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ABSTRACT

This paper investigates a stochastic route optimization problem for drone delivery systems, with a
focus on managing energy risk while optimizing service qualities. In drone delivery, couriers, i.e.,
small commercial unmanned aerial vehicles (UAVs), face a very limited power and load capacity,
which needs to be carefully settled throughout the route optimization process. Additionally, due to
its wind-sensitive property, the energy cost of a UAV is fiercely affected by the airflow and might
spread across a wide range. To optimize the route while managing its energy use properly, we pro-
pose an Energy-aware Planning Framework (EaPF), which is embedded with an energy prediction
model and adapts to any existing route optimizer. Instead of sampling using either analytical or
numerical formulations, the proposed energy prediction model directly yields the distribution of
energy consumption via a Mixture Density Network (MDN). Based on the statistical model, an
energy risk criterion and an objective function in the form of expectation are both developed for
route optimization. In addition, an event-driven routing simulator is devised with the aim to ac-
commodate the energy model and incorporate it with an optimizer. Finally, we implement the
proposed planning framework to the simulation test on a medical delivery mission, demonstrating
its superiority in terms of energy risk management and solution qualities.

Keywords: Drone Delivery; Route Optimization; Energy Risk Management; Mixture Density Network

1 Introduction
With the rapid development of UAV technology, UAVs are now increasingly being adopted by the

logistics industry, with intensive experimental tests being conducted to open up drone delivery techniques
to real-world deployment [1]. The introduction of small commercial UAVs into logistics markets is
expected to bring substantial economic and environmental benefits. Their instinctive flexibility and
efficiency also provide an alternative solution for time-critical deliveries and the ’last mile’ problems.

Despite its advantages, the introduction of a new courier always implies the need for new logistical
techniques. Delivering goods with small UAVs faces very strict battery and load limitations compared
to conventional ground transportation. To that end, renewable facilities are set in practical deployments
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to extend the range of services and increase delivery efficiency. In that case, planning routes in an
energy-aware manner tends to maximize the quality of services while being eco-friendly. Furthermore,
in the aerial logistic system, energy risk management is very important for mitigating the potential loss
of UAVs. It involves the process of pinpointing, evaluating, and prioritizing risks associated with un-
certainties in UAV’s energy consumption. Controlling energy risk can enhance the stable operation and
reliability of the delivery service.

Intensive research has been conducted on the subject of drone delivery planning, in which a cer-
tain objective is pursued while taking into account the energy constraint. Existing planning methods,
however, are often based on simple, abstract approximations of the underlying system, such as using a
pre-defined flight duration to imply the energy budget. This may benefit from computational tractability
and allows for quick analysis, but comes at the cost of ignoring real-world complexities. The wind, for
example, might cause the battery to drain quicker than expected. Intending to produce more reliable
solutions, a more sophisticated problem model is worth studying.

To this end, this paper gives an in-depth discussion of UAV energy modelling and addresses route
planning for UAV deliveries as a stochastic optimization problem within an energy-aware planning
framework. Specifically, we first identify five basic components of the green aerial logistics system
and its route optimization problem. Based on the conceptional definition, an energy-aware planning
framework is then proposed to address uncertainties in drone delivery problems, which incorporates a
statistical model of energy consumption and a heuristic optimizer.

To summarize, the contribution of this paper is listed as follows:

• Via statistical modelling, we approximate UAV’s energy consumption using a Mixture Density
Network (MDN) in consideration of winds. This allows for a view into the distribution of energy
costs without the need for sampling. Furthermore, the parameters of the energy consumption
model could be updated online with the aim of reducing the discrepancy between the planner
model and the real world.

• An energy risk metric is introduced based on the MDN model of drone energy cost. The metric is
used to assess the risk for a route and is calculated analytically, also avoiding the tedious sampling
process.

• Combined with simulation techniques, an Energy-aware Planning Framework (EaPF) is suggested
to address the energy risk issue for stochastic route optimization problems. It integrates the above-
mentioned energy model and forms a general scheme for energy-aware simulation-based route
planning. This framework adapts to any route optimizer and provides more reliable solutions for
energy risk-sensitive applications.

The rest of the paper is organized as follows. Section II provides an overview of previous works with
regard to energy-aware planning and simulation-based optimization. Section III gives a conceptional
definition of green aerial logistics systems and then introduces the route optimization problem for the
system. An energy-ware planning framework for the logistic systems is proposed in IV. This is followed
in Section V by the energy cost statistical modelling and the criterion of energy risk assessment. Section
VI and Section VII respectively present the details about the implementation of the routing simulator
and heuristic optimizer. A case study is illustrated in Section VIII. Section IX concludes this study and
outlines a brief plan for future research.
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2 Related Works

2.1 Energy-aware Planning
Regarding the limited capacity of batteries carried by small UAVs, energy consumption is an impor-

tant factor to consider in planning, routing and scheduling. To predict the energy demand, a variety of
energy consumption models have been established, either based on the dynamics of UAVs or via fitting
the practical experiment dataset. A rotary-wing vehicle’s power model is investigated in [2], considering
both hovering and forward flight. Based on this study, Kirschstein et al. [3] propose an energy consump-
tion model focusing on the drone delivery task, where four flight patterns are distinguished: take-off,
level flight, hovering and landing. More aerodynamic-based drone energy models can also be found in
[4–6]. In addition to analytical models, the energy model has recently been established on regression
techniques and machine learning. Through partitioning the flight of the UAV into segments of differ-
ent movements, Prasetia et al. [7] predict the energy consumption via collecting data, preprocessing
data, and regressing models for these movements separately. Choudhry et al. [8] develop a deep energy
model with temporal convolutional networks, which is trained on a real-world dataset [9] and shows a
29% improvement in power predictions.

Further, the limited battery capacity of the small commercial UAV always poses a significant risk to
its operation that the energy might run out before the drone lands at the next destination. Quantifying the
risk of using up batteries is very important for path planning and task routing. Risk assessment for aerial
vehicles in terms of energy is relatively a new research domain and it stems from the difficulty in identi-
fying and qualifying various factors that affect UAV energy consumption. Inspired by the risk assessment
metric proposed in previous work, a Conditional-Value-at-Risk (CVaR) is employed to qualify the risk
based on the Monte Carlo forward simulation of the energy distribution [8]. Risk assessment also facil-
itates planning in a risk-aware manner where the risk of each route is quantified to meet specific safety
regulations. For instance, the possibility of not completing a plan is studied for a stochastic orienteering
problem where the travel time for each edge follows a pre-known gamma distribution [10]. In [10], a
risk-aware criterion with respect to the probability of violating deadlines is considered in addition to
the reward-collecting objective, which is then used in a local research method. For the battery-bounded
drone delivery, energy prediction is also used to extend the range of delivery [11], in which energy cost
is regarded as a block box and trained via comparing the set of predicted destinations.

2.2 Simulation-based Optimization for Routing Problems
Simulation-based optimization extends deterministic techniques to deal with stochastic optimization

problems. One typical application, referred to as the term sim-heuristics, is combined with metaheuris-
tic methods. By integrating simulations into an existing metaheuristic framework, sim-heuristic allows
modellers to deal with uncertainties in a natural way. Moreover, sim-heuristics also facilitate the intro-
duction of risks and reliability analysis/assessment of solutions in stochastic combinatorial problems. A
general scheme of sim-heuristic is given in [12] for solving stochastic combinatorial optimization prob-
lems. For its specific application on routing problems, Mazzuco et al. [13] investigates the problem of
daily good deliveries and presents the first outcomes of a simulation-based optimization approach for
vehicle routing and transport scheduling. In terms of the stochastic character of real-world VRPs, Mayer
et al. [14] offers a Rich VRP simulation model based on the discrete event simulation (DES) workflow.
The simulation model is then used to evaluate the solution candidates for metaheuristics.

Besides combinations with metaheuristics, researchers also expect the combined use of system sim-
ulation and machine learning. A trial model of applying reinforcement learning (RL) in the AnyLogic
model is investigated in [15]. They demonstrate how to implement RL in the AnyLogic simulation
model using the Pathmind Library. The combination of DES and deep RL has also been studied on large
logistics networks [16], for which the authors first employ meta-heuristic approaches and then replace
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them with a reinforcement learning agent to find the most promising action sets. Event-driven simulation
is also beneficial in the domain of multi-agent reinforcement learning (MARL). Due to the curse of di-
mensionality, researchers tend to consider sparse actions or macro actions in MARL, which are probably
asynchronous especially when agents act in a decentralized manner. To address this asynchronicity, a
possible way is to model multi-agent decision processes as event-driven processes [17]. It makes the
DES a promising tool to simulate the multi-agent environment and train optimal policies.

3 Green Aerial Logistics Systems

3.1 Motivation
Suppose a mission scenario where there is a variety of delivery requests j ∈T and one fleet of UAVs

a ∈ A is sent to accomplish these requests maximizing customer services qualities without violating
their energy budget. It is identified as a route optimization problem for specified logistics systems where
the battery-driven UAVs serve as logistic carriers. Different from ground vehicles, these aerial vehicles
always face a highly strict energy constraint. If an energy prediction model is accessible, planning with
the awareness of energy tends to increase the quality of routes by reducing risks and extending the flight
range. However, in many real-world settings, the energy cost of UAVs is hard to predict and has shown to
be stochastic due to winds. Modelling it as a statistic distribution is much more reasonable than making
single-output predictions. At the same time, planning in an unpredictable environment is required to
be robust and dynamic. The robustness indicates the ability to systematically mitigate the sensitivity
of the policy to ambiguity in the underlying transition probabilities, while the dynamic property allows
the decision-maker to efficiently compute a good overall strategy by succinctly encoding the evolving
information state. To conclude, how to establish the above-described energy model and incorporate it
into a robust and dynamic planner is the main motivation behind this paper.

3.2 Green Aerial Logistics System
We build the green aerial logistics system (GALS) based on the architecture of the green logis-

tics system (GLS) from [18]. Similar to GLS, there are also five essential components for GALS, i.e.,
transportation network, vehicles, logistics request, renewable generations, and depots.

1) Aerial Transportation Network: We define the transportation network on an directed graph G =
⟨V,E⟩. Each vertex v∈V stands for a point of interest, which could be a task request, a recharging facility
or the depot. Each edge e ∈ E represents the path segment linking every pair of vertexes. Vertexes are
connected with the corresponding logistics components and each edge is associated with a series of
way-points, including the take-off, landing locations and predefined mid-way route points.

2) Autonomous Aerial Vehicles: The UAVs executing in the system are expected to be heterogeneous,
denoted as a ∈ A . Each of them is specified with an independent battery capacity Ba and a State of
Charge (SoC) Ca. UAVs are normally sent out from the depot with fully charged batteries and are
expected to get recharged before the battery uses up. Moreover, it is assumed that the logistics capacity
of UAVs is 1, i.e., it only processes one request at one time.

3) Logistics Requests: Customer requests are denoted as q ∈ Q, which consist of pickup tasks
qp ∈ Qp and delivery tasks qd ∈ Qd . Each pair of pickup and delivery tasks is bound together and
constrained by precedence relationship. They share same load weight wq, task value rq, severity index
sq, appearance time aq, and execution deadline dq.

4) Renewable Generation: Renewable facilities g ∈ G are deployed in GALS to extend the range
of service and promote environmental friendliness. Batteries equipped with UAVs get recharged or
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swapped in these locations. If recharged, the recharging rate is denoted as ρa. Additionally, we consider
at most that Ωg UAVs are allowed to be charged at point g at the same time.

5) Depots: Depots d ∈ D refer to those places where UAVs take off and are recycled at the end of
the route. In GALS, the depots also serve to charge UAVs.

3.3 Route Optimization in GALS
To make sure the GALS system functions well, an online mission planner is set to get logistics

requests allocated among the UAV fleet and also to plan an optimal route for each team member in terms
of certain objectives. It is characterised as a dynamic and stochastic green vehicle routing problem (SD-
GVRP), with optimal solution indicating maximizing a predefined objective function while satisfying
the battery budget and mission requirements.

3.3.1 Objective function
In logistics systems, optimizing the delivery flow indicates maximizing the rewards collected from

requests, while minimizing the loss if failed to arrive at one task within its time window. To quantify
rewards and losses, we denote the delivery request q using the following four parameters:

• delivery reward rq: the reward obtained by finishing request q;
• severity index sq: the penalty for failing to execute request q;
• appearance time aq: the time when request q arrives;
• execution deadline dq: the latest finish time for request q.

Also, for the ease of formulation, the status of UAV a at vertex j is described by

• visiting time ta
j : the time when UAV a arrives at j;

• duration of stay dura
j : the duration of stay at j for a ;

• state of charge (SoC) ca
j : the SoC of UAV a when it arrives at j.

For GALS, we consider practical objectives from four aspects: 1) maximizing the sum of collected
rewards; 2) minimizing the losses caused by missing delivery requests; 3) minimizing the sum of delivery
delay time; 4) minimizing the overall energy consumption.

Regarding a route Ra = [v1,v2, · · · ,vn] for UAV a and using above notations, the objective function
is formally given by

maximize f (Ra) = wr

n

∑
j=1

r(v j)−wd

n

∑
j=1

dla(v j)−we

n−1

∑
j=1

e(v j,v j+1) (1)

where wr,wd , and we represents weights for each components, e(v j,v j+1) indicates the energy cost flying
from v j to v j+1, the reward function r(v j) and the time-delay function dla(v j) are defined as

r(v j) =


0 if v j /∈ Qd

r j if v j ∈ Qd and ta
j ≤ d j

−s j if v j ∈ Qd and ta
j > d j

(2)

dla(v j) =

{
0 if v j /∈ Qp

ta
j −a j if v j ∈ Qp

(3)

5Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Fig. 1 Energy-aware Planning Framework.

3.3.2 Constraints
1) Route and precedence constraints

For logistics systems, the precedence relationship between pickup and delivery processes should be
satisfied, which could be guaranteed by ensuring tqp < tqd if qp and qd are for the same request, or by
defining the connectivity of the transportation network. Additionally, every route is expected to start and
terminate at the depot, i.e. v0,vn ∈ D, which could be the same one or not.

2) Energy constraint

Distinct from ground vehicles, small commercial UAVs always come with harsh restrictions on
battery and payload capabilities. Thus we impose a capacity constraint that the UAV only processes one
request at one time, and for flight safety, the SoC of UAVs must be guaranteed positive at any point of
the route, which means ca

j ≥ 0,∀ j ∈ R,∀a ∈ A .

4 Energy-aware Planning Framework
To handle the above route optimization for the GALS, we propose an Energy-aware Planning Frame-

work (EaPF), depicted in Fig.1. The main goal of EaPF is to produce robust routes and manage energy
risks in the face of poorly known uncertainties. In EaPF, an event-driven routing simulator serves as the
simulated environment, where we plug in an energy consumption model to yield stochastic state tran-
sitions. To reduce the discrepancies between the planning model and real-world dynamics, the energy
prediction model is derived from realistic data and online refined using empirical observations. Also,
the energy prediction model is used to quantify the energy risk, assessing the reliability of the route.
By means of filtering the reliable solution candidates using stochastic simulators, a route optimizer is
expected to produce robust routes via Simulation-based Optimization.

In this paper, we leverage a heuristic method as the route optimizer in EaPF. The heuristic algorithm
performs in a ’sim-heuristic’ way via incorporating the routing simulator. Other planning methods,
e.g., deep reinforcement learning (DRL), could alternatively be implemented in EaPF. In this case, the
simulator would also serve as the training environment. Observations are extracted from the simulated
environment and passed into the DRL network. Then the agent randomly chooses the next node fol-
lowing the output probability from the policy network while states in the event-driven simulator get
updated accordingly. During the process, rewards are collected and used to train the networks via DRL
algorithms.
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Fig. 2 Histograms of drone energy cost under winds. Four cases are simulated in presence of winds from
different directions: 0deg (tailwind), 90deg, 180deg (headwind), 270deg. The wind velocity vw and direction
θw follow: vw ∼ N(10m/s,1.5m/s), θw ∼ N(θ̄w,30deg)

5 Energy Modelling via Mixture Density Network (MDN)

5.1 Energy Prediction Model
Researchers have adopted regression techniques to predict the energy cost, the goal of which is

always to find a single-value prediction with maximum likelihood or a Gaussian conditional distribution
p(t|x). However, under varying wind conditions, the UAV energy cost for a given path is distributed
across a large range and is shown to be non-Gaussian (Fig.2).

In this study, we use a Mixture Density Network (MDN) to estimate the energy cost for a more
general formalism and more precise prediction. The MDN approximates conditional density functions
by mixing several component densities with mixing coefficients. Both densities and coefficients are
flexible functions of the input vector x. Here components are chosen as Gaussian Mixtures (GM):

p(t|x) =
K

∑
k=1

πk(x)N (t|µk(x),σ2
k (x)) (4)

Since we mainly focus on the effect of wind on UAV energy consumption, the input vector is set
as x = [µ(vw),σ

2(vw),µ(θw),σ
2(θw)], containing the mean value and std value of both wind speed and

direction.

The parameters in the above Gaussian mixtures are governed by the outputs of a conventional neural
network that takes x as its input. If there are K components in the mixture model, the network will
have 3*K outputs, representing mixing coefficients πk(x), means µk(x) and variances σ2

k (x) respectively.
Notably, since the sum of mixing coefficients must be 1, an extra SoftMax layer is imposed on coefficient
outputs, and an exponential operation is added to the variance outputs to satisfy the positive variances.
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5.1.1 Parameter Update
Ahead of the mission, the MDN network forms the prior distribution of energy cost p(t|θi), which

is parameterized by θi and trained using historical and simulated data. Once practical flights launch, the
network is then modified on board with latest empirical results (xi,yi), producing a posterior distribution
p(t|θi,xi,yi).

In terms of the parameter update, the trainable parameters θ of this density network, including
weights and biases in the neural network, is set by maximizing the likelihood, or equivalently by min-
imizing a loss function defined as the negative logarithm of the likelihood. The loss function takes the
form

L(θ) =−
N

∑
n=1

ln

{
K

∑
k=1

πk(xn,θ)N
(

tn|µk(xn,θ),σ
2
k (xn,θ)

)}
(5)

To minimize the loss function, we calculate the derivatives of the loss L(θ) with respect to param-
eters θ and update the network via the standard back-propagation procedure. Unlike the fixed energy
prediction model, the MDN is updated continuously, beneficial to long-term performance in real-world
applications.

5.1.2 Model Test
The MDN is set as a simple dense network, consisting of an input layer, an output layer, and two

full-connected layers with 256 neurons each. We apply the Adam optimizer with a learning rate of
0.001. The component number of the Gaussian mixture model is set as K = 5. The dataset used for
training comprises randomly generated wind parameters and the energy cost calculated via the deep
energy model from [8], which is based on an energy usage dataset collected from 100-hour real-world
flights [9]. Here, we adopt the application case 1 in [8] as the training environment, where the test site is
surrounded by ten buildings ranging in heights from 5 to 35 meters and the wind field is modelled using
computational fluid dynamics (CFD). The learning cures with regard to the likelihood of the training
dataset and validation dataset are shown in Fig. 3.

One instance is extracted for further illustration, where the inlet wind condition is sampled as
[µ(vw),σ

2(vw),µ(θw),σ
2(θw)] = [−169.27◦,47.7◦,9.06m/s,1.32m/s]. A series of 1000 Monte Carlo

simulations are also conducted using the above-mentioned deep energy model for comparison. The
probability density function via well-trained MDN and a histogram of numerical Monte Carlo results are
both depicted in Fig. 4. As seen from the figure, the MDN model achieves a very good approximation
to the histogram of Monte Carlo simulations.

5.2 Energy Risk Assessment

5.2.1 Risk Metric
For UAVs’ route planning, it is vital to make sure that the vehicle returns to a recharging point before

its battery uses up. Considering uncertainties in the operation environment, using the mean value or the
expected value to constrain the path might result in a relatively poor plan. Thus we employ a chance-
constrained strategy that guarantees the energy constraint within a certain risk threshold. Specifically, a
route candidate r = [v1,v2 . . . ,vk] is denoted as valid only if it satisfies the following change-constrained
metric:

R∗ =
{

r : pθ

(
C(r)< Br

)
≥ 1− ε)

}
(6)

where pθ (•) denotes the probability defined by uncertainty parameters θ , and Br is UAV’s remaining
budget. If the agent chooses a route from R∗, it can be guaranteed to finish the route within the allowable
risk threshold specified by ε .
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Fig. 3 Likelihood curves of the MDN for energy cost prediction

Fig. 4 An example illustration for energy prediction via MDN. Results obtained by MDN and Monte Carlo
simulations are plotted in the form of probability density functions and cumulative distribution respectively.

5.2.2 Joint Energy Distribution
For flexibility and computational efficiency, energy cost functions are applied on each network edges

rather than route solutions consisting of connected edges. Under the assumption of independent energy
costs, the probability density of energy cost for flying over a mission route is formed by integrating each
probability density function with regard to its path components. As a simple illustration, suppose there
is a route from waypoint A to way point C passing through waypoint B, the probability function of the
route is then given by

eac = eab + ebc ∼ ∑
i

∑
j

πiφ jN (µi +µ j,σ
2
i +σ

2
j ) (7)

when energy costs for both path segments follow mixture Gaussian distributions:

eab ∼
n

∑
i=1

πiN (µi,σ
2
i ), ebc ∼

m

∑
j=1

φ jN (µ j,σ
2
j ) (8)
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5.2.3 Mixture Weight Pruning
The component number of the energy prediction model increases exponentially when integrating

GMs of all path segments. To retain the number of components within a reasonable range, we resort to
mixture reduction techniques, which attempt to reduce the number of components in a mixture through
emerging or pruning. Here we primarily employ the emerging operation, which is inspired from [19].

The emerging operation replaces a pair of components in a mixture density with a single component
of the same type. Here we adopt the KL divergence as the criterion for selecting the emerging pair to
minimize the divergence between the emerged and original components. Formally, the KL divergence
criterion B(i, j) is calculated as

B(i, j) =wiDKL

(
p(x; µi,σ

2
i )||p(x; µi j,σ

2
i j

)
(9)

+w jDKL

(
p(x; µ j,σ

2
j )||p(x; µi j,σ

2
i j

)
(10)

where merged parameters are got by moment matching:

µi j =
wiµi +w jµ j

wi +w j
(11)

σ
2
i j =

(σ2
i +µ2

i )wi +(σ2
j +µ2

j )w j

wi +w j
−µ

2
i j (12)

Merging operations are implemented in a greedy manner. The pair of components with the minimum
global KL divergence is recursively selected to be emerged until reaching the target component number.

5.3 Objective Function in the Form of Expectation
Uncertain energy costs of drone couriers caused by airflow leads to stochastic route optimization

for GALSs. As defined in Section3.3, the objective component regarding total energy cost is directly
governed by the GM model of drone energy consumption, while the reward function and time delay
penalty is decided by arriving times, which implicitly depend on energy cost through charging time if
ground speed is assumed to be constant. Accordingly, the expected objective function with respect to the
GM model of energy cost is formulated as

maximize E( f (Ra) | θ) = wr

n

∑
j=1

E(r(v j) | θ)−wd

n

∑
j=1

E(dla(v j) | θ)−we

n−1

∑
j=1

E(e(v j,v j+1) | θ) (13)

where the expectation components are as follows

E(r(v j) | θ) = r j p(ta
j ≤ d j | θ)− s j p(ta

j > d j | θ) (14)

E(dla(v j) | θ) = µ(ta
j | θ)−a j (15)

E(e(v j,v j+1) | θ) = µ(e(v j,v j+1) | θ) (16)

where µ(• | θ) indicates the expected value of the GM model with its parameters θ .
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6 Event-driven Simulator for GALS
A Routing Simulator is developed based on the scheme of discrete event simulation (DES) to emu-

late the delivery process in real-world GALSs. In the GALS, most time increments produce no change to
the system, implying the fixed time advance simulation is clearly time-wasting. Therefore, we resort to
DES in which the simulation clock could skip to the next event time. The Routing Simulator implements
the standard components of a DES, as presented in [20], and is then extended regarding specific logistics
applications.

1) System State: The collection of state variables of GALS system entities (i.e., transportation net-
work, vehicles, requests, renewable facilities and depots), which is used to describe the system at a
particular time and forms the input data for route optimization.

2) Simulation Clock: A variable giving the simulated time.

3) Initialization Routine: Initialize the system entities model at time zero.

4) Timing Routine: Determine the next event from the event list and then advance the simulation
clock to the time.

5) Event Routine: Update the system state when an event occurs, and gather the reward value from
the state update.

6) Library Routine: A set of subprograms used to generate random observations from probabilism
models. For GALS, we employ modular models to get stochastic energy updates and reward functions.

7) Main program: A subprogram that invokes the timing routine to determine the next event and
then transfers control to the corresponding event routine to update the system state appropriately.

Based on the components listed above and the workflow presented in [20], we integrate the Simulator
with a route optimization module, as depicted in Fig. 5. The optimization module takes the system state
as input data and generates optimized routes via an optimizer. These routes compose the main behaviours
of the system and always return its first element in the sequence. The optimization module is first invoked
after the system is initialized, and might also be triggered by specific events or after a re-planning time
interval. For example, when a breakdown event from a vehicle or a new customer request occurs, the
optimization module might be re-invoked, redefining all the tour events in the event list. This trigger
mechanism enables the implementation of the dynamic rolling horizon planning scheme and could be
flexibly designed in terms of the trade-off between performance and computational expense.

7 Heuristic Optimizer
A typical and efficient heuristic method, the neighbourhood search (NS) algorithm, is employed

in this paper as the route optimizer. It is implemented on two basic local-search operators: intra-route
relocation and inter-route relocation, after which a recharging insertion operation is appended to finish
the route consideration of the energy constraint.

Intra-Route relocation: The order of two pairs of pickup and delivery nodes are swapped for the
same vehicle.

Inter-Route relocation: A pair of pickup and delivery nodes are removed from a vehicle and inserted
into another vehicle.

Recharging insertion: Every time after applying either of the above operations, the utility of the route
is calculated with consideration of the required recharging. Herein applies a quite simple recharging
policy: vehicles whose battery is insufficient to cover both the next assigned request and the flight to
recharge stations go to the closest station to get fully recharged.
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Fig. 5 The workflow of Discrete Event Simulation integrated with optimization.

8 Case Study: Drone Medical Delivery
The effectiveness of the EaPF is verified through simulations. We consider a medical delivery

mission as the demonstration environment. The mission is initialized with a heterogeneous task list
consisting of 20 delivery requests, each of which features different delivery properties in view of realistic
medical applications, as listed in Tab. 1. These requests are expected to be accomplished by a fleet of
3 vehicles, with 5 recharging stations deployed in the mission area to provide recharging services. All
vehicles are sent out from one same depot and finally recycled there. Stations, the depot and all customer
requests, including pickup and delivery tasks, are randomly located in a 10km×10km mission area. Each
UAV’s battery capacity is considered to be the same, 0.3kWh. The commanded airspeed is set as 15m/s.

Table 1 Properties of medical delivery requests.

Delivery Product Value Severity Time requirement
Blood sample 4 1 20 min

Test result (critical) 3 1 30 min
Medical supply (critical) 2 1 35 min
Test result (non-critical) 1 1 40 min

Medical supply (non-critical) 1 1 60 min
Medical equipment 1 1 2 h
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To demonstrate the capability of EaPF in terms of settling stochastic energy consumption, we
optimize routes using the original NS algorithm, the NS algorithm with 20% battery safety margin
(NS20%) and the NS algorithm integrated within the EaPF framework (NS-EaPF) respectively. The
battery safety margin means a specific percentage reduction to the available battery capacity considered
in planning with the aim to prevent battery exhaustion. The weights in objective functions are set as
wr = 1.0,wd = e−4,we = 1.0.

Tab. 2 compares the planning performance of the above three approaches in terms of risk regulation
and quality of routes. Results are averaged using 1000 random scenario instances. Among them, one
particular instance is extracted in Fig. 6 for further illustration. In Fig. 6, the route sequences planned by
NS and NS-EaPF are depicted, along with the cumulative probability curves of finishing time for each
delivery request or the energy consumption on recharging stations and the depot.

(a) Routes via NS

(b) Route via NS-EaPF

Fig. 6 Routes planned by NS and NS-EaPF. The executing order is from left to right. For customer request
nodes, the cdf curve with respect to finishing time is plotted while the time consumption curve is presented
for other nodes. Red dots indicate deadlines for requests or energy limitations for vehicles

As shown in Tab. 2, the approach combined with the EaPF yields a more reliable performance in
terms of the maximum energy risks in comparison with original NS algorithm. Additionally, compared to
NS20%, the NS-EaPF achieves higher objective values within a risk threshold of 1.0%. Setting a certain
margin for battery usage is the strategy that is mostly used in industrial applications, which, however,
comes with the question that how to define the margin value. With the UAV operating in varying wind
fields, the fixed safety margin might either become risky or conservative.
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Table 2 Performance comparison

Method Task reward/penalty Time delay Energy cost Overall objective max energy risk
NS 27.60 780.9 min 4.77 18.14 14.37%

NS20% 20.80 894.6 min 4.85 10.58 0.02%
NS-EaPF 24.80 841.2 min 4.76 15.01 0.39%

Fig. 6 further illustrates the risk regulation function of NS-EaPF using one specific mission instance.
In this case, vanilla NS tries to execute all delivery tasks while taking the risk of overusing the battery,
e.g., the energy risk arrives at 0.20 when Vehicle2 is flying to Station 0 after finishing Task 16. In
contrast, NS-EaPF follows a risk threshold, set as 1.0%, guaranteeing the safety of executing vehicles
even at the cost of violating the time window constraint for a request.

9 Conclusion
This paper investigated the energy-risk aware planning problem for unmanned aerial logistic sys-

tems. Constrained by limited battery capacities, UAVs tend to visit recharging facilities frequently,
featuring a relatively fluctuating state of charge, which makes its energy risk management worth study-
ing. For that reason, we proposed an Energy-aware Planning Framework (EaPF), which integrates an
energy prediction model, a routing simulator and a route optimizer. The energy prediction model adopts
mixture density networks, facilitating insight into the distribution of energy costs without the need for
sampling. Based on it, the energy risk is also analytically assessed. Then an event-driven simulating
workflow is presented, which accommodates the simulation with the uncertainty model and a heuristic
route optimizer. Finally, we evaluated the risk management ability of the EaPF via a medical delivery
case stud. For comparison, an independent optimizer, an optimizer setting a given battery safety margin,
and an optimizer integrated with the EaPF are respectively implemented. Results have shown that the
approach incorporated in EaPF produces more reliable solutions where the risk is regulated within a
certain threshold, and the quality of routes is also improved compared to the safety strategy using battery
margins.

Dynamic events, such as the breakdown of UAVs and the arrival of new requests, are happening
in the logistic systems from time to time. Our proposed discrete event simulator has the potential to
simulate these scenarios. However, this kind of case is not within the scope of this paper. Also, the
adopted heuristic approach is not efficient enough to respond to the dynamic event on time. Thus, for
future work, we are planning to extend the implementation of EaPF to dynamic logistic systems and
employ a more advanced route optimizer.
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