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ABSTRACT

This study aims to design a destination and time-series inference algorithm for tracking moving
targets. The destination of the vehicle is considered as the drone’s intent, and the inference is
accommodated in the Bayesian framework. The destination-driven dynamic model is described
by a Conditionally Markov (CM) model. The CM model is utilised in the intent-driven trajectory
estimation based on a multiple model adaptive estimator (MMAE), where the bank of Kalman
filters produce state estimates and the inferred destination. The proposed inference algorithm
is applied to a moving target tracking scenario, and performance is evaluated via the numerical
simulation.
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1 Introduction
Destination inference has potential benefits for better understanding object’s behaviour, enhancing

recognition of the pattern, thus supporting a proper decision making. The destination imposes the
object’s intent and an expected future behaviour, which could provide more accurate state estimations.
In general, the destination inference has been interpreted as selection of the most probable intent within
a finite set of the destination candidates that are priorly collected. Then, the intent inference problem
has been investigated using probabilistic approach based on estimation theory [1–4], Bayesian inference
framework [5–7], patternmatching [8, 9], andmachine learning techniques [10, 11]. In addition, the intent
inference has been extended to many applications such as surveillance [9], air-traffic control[2, 3, 10]
human-machine interaction [4, 11, 12], and intelligent interactive displays[5, 6, 13].

For imposing destination information into time-series inference, destination-driven dynamic mod-
eling is necessary. Unlike the Markov process (MP), the destination-driven dynamic model generally
comprises of destination component in addition to the initial distribution and evolution law, which allows
for more accurate tracking by the effect of the expected future information into the current estimates.
However, the destination-driven dynamic model requires a more general stochastic process that exhibits
non-causal properties. The destination implies future position of the object, hence the destination infor-
mation imposes the non-causal property of the stochastic process. Several approaches in the stochastic
process have been found to address the non-causal property of the stochastic sequence such as Reciprocal
process (RP) [14–17], and Markov Bridge [6], and Conditionally Markov (CM) [15, 18–21].
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There are several studies for intent inference and state estimation. In [1, 2], hybrid state estimators
using an interactive multiple model (IMM) filtering were proposed. State estimation using Markov
process models for finite flight modes were designed in parallel, and destination inference along with
state estimation was performed by computing the likelihood between the target’s velocity vector and the
destination. However, these studies focused more on the flight mode inference for state estimation, and
the destination information was not directly incorporated into the inference. Refs. [5, 6] incorporated
the destination information into the dynamic model for Bayesian intent inference. Ref. [5] used an
Ornstein-Uhlenbeck (OU) process to build the state transition probability, and the destination inference
was performed by sequentially calculating the likelihoods via MMAE. Ref [6] derived RP model as the
state transition probability using the Markov Bridge. The MMAE based filters captured the influence of
the endpoint on the dynamicmodel and showed the effective performances in human-machine interaction.
However, this approach requires the full information of the terminal distribution including a final time
and velocity at which the target will reach the destination. In practice, some waypoints are partially
informative, and thus a supplementary approach to adapt this issue is needed. In addition, the Markov-
bridging model in [6] assumes that the initial distribution is independent of the terminal distribution, it
could be inconsistent with the Markov nature in that it dictates the transition density 𝑝(𝑥𝑁 |𝑥0). To handle
a more generic model that includes such a correlation, it is necessary to describe the dynamic model with
a general and constructive framework.

In this regard, CM can suitably address the destination and time-series inference in a constructive
and generalised manner. The CM sequence comprises three components: initial distribution, terminal
distribution, and transition probability. The principle of CM is that the state evolution can be described
as the state transition probability conditioned on the current state and end point. Refs. [15, 20] showed
that CM is a more general sequence than MP and RP. It was also shown that a Markov-induced dynamic
model properly describes the destination-oriented motion [19], and a Kalman filter can be implemented
in state estimation based on the CM model [21]. The studies on CM have been recently extended to a
series of waypoints tracking target estimation [20], whereas intent inference based on CM process have
not been conducted yet.

Motivated by the works [19–21], we present a destination and time-series inference algorithm using
CM sequences. Specifically, this study addresses following considerations for the inference algorithm.

• CM-based intent inference that could capture more general destination-oriented motion than ex-
isting approaches based on MP and RP.

• Estimation of un-predetermined terminal velocity and time which gives cost-effective estimates
and alleviates the dependency on the accuracy from prior distribution.

For intent inference, a destination is regarded as intent of the object, and Bayesian inference enables
to estimate the intended destination by choosing the maximum posterior probability density among a
finite candidates. The destination-driven state transition density is formulated via CM model for each
candidate destination. In this way, the state transition model via CM process properly describes more
general destination-driven target motion in the time-series inference compared to the Markov bridging
model in Ref. [6]. For imposing arrival time and terminal velocity required in the CM model, this
study includes an estimation of the terminal values before time-series inference step, thereby easing the
dependency on the prior distribution for state estimation. In return, the proposed intent inference gives a
reliable destination and state estimates.

The rest of the paper is organised as follows. Section 2 briefly introduces a preliminary result of CM
process along with MP and RP. Based on the mathematical background, the intent inference algorithm
is proposed in Section 3. To demonstrate the effectiveness of the proposed algorithm, a numerical study
is performed. The results are discussed in Section 4. Lastly, Section 5 summarises concluding remarks
with future research.
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2 Mathematical Background
This section presents a preliminary and mathematical basis that describes destination-driven stochas-

tic sequences. There are many ways to generate sample path of a stochastic sequence depending on
different consideration of the stochastic process. Definitions of the stochastic processes such as MP, RP,
and CM are briefly introduced, and related results that investigate the inclusive relation between those
processes are presented. Using the definitions, we present the dynamical modeling of the stochastic
sequence in terms of the Markov-induced 𝐶𝑀𝐿 model derived in [19].

2.1 Definitions and preliminaries
The following notations are used throughout this study.

[𝑥𝑘 ] 𝑗𝑖 = {𝑥𝑖, 𝑥𝑖+1, · · · , 𝑥 𝑗 }, [𝑥𝑘 ] = [𝑥𝑘 ]𝑁0

There are many stochastic processes to describe a stochastic sequence. In this section, we briefly review
some stochastic processes with important properties. First, the Markov process (MP) can be equivalently
defined as

Lemma 1. [𝑥𝑘 ] isMarkov iif 𝐹 (b𝑖 | [𝑥𝑘 ] 𝑗0) = 𝐹 (b𝑖 |𝑥 𝑗 ) ∀ 𝑗 < 𝑖,∀b𝑖 ∈R
𝑑 , where 𝐹 (·|·) denotes the conditional

cumulative distribution function.

In MP, the probability density function (PDF) satisfies 𝑝(𝑥𝑘 | [𝑥𝑖]𝑘−10 ) = 𝑝(𝑥𝑘 |𝑥𝑘−1). Then, the
stochastic sequence can be described by the MP as

𝑝( [𝑥𝑘 ]) = 𝑝(𝑥0, 𝑥1, · · ·𝑥𝑁 ) = 𝑝(𝑥𝑁 |𝑥𝑁−1) · · · 𝑝(𝑥2 |𝑥1)𝑝(𝑥1 |𝑥0)𝑝(𝑥0) (1)

The above sequence complies with the causual property. For a destination-driven dynamics, the terminal
state influences the transition of the current state, which makes the resultant sequences non causal. For
imposing such a non-causalty, the following definitions of RP, and CM are introduced as

Lemma 2. [𝑥𝑘 ] is RP iif 𝐹 (b𝑖 | [𝑥𝑘 ] 𝑗0, [𝑥𝑘 ]
𝑁
𝑙
) = 𝐹 (b𝑖 |𝑥 𝑗 , 𝑥𝑙) ∀ 𝑗 < 𝑖 < 𝑙 ∈ [0, 𝑁], ∀b𝑘 ∈ R𝑑 .

Lemma 3. [𝑥𝑘 ] is [𝑘1, 𝑘2] −𝐶𝑀𝑐, 𝑐 ∈ {𝑘1, 𝑘2} iif 𝐹 (b𝑖 | [𝑥𝑘 ] 𝑗𝑘1 , 𝑥𝑐) = 𝐹 (b𝑖 |𝑥 𝑗 , 𝑥𝑐) ∀ 𝑗 < 𝑖 ∈ [0, 𝑁],∀b𝑖 ∈ R𝑑 .
Remark 1. We use the following notation (𝑘1 < 𝑘2)

[𝑘1, 𝑘2] −𝐶𝑀𝑐 =

{
[𝑘1, 𝑘2] −𝐶𝑀𝐹 if 𝑐 = 𝑘1
[𝑘1, 𝑘2] −𝐶𝑀𝐿 if 𝑐 = 𝑘2

When the CM interval is the whole time interval, [0, 𝑁] −𝐶𝑀𝑐 sequence is called 𝐶𝑀𝑐.

Note that the RP can be characterised as the three-point distribution where the conditional PDF
depends on its adjacent points. On the other hand, CM describes the stochastic sequence partitioned on
the end point and the previous point. Hence, a PDF in 𝐶𝑀𝐿 satisfies 𝑝(𝑥𝑘 | [𝑥𝑖]𝑘−10 , 𝑥𝑁 ) = 𝑝(𝑥𝑘 |𝑥𝑘−1, 𝑥𝑁 ).
Upon the relation, the 𝐶𝑀𝐿 sequence can be generated by the following steps: i) generate the endpoint
states from density 𝑝(𝑥0, 𝑥𝑁 ), ii) generate other states from 𝑝(𝑥𝑘 |𝑥𝑘−1, 𝑥𝑁 )

𝑝( [𝑥𝑘 ]) = 𝑝( [𝑥𝑘 ]𝑁−10 |𝑥𝑁 )𝑝(𝑥𝑁 )

= 𝑝( [𝑥𝑘 ]𝑁−11 |𝑥0, 𝑥𝑁 )𝑝(𝑥0 |𝑥𝑁 )𝑝(𝑥𝑁 ) =
(
𝑁−1∏
𝑖=1

𝑝(𝑥𝑖 |𝑥𝑖−1, 𝑥𝑁 )
)
𝑝(𝑥0 |𝑥𝑁 )𝑝(𝑥𝑁 )

(2)

Several studies investigated inclusive properties between MP, RP, and CM [14, 15, 19]. In this study, we
summarise properties of the stochastic processes in the 𝐶𝑀𝐿 viewpoint. From those studies, suppose
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the sequence [𝑥𝑘 ] is a zero-mean nonsingular Gaussian (ZMNG). The dynamic model based on (2) can
expressed as

Theorem 1. A ZMNG [𝑥𝑘 ] is 𝐶𝑀𝐿 iff it satisfies

𝑥𝑘 = 𝐺𝑘,𝑘−1𝑥𝑘−1 +𝐺𝑘,𝑁𝑥𝑁 + 𝑒𝑘 (3)

and boundary condition
𝑥𝑁 = 𝑒𝑁 , 𝑥0 = 𝐺0,𝑁𝑥𝑁 + 𝑒0 (4)

where 𝑒𝑘 ∼ N(0,𝑄𝑘 ) and (𝐺𝑘,𝑘−1,𝐺𝑘,𝑁 ) represent state transition matrices.

Based on (3) and (4), following theorems addresses how the 𝐶𝑀𝐿 model become a reciprocal
(Markov) process as

Theorem 2. A ZMNG [𝑥𝑘 ] is reciprocal iff it satisfies (3) with (4) and

𝐺−1
𝑘 𝐺𝑘,𝑐 = 𝐺

′
𝑘+1,𝑘𝐺

−1
𝑘+1𝐺𝑘+1,𝑐 (5)

Theorem 3. A ZMNG [𝑥𝑘 ] is Markov iff it satisfies (3)-(5) and

𝐺−1
0 𝐺0,𝑁 = 𝐺′

1,0𝐺
−1
1 𝐺1,𝑁 (6)

The above theorems indicate that 𝐶𝑀𝐿 is more generalised process than RP and MP, i.e., 𝑀𝑃 ⊂
𝑅𝑃 ⊂ 𝐶𝑀 .

2.2 Markov-induced Reciprocal 𝐶𝑀𝐿 Model
Consider a (nearly) constant velocity model in 2-dimensional space 𝑥𝑘 = [𝑝𝑥 , 𝑝𝑦, 𝑣𝑥 , 𝑣𝑦]′𝑘 from the

origin 𝑥0 ∼ N(`0,𝐶0) to 𝑥𝑁 ∼ N(`𝑁 ,𝐶𝑁 ) with the evolution law

𝑥𝑘 = 𝐹𝑥𝑘−1 +𝑤𝑘−1 (7)

where 𝑤𝑘−1 ∼ N(0,𝑄), and state trasition matrix 𝐹 is given by

𝐹 =

[
𝐼 Δ𝑡 𝐼

0 𝐼

]
,𝑄 = 𝑞

[
Δ𝑡3

3 𝐼
Δ𝑡2

2 𝐼
Δ𝑡2

2 𝐼 Δ𝑡 𝐼

]
(8)

where 𝐼 is the identical 2 by 2matrix, and 0 is the 2 by 2 zeromatrix. The covariancematrix considering the

cross-correlation between the origin and destination are given by 𝐶 =

[
𝐶0 𝐶0,𝑁

𝐶𝑁,0 𝐶𝑁

]
. Then, the dynamic

model starting from 𝑥0 to 𝑥𝑁 with evolution law (7) can be re-expressed in terms of a Markov-induced
𝐶𝑀𝐿 model [19] as

𝑥𝑘 = 𝐺𝑘,𝑘−1𝑥𝑘−1 +𝐺𝑘,𝑁𝑥𝑁 + 𝑒𝑘
𝑥0 = `0 +𝐺0,𝑁 (𝑥𝑁 − `𝑁 ) + 𝑒0
𝑥𝑁 = `𝑁 + 𝑒𝑁

(9)
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(a) Trajectories (b) time histories of velocity in 𝑥 direction

Fig. 1 Sample paths using different stochastic sequences (black: CM, blue: RP (Markov-induced 𝐶𝑀𝐿),
red: MP)

where the matrices are calculated to represent the evolution law (7) in terms of 𝐶𝑀𝐿 as

𝐺0,𝑁 = 𝐶0,𝑁𝐶
−1
𝑁 , 𝐺𝑁 = 𝐶𝑁 , 𝐺0 = 𝐶0−𝐶0,𝑁𝐶−1

𝑁 𝐶
′
0,𝑁

𝐺𝑘,𝑘−1 = (𝐼 −𝐺𝑘,𝑁𝐹
𝑁−𝑘 )𝐹

𝐺𝑘,𝑁 = 𝐺𝑘 (𝐹𝑁−𝑘 )′𝐶−1
𝑁 |𝑘

𝐺𝑘 =

(
𝑄−1 + (𝐹𝑁−𝑘 )′𝐶−1

𝑁 |𝑘𝐹
𝑁−𝑘

)−1
𝐶𝑁 |𝑘 =

𝑁−1∑︁
𝑛=𝑘

𝐹𝑁−𝑛−1𝑄(𝐹𝑁−𝑛−1)′

(10)

Figure 1 shows the sample paths generated by different stochastic sequences. Red coloured paths are
generated by MP from an initial point using evolution law (6), and CM sequences are generated using
(3) and (4). Blue-dotted lines represent Markov-induced reciprocal CML sequences which are generated
using (7)-(10). As shown in Fig. 1, MP sequences do not reach the designated goal point. On the other
hand, RP and CM sequences incorporate the terminal information and hence reach the goal point. Note
that the terminal incident 𝑁 must be specified to describe the𝐶𝑀𝐿 model, the sample paths are generated
with various terminal time 𝑁 . Trajectories driven by CM and Markov-induced CM are formed from
the origin to designated destination, wheares the MP does not properly generate the sample paths to the
destination. Shown in Fig. 1-(b), speed variation can be observed in CM and RP sequences in order
to satisfy the boundary conditions. This result indicates that a proper choice of terminal incident 𝑁 is
necessary to estimate a CV behaivour during entire tracking period.

3 Bayesian Inference for Destination and Time-Series Estimation
This section presents how we design an intent and time-series inference for moving objects. First,

it is assumed that a set of destinations 𝑔 ∈ G = {1,2, · · ·𝑑} is given, where 𝑑 is the number of desti-
nation candidates and D = {𝐷1, 𝐷2, · · · , 𝐷𝑑}, 𝐷𝑖 ∈ R4 consists of terminal position and velocity at the
destination. For the inference problem, the following assumptions are used

Assumption 1. The true intent 𝑔𝑖 is invariant.
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Assumption 2. The true intent 𝑔 at any time has a mode space S that is time invariant and identical to
the time-invariant finite model set G used.

Using the above Assumptions, the intent inference problem is interpreted as to choose a maximum
posterior probability 𝜌(𝑖)

𝑘
= 𝑝(𝑔 |𝑍𝑘 ) among set of destinations, for the observed data 𝑍𝑘 = [𝑧1, 𝑧2, · · · , 𝑧𝑘 ]𝑇

�̂� = argmax
𝑔∈G

𝜌
(𝑖)
𝑘

(11)

In the meantime, state estimation is regarded as a means of time-series inference.

𝑥𝑘 =
∑︁
𝑖

𝜌
(𝑖)
𝑘
𝑥
(𝑖)
𝑘

(12)

The MMAE based inference algorithm is designed to obtain the posterior probability 𝜌(𝑖)
𝑘
and the state

estimates 𝑥 (𝑖)
𝑘
for each destinations 𝑔𝑖. We construct multiple models of𝐶𝑀𝐿 for each destination among

the destinations, and the MMAE produces state estimates for time-series inference. Aformentioned in
Sec. II.B, the 𝐶𝑀𝐿 model requires terminal conditions that may not be specified in prior. This study
present how to deal with the undetermined condition by instantaneous estimation of the values.

3.1 Handling terminal conditions
This section presents how we handle undetermined terminal condition in the inference problem. In

Ref. [6], [𝑣𝑥 , 𝑣𝑦] is assumed to be known along with the terminal position for each destination. The
disperency of the velocity at the destination would contribute to degradation of the intent inference.
Usually, terminal 𝑡 𝑓 and 𝑁 should also be known or estimated by a prior distribution. Ref. [6] adopted
quadrature rule to marginal out 𝑡 𝑓 on the conditional PDF, which requires parallel calculation of multiple
KF for each quadrature points 𝑡 𝑗

𝑓
, 𝑗 = 1, · · ·𝑁𝑝.

To relieve this limitation, terminal constraints are calculated, and these values are accommodated
to determine the end-point distributions for each destination. Given destination 𝑑𝑖 = [𝑑𝑖 (1), 𝑑𝑖 (2)], the
relative distance 𝑟 and the line-of-sight angle _ can be calculated as

𝑟 (𝑖) =
√︃
(𝑑𝑖 (1) − 𝑝𝑥,𝑘 )2 + (𝑑𝑖 (2) − 𝑝𝑦,𝑘 )2, _(𝑖) = tan−1

(
𝑑𝑖 (2) − 𝑝𝑦,𝑘
𝑑𝑖 (1) − 𝑝𝑥,𝑘

)
(13)

When the moving target has a constant speed, the desired motion of the CV model is to move toward the
destination by aiming its heading to the destination, which coincides with the LOS. In this respect, the
terminal velocity [�̂�𝑥 , �̂�𝑦] and ideal time-to-go 𝑡𝑔𝑜 can be expressed in terms of the initial speed 𝑉0, and
instantaneous geometry with destination as

�̂�𝑥 =𝑉0 cos_(𝑖) , �̂�𝑦 =𝑉0 sin_(𝑖) (14)

𝑡𝑔𝑜 =
𝑟 (𝑖)

𝑉0
(15)

Considering uncertainty, the probability distribution of the terminal velocity can be assumed as

(𝑣𝑥 , 𝑣𝑦) ∼ N ((�̂�𝑥 , �̂�𝑦),Σ𝑣, 𝑓 ) (16)

For the ideal time-to-go, the mathematical expression indicates the shortest time-to-go given the current
position. It can be justified in that the desired motion of the target is described by a constant velocity
model directly heading towards the destination. By the definition 𝑡 𝑓 = 𝑡 + 𝑡𝑔𝑜, the terminal incident 𝑁 𝑓
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can be obtained as
𝑁 𝑓 = 𝑟𝑜𝑢𝑛𝑑 (𝑡 𝑓 /Δ𝑡) = 𝑘 + 𝑟𝑜𝑢𝑛𝑑

(
𝑟

𝑉0Δ𝑡

)
(17)

where Δ𝑡 is the time step for discretization. It would be desirable to consider the uncertainty in the
calculated value by assuming a probability distribution as

𝑡𝑔𝑜 ∼ N(𝑡𝑔𝑜,𝜎21 ) (18)

where 𝜎1 and Σ𝑣, 𝑓 are covariances.

3.2 Filtering for State Estimation
State-augmentation based filtering is adopted for the destination-driven state estimation [21]. An

augmented state variable 𝑦𝑘 = [𝑥𝑘 , 𝑥𝑁 ]𝑇 is introduced. Then, the evolution law can also be expressed as
the ZMNG form.

𝑦𝑘 = 𝐺
𝑦

𝑘,𝑘−1𝑦𝑘−1 + 𝑒
𝑦

𝑘−1 (19)

where

𝐺
𝑦

𝑘,𝑘−1 =

[
𝐺𝑘,𝑘−1 𝐺𝑘,𝑁

04 𝐼4

]
,𝐺

𝑦

𝑘
=

[
𝐺𝑘+1 04
04 04

]
(20)

where 𝐼4 and 04 denote the 4-by-4 identity and zero matrcies, repectively. Since the evolution law is
described in a linear form, the state predictive density and its priori estimates (for 𝑖 = 1, · · · , 𝐷) are
obtained as

𝑝(𝑦 (𝑖)
𝑘
|𝑍𝑘−1) =N(𝑦 (𝑖)

𝑘
; �̂� (𝑖)
𝑘 |𝑘−1,Σ

𝑠𝑠(𝑖)
𝑘 |𝑘−1)

�̂�
(𝑖)
𝑘 |𝑘−1 = 𝐺

𝑦,(𝑖)
𝑘,𝑘−1 �̂�

(𝑖)
𝑘−1|𝑘−1,

Σ
𝑠𝑠,(𝑖)
𝑘 |𝑘−1 = 𝐺

𝑦,(𝑖)
𝑘,𝑘−1Σ

(𝑖)
𝑘−1(𝐺

𝑦,(𝑖)
𝑘,𝑘−1)

𝑇 +𝐺𝑦

𝑘

(21)

On the other hand, the observation 𝑧𝑘 = [𝑝𝑥 , 𝑝𝑦]𝑇 can be expressed in the state space form 𝑧𝑘 = 𝐻𝑘 𝑦𝑘 +𝑣𝑘
where

𝐻𝑘 =

[
𝐼 0 0 0

]
(22)

Then, observation predictive density and its estimates can be described as

𝑝(𝑧𝑘 |𝑍𝑘−1, 𝑔𝑖) =
∫
R𝑛
𝑝(𝑧𝑘 |𝑦 (𝑖)𝑘 )𝑝(𝑦 (𝑖)

𝑘
|𝑍𝑘−1)𝑑𝑦 (𝑖)𝑘 ∼ N(𝑧(𝑖)

𝑘 |𝑘−1,Σ
𝑚𝑚,(𝑖)
𝑘 |𝑘−1 )

𝑧
(𝑖)
𝑘 |𝑘−1 = 𝐻𝑘 �̂�

(𝑖)
𝑘 |𝑘−1,

Σ
𝑚𝑚,(𝑖)
𝑘 |𝑘−1 = 𝐻𝑘Σ

(𝑖)
𝑘 |𝑘−1𝐻

𝑇
𝑘 +𝑉𝑘

(23)

The state posteriori for each mode 𝑖 can be calculated as

𝐾
(𝑖)
𝑘

= Σ
(𝑖)
𝑘 |𝑘−1𝐻

𝑇
𝑘 (Σ

𝑚𝑚,(𝑖)
𝑘 |𝑘−1 )

−1

�̂�
(𝑖)
𝑘 |𝑘 = �̂�

(𝑖)
𝑘 |𝑘−1 +𝐾

(𝑖)
𝑘
(𝑧𝑘 − 𝑧(𝑖)𝑘 |𝑘−1),

Σ
(𝑖)
𝑘

= Σ
(𝑖)
𝑘 |𝑘−1−𝐾

(𝑖)
𝑘
Σ
𝑚𝑚,(𝑖)
𝑘 |𝑘−1 (𝐺

(𝑖)
𝑘
)𝑇

(24)

Finally, the state estimates and its covariance matrix can be obtained as

𝑥𝑘 =
∑︁
𝑖

`
(𝑖)
𝑘
𝑥
(𝑖)
𝑘

=
∑︁
𝑖

𝜌
(𝑖)
𝑘

[
𝐼4 04

]
�̂�
(𝑖)
𝑘 |𝑘 (25)
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where 𝜌(𝑖)
𝑘
is the mode probability determined in the next section.

3.3 Intent Inference
Main principle of the intent inference is to calculate the mode probabilities based on Bayesian

Inference
𝜌
(𝑖)
𝑘
≜ 𝑝(𝑔𝑖 |𝑍𝑘 ) ∝ 𝑝(𝑍𝑘 |𝑔𝑖)𝑝(𝑔𝑖) (26)

where 𝑝(𝑍𝑘 |𝑔𝑖) is the likelihood and 𝑝(𝑔𝑖) is the prior distribution of the destination. Without knowledge
of any prior information, it is natural to set the prior function as the uniform distribution 𝑝(𝑔𝑖) = 1/𝑑.
When the uniform distribution is chosen as the prior, the MAP can be equivalent to the maximum
likelilhood (ML) problem. Prediction error decomposition (PED) gives the likelihood expressed as the
recursive form.

𝑝(𝑍𝑘 |𝑔𝑖) = 𝑝(𝑧𝑘 |𝑍𝑘−1, 𝑔𝑖)𝑝(𝑍𝑘−1 |𝑔𝑖) (27)

Using Eq. (26), the likelihood can be recursively calculated. Upon the updated likelihood, the posterior
probability is normalised to evaluate the mode probability.

𝜌
(𝑖)
𝑘

=
𝑝(𝑍𝑘 |𝑔𝑖)𝑝(𝑔𝑖)∑

𝑔 𝑗∈G 𝑝(𝑍𝑘 |𝑔 𝑗 )𝑝(𝑔 𝑗 )
(28)

The overall flow of the destination and time-series inference using MMAE are summarised in Algorithm
1.

Algorithm 1MMAE for Intent Inference (Markov-induced Reciprocal CML model )
procedureMAP(�̂�, 𝑥)
Input: 𝑝(𝑔𝑖) (priors), 𝑑𝑖 (intended goal point) 𝑖 = 1, · · · , 𝐷
Initialise 𝑥 (𝑖)0 ,𝑃

(𝑖)
0|0

for each observation at time instants 𝑘 = 1, · · · , 𝑁 do
for all Intent candidate 𝑖 = 1, · · · , 𝐷 do ⊲Multiple Model Inference
Calculate Terminal conditions 𝑡 𝑓 , 𝑁 𝑓

Calculate State Matrices 𝐺𝑦,(𝑖)
𝑘,𝑘−1,𝐺

𝑦,(𝑖)
𝑘

Calculate �̂� (𝑖)
𝑘 |𝑘−1 and Σ

(𝑖)
𝑘 |𝑘−1 ⊲ One-step State prediction

Calculate 𝑧(𝑖)
𝑘 |𝑘−1 and Σ

𝑚𝑚,(𝑖)
𝑘 |𝑘−1 ⊲Measurement Update

Calculate Likelihood 𝑙 (𝑖)
𝑘

= 𝑝(𝑧𝑘 |𝑍𝑘−1, 𝑔𝑖) and 𝐿 (𝑖)
𝑘

= 𝑝(𝑍𝑘 |𝑔𝑖) ⊲ Likelihood
Compute unnormalised posterior probability 𝑝(𝑔𝑖 |𝑍𝑘 )
Calculate 𝑥 (𝑖)

𝑘 |𝑘 and 𝑃
(𝑖)
𝑘 |𝑘 ⊲ State update for the next observation

end for
Calculate normalised posterior probability 𝜌(𝑖)

𝑘
=

𝑝(𝑔𝑖 |𝑍𝑘)∑
𝑗 𝑝(𝑔 𝑗 |𝑍𝑘)

end for
return �̂� = argmax𝑔𝑖∈G 𝜌

(𝑖)
𝑘

return �̂�𝑘 =
∑
𝑖 𝜌

(𝑖)
𝑘
�̂�
(𝑖)
𝑘 |𝑘

end procedure

4 Numerical Simulation
Numerical simulation is carried out to validate the proposed inference algorithm. A moving target

tracking scenario is considered, where the target is moving from an origin (0,0) with constant speed
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𝑉0 = 10𝑚/𝑠 towards a destination in the following set

D = {[−40,150], [−40,250], [50,350], [100,150]}

Target motion is described as
¤𝑟 = −𝑉0 cos(_−𝛾)

¤_ = 𝑉0
𝑟
sin(_−𝛾)

¤𝛾 = 𝑎𝑐𝑚𝑑
𝑉0

(29)

where 𝑟 and _ represent the relative distance and LOS angle from the target position to a destination 𝐷
specified, respectively. 𝛾 is the flight path angle of the target, and 𝑎𝑐𝑚𝑑 is the lateral acceleration. Two
cases of inference scenario are conducted as:

• Case i: 𝐷 = [−40,250], 𝑎𝑐𝑚𝑑 = 3𝑉 ¤_+U(0,2) sin((𝑟/𝑟0)3).
• Case ii: 𝐷 = [50,350], 𝑎𝑐𝑚𝑑 = 3𝑉 ¤_+U(0,2) sin((𝑟/𝑟0)3).

where U represents the uniform random distribution. To track the target, the inference algorithm is
executed. Simulation parameters are selected as below for the proposed inference algorithm.

Δ𝑡 = 0.1,𝐶0 = 𝐶𝑁 = 𝑑𝑖𝑎𝑔{1,1,0.1,0.1},𝐶0𝑁 = 𝑑𝑖𝑎𝑔{0.5,0.5,0.01,0.01}

𝑄 =


0.0003 0 0.0050 0
0 0.0003 0 0.0050

0.0050 0 0.1000 0
0 0.0050 0 0.1000


,𝑉𝑛 =

[
0.01 0
0 0.01

]

The performance of the proposed algorithm is compared with existing method in Ref. [6]. The
simulation parameters are identically set, and the prior distribution of the final time is chosen as 𝑇 ∼
U(15,35). Two performance measures are taken into account to compare the performances statistically

𝑅𝑀𝑆 =

𝑁∑︁
𝑖=0

√︃
(𝑝𝑥 − 𝑝𝑥)2 + (𝑝𝑦 − 𝑝𝑦)2 (30)

𝑆𝑅 =

𝑁∑︁
𝑖=1

𝑆(𝑖)
𝑁
, 𝑆(𝑖) =

{
1 if �̂� = 𝑔
0 otherwise

(31)

Figure 2 shows the simulation result for case 1. The target initially tends to move toward destination 4
and gradually turns the heading counter-clockwise to reach destination 2 as shown in Fig. 2-(a). The
trajectories using both inference algorithms show almost similar responses to the actual one, which
indicates the time-series inference is satisfactory for both approaches. In the destination inference
performance, Ref. [6] cannot clearly determine the destination around 13 seconds, At the instance, the
target closes to both destinations 1 and 2, and these probabilities remain similar until the target is much
close to the true destination. On the other hand, the proposed inference algorithm increases 𝜌4 at the
beginning but quickly captures the correct inference probability 𝜌2. This may attribute the effect that
the posterior probability for mode 1 is calculated to be very small by the terminal conditions calculated
in the beginning phase. Consequently, the proposed intent algorithm captures the true destination while
easily distinguishing actual intention (mode 2) from others.

In the second case, the guidance command allows for a sinusoidal pattern of the motion. And the
curved trajectory toward destination 3 is made as shown in Fig. 3-(a). Since the distance from the origin
to the destination is the farthest, the sinusoidal random manoeuvre leads to an actual terminal time of
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(a) Trajectory (Intent = 𝑔2) (b) Inference Probability ` (𝑖)
𝑘
(Intent = 𝑔2)

Fig. 2 Simulation Result (Case 1)

around 37 seconds, which is outside the prior distribution in Ref. [6]. As a result, the inference algorithm
[6] no longer produces state estimates after 35 seconds and fails the time-series inference. On the other
hand, the proposed algorithm produces state estimates consistently. The terminal conditions (𝑣𝑥 , 𝑣𝑦, 𝑡 𝑓 )
are recursively updated in the 𝐶𝑀𝐿 model, and it compensates for unmatched terminal time. As shown
in Fig. 3-(b) the intent inference probability increases as the state estimates get close to destinations 4
and 2, but set consistent after 20 seconds. Table 1 summarises the statistical comparison results in both
cases. The inference using the proposed algorithm outperforms the one in Ref. [6] in terms of both
root-mean-square error (RMS) and successful rate. It can be concluded that the inference performance
using the proposed algorithm is still effective with the change of destination and terminal conditions.

(a) Trajectory (Intent = 𝑔3) (b) Inference Probability ` (𝑖)
𝑘
(Intent = 𝑔3)

Fig. 3 Simulation Result (Case 2)

Table 1 Simulation Result

RMS Successful rate
Ref. [6] Proposed Ref. [6] Proposed

Case 1 0.1083 0.1050 0.8429 0.8571
Case 2 NaN 0.1060 0.2032 0.5567
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5 Conclusion
In this study, we addressed a destination and time-series inference problem formoving target tracking.

The multiple model adaptive estimator was adopted for the inference algorithm. The constructed condi-
tionally Markov model suitably represents the destination-driven time series, and it could be incorporated
in intent inference under the Bayesian framework. Because the formulated conditionally Markov model
allows to describe more general stochastic motion, the inference algorithm can be further extended to
other applications such as guided target tracking and inference group behaivours. The proposed approach
effectively alleviated the dependency of the prior distribution setting by repeatedly updating the terminal
conditions upon the relative geometry.

For future studies, the intent inference problem can be further investigated under the more complex
condition where the destination property changes. e.g., moving or change of destination. An interactive
multiple model estimation can be incorporated into the inference algorithm to address such problems.
Also, a data-driven approach and learning-based inference can be designed to capture a more general
destination-driven dynamic motion of the target for intent inference, and the intent inference can also be
extended to meta-level intent inference.
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