 2006. DOI: 10.1109/dasc.2006.313660.

[29] Jesper van Manen and Volker Grewe. Algorithmic climate change functions for the use in eco-efficient flight
planning. Transportation Research Part D: Transport and Environment, 67:388–405, 2019.

[30] Herbert Appleman. The formation of exhaust condensation trails by jet aircraft. Bulletin of the American
Meteorological Society, 34(1):14–20, 1953.

[31] F Yin, V Grewe, S Matthes, H Yamashita, K Dahlmann, E Klingaman, K Shine, B Lührs, and F Linke.
Predicting the climate impact of aviation for en-route emissions: The algorithmic climate change function
sub model ACCF 1.0 of EMAC 2.53. Geosci. Mod. Dev. Disc.(in preparation), 2020.

[32] Runqi Chai, Al Savvaris, Antonios Tsourdos, Senchun Chai, Yuanqing Xia, and Shuo Wang. Solving trajec-
tory optimization problems in the presence of probabilistic constraints. IEEE Transactions on Cybernetics,
50(10):4332–4345, 2019.

[33] Intergovernmental Panel on Climate Change. Aviation and the global atmosphere: a special report of IPCC
working groups I and III... Cambridge University Press, 1999.

18Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://doi.org/10.1038/nature14956
https://doi.org/10.1109/dasc.2006.313660
https://doi.org/10.1109/dasc.2006.313660

	Introduction
	Problem statement
	Aircraft dynamical model
	Climate impact quantified using aCCF
	Problem formulation: Robust ATO considering climate impacts

	Robust climate optimal trajectory optimization
	Simulation results
	Analysis of uncertainty in ensemble weather forecast
	Robust ATO considering climate impacts

	Conclusion
	Appendix
	Illustration of aCCFs for the considered case study


