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ABSTRACT 

The hybrid model approach presented in this paper is characterized by coupling a physical model and an 

artificial neural network, which are identified through joint estimation. By using the physical parameters as 

the interface between the physical model and the artificial neural network, the hybrid model structure 

combines both approaches directly. Joint estimation using a modified iterated Unscented Kalman Filter 

(UKF) ensures parallel updating of the dynamic, parameter and artificial neural network weight states. This 

approach represents an innovation in the context of the literature, in which hybrid model approaches are 

often cascaded, with separate identification. 

When using the hybrid model approach for complex modeling problems, especially for aerospace 

applications, high nonlinearity, demanding requirements for a robust filter and stability issues can occur. 

To handle nonlinearity the UKF is chosen. To achieve the required robustness and stability, a modification 

is derived that separates noisy state and covariance estimation. Testing the hybrid model approach with the 

modified UKF in a simulation environment on a simplified oscillating problem with time-variant parameters 

shows convincing results. Both the time-variant and constant parameters can be estimated and predicted 

with sufficient accuracy. The stability is confirmed by the use of the newly introduced Unscented Wiener 

Filter. 

Keywords: hybrid model, coupling, physical model, artificial neural network, joint estimation, unscented kalman 

filter 

Nomenclature 

𝑛  = number of states 

𝑚  = number of measurements 

𝒖(𝑡)  = system input, [𝑢 × 1] 

𝒎(𝑡)  = sensor measurement, [𝑚 × 1] 

𝒙  = state vector, [𝑛 × 1] 

𝒚  = system output, [𝑚 × 1] 

𝒆  = error between measurement and system output, [𝑚 × 1] 

𝑓(𝒙, 𝒖)  = state function model for filter update, [𝑛 × 1] 

ℎ(𝒙)  = measurement function model for residual generation, [𝑚 × 1] 
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�̂�𝑦𝑦  = estimated filter output covariance, [𝑚 × 𝑚] 

�̂�𝑒𝑒   = residual covariance, [𝑚 × 𝑚] 

�̂�𝑥𝑥  = estimated state covariance, [𝑛 × 𝑛] 

�̂�𝑥𝑦   = estimated model covariance, [𝑛 × 𝑚] 

�̂�𝑥𝑥  ≡ 𝑺  = system noise covariance, [𝑛 × 𝑛] 

�̂�𝑦𝑦  = measurement noise covariance, [𝑚 × 𝑚] 

𝑽𝑘|𝑘−1  = minimum variance and time variant filter gain, [𝑛 × 𝑚] 

𝑽𝑐   = constant filter gain, [𝑛 × 𝑚] 

 

Indices/Accents:  

   ̂  = estimated parameter 

∗   = corrected parameter  

 𝑖𝑛𝑖𝑡  𝑜𝑟 0   = initial parameter value 

 𝑐    = constant value 

 𝑣    = adaptive value 

 𝑗     = iteration step, zero means no iteration 

 𝑘|𝑘−1   = value at time step k based on value at time step k-1. 

 𝑘|𝑘   = updated value at time step k 

 𝑘+1|𝑘   = propagated value for time step k+1 at time step k 

 𝑑    = dynamic 

 𝑝   = parameter 

 𝑛𝑛    = (artificial) neural network 

1 Introduction  

Hybrid models describe the beneficial combination of physical models and machine learning 

approaches. Different structures and categories of hybrid models are already discussed in literature [1,2]. 

Their use increases the need of domain knowledge and data, but also the accuracy and the scope of the 

model [3]. On this way machine learned models may gain access to the reliability of physical models. 

Examining the existing approaches of hybrid modeling this is the standard way, extending machine 

learning approaches with the inclusion of physical based math or replacing the deterministic standard 

with structural variants, such as Artificial Neural Networks (ANN) [4,5]. Several attempts in combination 

of ANN and physics are given by A. Karpatne with the Physical Guided Neural Network (PGNN), which 

is discussed in several publications [6–8]. Again, the consideration of existing knowledge in the training 

process rules the data-only training procedure in terms of accuracy and reliability. Another branch of 

research is being explored with the explainability of Artificial Intelligence (XAI), which is often built 

with deep neural networks [9–11]. In this case an increase of the model’s reliability and understanding is 

aimed, which may automatically be granted by the consideration of a physical model.  

But why not thinking upside down? Consequently, this paper proposes the idea of using the suitable 

a priori knowledge, the physical model, and its extension via data-based approaches, using ANN. The 

goal stays the same: model a complex technical system, such as a manned or unmanned aerial vehicle, as 

accurately as possible in a reliable and robust manner, but by exploiting the complete a priori knowledge 

at acceptable costs. Grey areas, which are not or not sufficiently described within the physical model, are 

to be filled by using an ANN, whereby any additional data mapping environmental disturbances, 

operational conditions, degradation states and maintenance measures may be considered.  

A major challenge is seen in the identification of the proposed hybrid model, which is solved by joint 

estimation using an iterated Unscented Kalman Filter (iUKF). The iUKF extends the Unscented Kalman 
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Filter (UKF) with an additional iteration1 that can compensate for the loss of accuracy due to minor 

modifications discussed later. Both filter exaggerate dissimilar filter approaches like the Extended 

Kalman Filter (EKF) in cases of high non-linearities [12,13]. In addition, the UKF has been sufficiently 

established in various estimation challenges, such as state and parameter estimation as well as for training 

ANN [14–17].  

At first the new hybrid model approach and the hybrid model´s structure is introduced in section 2. 

By using joint estimation to identify the prior introduced hybrid model the UKF and iUKF are employed, 

whose algorithm is described in the appendix. Subsequently, some flaws of the UKF are worked out and 

minor modifications separate state and covariance calculation in section 3. Under theoretical analysis the 

modifications can potentially increase robustness and stability making them candidates for 

implementation in the preliminary study in section 4. Using a simple simulation of a mass-spring-damper 

model with time-variant parameters, the performance and robustness of the chosen filter methods and the 

hybrid model approach are discussed. Later, the results thus found are examined in terms of stability and 

reliability, introducing the Unscented Wiener Filter (UWF)2, which is also part of the algorithm given in 

the appendix. This procedure also presents a novel approach for stability testing of filter results according 

to the literature. Finally, section 5 concludes a good performance and convincing stability of the hybrid 

model approach and provides an outlook for further research. 

2 A New Hybrid Model Approach 

This paper proposes a new hybrid model approach and structure, Fig. 1. The focus lies on the 

extension of a physical model using an ANN. The physical parameters form the interface between the 

two modeling approaches. It is assumed, that these parameters are not constant, as typically specified in 

the physical model, but exhibit dependencies. Just as the dependencies are unknown to the user the 

unknown parameter behavior should be described by an ANN. In order to characterize the physical 

parameters, incomplete physical models can be extended and additional effects can be considered using 

sensor, input and additional data to train the ANN. While the accuracy of the model should be increased, 

the reliability of the model must be maintained. In addition, the ANN provides knowledge about the 

characteristic behavior of the physical parameters as a function of the input variables. Constraints3 for the 

physical parameters can guarantee physical meaningful behavior of the model. 

In context to the literature, where hybrid models describe any combination of experienced-based, 

data-driven and physics-based models, the proposed hybrid model combines the data-driven and physics-

based approach [2]. Generally covered by prognostics technology, these models are often used for 

estimating the remaining useful lifetime [2]. In contrast to this, the described approach remains a state 

estimator, which can include dynamic states, physical parameters, and neural network weights, depending 

on the user´s specifications. Gained knowledge about the system behavior can potentially be used for 

further examination. 

                                                 
1 Within this paper only one additional iteration is suggested. 
2 Nota bene, the iterated UWF (iUWF) is also a meaningful derivative, but is not pointed out here. 
3 Constraints for the physical parameters imply the use of Kalman Filtering with state or equality constraints, which are 

discussed in [18–20] but not considered further in this paper.    
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Fig. 1: Qualitative illustration of the hybrid model structure 

To address the different states in the state propagation the system equation is extended: 

�̂�𝑘+1|𝑘 = 𝑓𝑘(�̂�𝑘|𝑘) = [

𝒙𝑑𝑘+1|𝑘

�̂�𝑝𝑘+1|𝑘

�̂�𝑛𝑛𝑘+1|𝑘

] =

[
 
 
 
 𝑓𝑑 (�̂�𝑑𝑘|𝑘

, �̂�𝑝𝑘|𝑘
, 𝒖(𝑘))

𝑓𝑛𝑛 (�̂�𝑝𝑘|𝑘
, �̂�𝑛𝑛𝑘|𝑘

, 𝒖𝑛𝑛(𝑘))

�̂�𝑛𝑛𝑘|𝑘 ]
 
 
 
 

.  

(1) 

The extended system equation 𝑓𝑘 involves the known system equation 𝑓𝑑 from the physical model to 

propagate the dynamic states 𝒙𝑑𝑘+1|𝑘
, which now depend on the prior dynamic states �̂�𝑑𝑘|𝑘

, the estimated 

parameters �̂�𝑝𝑘|𝑘
 and the input , 𝒖(𝑘) at timestep 𝑘. The ANN, given with 𝑓𝑛𝑛, propagates the parameters 

�̂�𝑝𝑘+1|𝑘
 depending on the weights of the ANN �̂�𝑛𝑛𝑘|𝑘

 and the input 𝒖𝑛𝑛(𝑘), which can be specified and 

extended by additional input data to train the ANN. Previously estimated parameters �̂�𝑝𝑘|𝑘
 can be used 

by the ANN in addition. The weights of the ANN are hold constant with �̂�𝑛𝑛𝑘+1|𝑘
= �̂�𝑛𝑛𝑘|𝑘

. Note that 

physical parameters may also be constants, additional states can be defined to cover sensor errors and the 

input 𝒖𝑛𝑛(𝑘) can include 𝒖(𝑘) as well as the sensor measurements 𝒎(𝑘). 

A good introduction and overview about structures of ANN are presented in [21,22] with applications 

in the aviation sector [4,5,23] and under the use of EKF and UKF [14–17,24]. Possible settings about the 

number of hidden layers, nodes and activation functions are found in the literature and are not described 

further here. The setup used to test the approach and implementation is explained in section 4. 

Considering the extended system equation (1), the joint estimation can be initiated. Joint estimation 

has a decisive advantage over the methods commonly used in the literature. The physical model and the 

ANN are jointly updated, at each time step. This ensures a close coupling of the two modeling 

approaches. Often discussed under the topic of dual estimation, separating the state calculation, joint and 

dual estimation are described in [25–28].  

The new hybrid model structure with identification through joint estimation provides the basis of 

physical reliability with the potential to increase accuracy and provide insight into system behavior by 
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examining the parameter dependencies thus found. To maintain these promising attributes the iUKF is 

considered including modifications discussed in section 3.  

3 A modification of the Unscented Kalman Filter to identify the 

proposed hybrid model  

The UKF shelters a different perspective on the calculation of the system covariance �̂�𝑥𝑥 and 

performing its propagation than the more widely used EKF. Once introduced as “A New Approach for 

Filtering Nonlinear Systems”, the UKF established as one state of the art Kalman Filter (KF) for problems 

of high nonlinearities today [29]. Exploiting the idea of the Unscented Transformation (UT) any 

functional dependency can be used to map a random variable on a new set. The representation of these 

variables, typically Gaussian Random Variables (GRV) in dynamic systems, is done with formally 

determined Sigma Points (SP). 

These sample points completely capture the true mean and covariance of the GRV, and when 

propagated through the true nonlinear system, capture the posterior mean and covariance accurately 

to the second order (Taylor series expansion) for any nonlinearity. [24] 

But choosing the spread of those SP and their direct dependency on the noisy state value covers 

issues in forms of reliability, robustness and stability. Indeed, the robustness has already become an object 

of discussion in literature, where quite complex solutions have been worked out – increasing the 

robustness at the expanse of the computational effort [30–32]. As shown in the following, implementing 

a robust solution, that raises expectations for reliability and stability, does not necessarily require 

complication; Quite the opposite, simplification leads to the goal.  

The gain in reliability and stability is of great interest to the hybrid model approach, as the coupling 

of a physical model and an ANN promises high non-linearities, as well as filter tuning and initialization 

challenges to configure a stable filter. The implemented algorithm including the UKF, iUKF and UWF is 

given in the appendix.  In contrast to the literature [33,34], the algorithm applied in this paper handles the 

measurement update first and the state prediction afterwards. The modification concerns about the 

covariance calculation �̂�𝑗
𝑥𝑦𝑘|𝑘−1

, �̂�𝑗
𝑦𝑦𝑘|𝑘−1

 and �̂�𝑥𝑥𝑘|𝑘
, which include the noisy state �̂�𝑗

𝑘|𝑘−1 as the 

mean value, see equations (19), (20) and (31). This means a direct dependence between the state and 

covariance calculation, which can lead to instability. 

As already discovered in [33] the state calculation does not need to be done with the weighted sum 

necessarily. Contradictorily, an optimal estimate is expected at optimal gain, but one's own estimate is 

then no longer trusted. We now trust our estimation and assume that the transformed center SP, the mean 

value of the state, equals the UT prediction of the measurement. Equations (17) and (30) can be written 

as: 

�̂�𝑗
𝑘|𝑘−1

= ℎ𝑘(�̂�
𝑗
𝑘|𝑘−1)  (2) 

and 

�̂�𝑘+1|𝑘 = 𝑓𝑘(�̂�𝑘|𝑘).  (3) 

This also simplifies the definition of the SP as they are only and separately used for the covariance 

calculation later on. In Equations (15) and (28), the first entries are eliminated: 
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�̂�𝑗
𝑘|𝑘−1 = [ 𝒙𝑗

𝑘|𝑘−1 + √(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘−1
           �̂�𝑗

𝑘|𝑘−1 − √(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘−1
 ], (4) 

�̂�𝑘|𝑘 = [ 𝒙𝑘|𝑘 + √(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘
           �̂�𝑘|𝑘 − √(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘

 ]. (5) 

The elimination is legitimate as the covariance calculation uses delta values where the mean value is 

subtracted. Starting from 𝑖 = 1 now, equations (19), (20) and (31) are independent from the weight 𝑤0
(𝑐)

, 

defined in equation (10). While the definition of 𝑤0
(𝑚)

 and 𝑤𝑖
(𝑚)

 as well as the parameter β are obsolete, 

equation (11) remains as the only necessary weight equation to define 𝑤𝑖
(𝑐)

. A closer look on the 

�̂�∗
𝑥𝑥𝑘+1|𝑘

 calculation in equation (31) shows the effect of the simplification on the covariance calculation 

in general. The delta SP for 

∆�̂�𝑘+1|𝑘 = (�̂�𝑘+1|𝑘 − �̂�𝑘+1|𝑘) = [ 𝑓𝑘 (√(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘
)       − 𝑓𝑘 (√(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘

) ] (6) 

means a direct dependency of the propagated system covariance to the measurement-updated covariance, 

system-equations, weights, number of states and the spread of the SP, excluding the system state: 

�̂�∗
𝑥𝑥𝑘+1|𝑘

 ~ �̂�𝑥𝑥𝑘|𝑘
, 𝑓𝑘 , 𝑤𝑖

(𝑐)
, 𝐿, 𝜆. (7) 

This separates the covariance and state calculation sufficiently how it is known from different filters, 

such as the EKF. To discover the gained stability of the modification and to examine its behavior in terms 

of accuracy an application is necessary. In the event that the theoretical based assumptions are confirmed, 

the modifications are of course also suitable for any other nonlinear application that require a high degree 

of filter stability. In this paper, the modifications found are used in the context of the identification process 

of the hybrid model approach and its application in the next section; further research discussing the 

applicability of the modification using other filter problems is needed.  

4 Preliminary study in a simulation environment and results 

This section follows a preliminary study to prove the prototypical implementation of the concept 

using a simple and reproduceable example. The example comprises an oscillating technical system 

describing a mass-spring-damper model whose equations are given in the appendix. Notably about the 

design used in this paper, is the introduction of time-variant parameters. Therefore, a degradation of the 

spring linear over time is proposed, which is replaced in definite intervals. The effect is implemented by 

characterizing a sawtooth trend of the Eigenfrequency, which is set as the fifth state of the model.  

The parameter values are given with 𝐾 = 1, 𝐷 = 0.3 and the Eigenfrequency, which is defined as 

𝜔0 = 𝜔0𝑖𝑛𝑖𝑡
− �̇� ∙ 𝑡 + �̇� ∙ 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 ∙ 𝑢𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 , �̇� =  

𝜔0𝑖𝑛𝑖𝑡
− 𝜔0𝑑𝑒𝑔

𝑡𝑚𝑎𝑥
. (8) 

The Eigenfrequency 𝜔0𝑖𝑛𝑖𝑡
= 2

𝑟𝑎𝑑

𝑠
 degrades over time and a value of 𝜔0𝑑𝑒𝑔

= 1
𝑟𝑎𝑑

𝑠
 might be 

reached after the observed maximum time 𝑡𝑚𝑎𝑥 = 120 𝑠 defined in the simulation. A full recovery in 

fixed intervals is added, which takes place every 𝑡𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = 25 𝑠. The maintenance procedure is 

recorded with 𝑢𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 being incremented by 1 every 25 seconds. Finally, the input of the ANN 

includes the time 𝑡 and 𝑢𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒, which are both normalized by 𝑡𝑚𝑎𝑥 and 𝑢𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑚𝑎𝑥
= 4. With 

a defined sampling frequency of 100 𝐻𝑧 the time step is 0.01 𝑠. A white noise with the standard deviation 

of 𝑟 = 0.1 is added on the output to create the measurement 𝑚. 
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Initialized with �̂�1𝑖𝑛𝑖𝑡
= 0 and �̂�2𝑖𝑛𝑖𝑡

= 0 the starting values of the dynamic states are defined. The 

parameter states are assumed with a deviation of 20 %: �̂�3𝑖𝑛𝑖𝑡
= 𝐾′ = 1.2, �̂�4𝑖𝑛𝑖𝑡

= 𝐷′ = 0.36 and 

�̂�5𝑖𝑛𝑖𝑡
= 𝜔0′ = 2.4

𝑟𝑎𝑑

𝑠
. These values are also used for the last three weights of the ANN weighting the 

bias node from the hidden layer. The other weights are said to be small with randomly generated numbers4 

multiplied with 10−3. This means that the ANN is initialized with an estimate of parameter values that 

are initially assumed to be constant over time. The ANN is kept simple with one hidden layer keeping 

three nodes and additional bias nodes in the input and hidden layer. A linear relation is set to be the 

activation function for both the hidden layer and output layer nodes. 

The data set is split in two halves, the training (𝑡𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 60 𝑠) and the validation data 

(𝑡𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 60 𝑠). The validation data helps to assess the quality of the derived model as well as for 

tuning initial filter parameters5. These filter parameters are given in the appendix. The training data is 

used to identify the model including the dynamic states, parameters and ANN weights.  

Table 1: Training, comparison of unscented filter variants using training data and the RMSE 

 Standard 

UKF 

Modified  

UKF 

Modified 

iUKF 
UWF 

𝑅𝑀𝑆𝐸(�̂�, 𝑦𝑖𝑑𝑒𝑎𝑙) 0.0204 0.0180 0.0228 0.0099 

𝑅𝑀𝑆𝐸(�̂�1, 𝑥1𝑖𝑑𝑒𝑎𝑙
) 0.0042 0.0082 0.0263 0.0039 

𝑅𝑀𝑆𝐸(�̂�2, 𝑥2𝑖𝑑𝑒𝑎𝑙
) 0.0107 0.0156 0.0367 0.0081 

𝑅𝑀𝑆𝐸(�̂�3, 𝑥3𝑖𝑑𝑒𝑎𝑙
) 0.0190 0.0265 0.0629 0.0038 

𝑅𝑀𝑆𝐸(�̂�4, 𝑥4𝑖𝑑𝑒𝑎𝑙
) 0.0266 0.0361 0.0646 0.0197 

𝑅𝑀𝑆𝐸(�̂�5, 𝑥5𝑖𝑑𝑒𝑎𝑙
) 0.0469 0.0553 0.1352 0.0183 

 

Table 2: Validation, comparison of unscented filter variants using validation data and the RMSE 

 Standard 

UKF 

Modified  

UKF 

Modified 

iUKF 
UWF 

𝑅𝑀𝑆𝐸(�̂�, 𝑦𝑖𝑑𝑒𝑎𝑙) 0.0038 0.0088 0.0039 0.0040 

𝑅𝑀𝑆𝐸(�̂�1, 𝑥1𝑖𝑑𝑒𝑎𝑙
) 0.0010 0.0036 0.0012 0.0016 

𝑅𝑀𝑆𝐸(�̂�2, 𝑥2𝑖𝑑𝑒𝑎𝑙
) 0.0012 0.0046 0.0028 0.0031 

𝑅𝑀𝑆𝐸(�̂�3, 𝑥3𝑖𝑑𝑒𝑎𝑙
) 0.0055 0.0046 0.0033 0.0016 

𝑅𝑀𝑆𝐸(�̂�4, 𝑥4𝑖𝑑𝑒𝑎𝑙
) 0.0029 0.0096 0.0077 0.0081 

𝑅𝑀𝑆𝐸(�̂�5, 𝑥5𝑖𝑑𝑒𝑎𝑙
) 0.0056 0.0219 0.0056 0.0084 

 

The implemented filters are feasible to identify the hybrid model structure. The chosen error metric, 

the Root Mean Squared Error (RMSE), records low values for the implemented filters. This indicates a 

                                                 
4 In this work, we used small randomly generated numbers to initialize the ANN weights. Since this initialization can 

affect the deterministic behavior of the filter, constant values might be a better choice for initialization, which will be 

considered in future work. 
5 Solving a linear problem with the presented unscented filters lead to equal results. The implementation of the ANN 

triggers a necessary fine-tuning to handle convergence issues. Further research is needed and will be part of future publications. 
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good performance of the hybrid model approach compared to RMSE values of  

𝑅𝑀𝑆𝐸(�̂�, 𝑦𝑖𝑑𝑒𝑎𝑙)𝜔0=2 = 0.1470 and 𝑅𝑀𝑆𝐸(�̂�5, 𝑥5𝑖𝑑𝑒𝑎𝑙
)
𝜔0=2

= 0.1166
𝑟𝑎𝑑

𝑠
 for the output and the fifth 

state of the test data set, which are obtained at constant parameters  �̂� = 1, �̂� = 0.3 and �̂�0 = 2
𝑟𝑎𝑑

𝑠
. The 

values of the error metrics are reduced in the order of 102. The hybrid model approach is also convincing 

in the identification of the parameter progression since the found solution of the ANN does not manipulate 

K and D to minimize the variance, but finds the correct behavior of 𝜔0 as a function of the input of the 

ANN. 

Contrary to expectations the standard UKF has no stability issues to deal with the hybrid model 

approach. But the requirements for stability and robustness may increase with the complexity of the 

model, which argues for a rasion d’être for the given modifications of the UKF in future. In the following, 

the focus is on the evaluation of the filter performance and the final investigation of the stability of the 

iUKF solution found for the hybrid model. The results of the standard UKF now help to rank the results 

of the modified UKF variants. The RMSE is used to compare the filter performances. The error values 

concerning the training data are listed in Table 1 and results about the validation data is given in  

Table 2. The Standard UKF performs best and achieves the lowest 𝑅𝑀𝑆𝐸𝑦 value when using the 

validation data. The modified UKF loses accuracy to a tolerable extent. This loss can be compensated 

using a modified iUKF with just one additional iteration. The modified iUKF takes the most time to 

converge as the training data records the highest error value and with respect to the iUKF behavior shown 

in Fig. 3.  

The reliability and accuracy can also be assessed with the given RMSE of the dynamic and parameter 

states. The modified iUKF stands out due to the highest error values in the training process and the lowest 

values in predicting the validation data under use of the identified model. Comparable results are delivered 

by the standard UKF, which finds the best solutions in this test for the states �̂�1, �̂�2 and �̂�4 in the validation, 

but is defeated in other cases. 

As the modified iUKF fulfills reliability in theory and 

performs with a convincing accuracy especially in finding the 

parameter courses, the following investigations are done, 

keeping the eye on the results of the modified iterated filter. 

Fig. 2 visualizes the convergence of the 21 ANN weights 

using the Frobenius Norm (FN). It becomes clear, that the 

weights significantly change in the first 10 seconds of training 

time. Smaller adjustments follow for the input layer weights 

with a small peak after 25 seconds. During the training 

progresses, negligible changes in the weights of the hidden 

layer are observed, but there is a drift in the weights of the 

input layer, which comes to a halt just before the end of the 

training. From this point a stable finding of the ANN weights 

are assumed and an increase of the training data provided 

could be considered. 

The training behavior can be confirmed with the visualization of the output y and the first five states 

of the studied problem including the ideal and estimated values as well as the residuals, Fig. 3. In the first 

10 seconds, great disturbances of both output and states can be seen in the residuals, which afterwards 

 

Fig. 2: Frobenius Norm of the ANN 

weights 
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converge close to zero. Comparison of the estimated curves with the ideal courses provides a better 

understanding of the numerically interpreted states. The offset in the beginning of the estimation of 𝐾,𝐷 

and 𝜔0 hardly reduces and the parameters are finally identified after about 30 seconds of training. 

 

Fig. 3: Comparison of output and states using the certifiable modified iUKF,  

Training from 0-60s and Validation from 60-120s 

Even the sawtooth trend of 𝜔0 is fully captured within the validation dataset, where the derived model 

predicts the future parameter behavior. Having a closer look on the presented curves of the square root 

covariance matrices, some potential in the initiation of the filter algorithm can be concluded. The matrices 

have to adopt higher values in the beginning in order to capture the associated courses, what is controllable 

Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



via the initial  �̂�𝒙𝒙, �̂�𝑥𝑥
𝑣  and �̂�𝑦𝑦

𝑣  and via the hyper parameters to adapt Q and R with CCC6. An additional 

perspective is granted by a zoom on the first 30 and 10 seconds of the of the training, which is available 

in the appendix. 

  

Fig. 4: Stability proof of output and states using the UWF 

                                                 
6 The adaptive adjustment of the covariances has turned out to be particularly import for the hybrid model approach. 

Since we control both the state covariance Q and measurement covariance R over the initial value and the values of the last 

time step, we call it Controlled Combined Covariance (CCC). We do this with a key difference from the literature: The adaptive 

adjustments are bounded by the initial values of Q and R and cannot diverge as can occur with the techniques reported in the 

literature, see equations in the appendix.  
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Finally, a proof of stability is required, where the UWF is utilized and the found solution by the iUKF 

is investigated, see Fig. 4. The Kalman gain achieved in the last time step using the modified iUKF7 is 

used to equip the UWF. As the UWF is forced to handle high non-linearities, which may overcome the 

filter’s abilities, the stable state vector and the state covariance matrix from the last time step of the 

modified iUKF are also used for the UWF initialization in order to provide an adequate reference 

condition. With the given initialization of the UWF, the output and states in the training and validation 

data are accurately estimated. 

As the residuals are initially small, the scale of the diagrams decreases significantly, which allows a 

closer look on the behavior of the states. While the sawtooth trend of 𝜔0 is still preserved, some deviations 

are visible for 𝐾 and 𝐷. Somehow, the maintenance data contained in 𝑢𝑛𝑛 have a negative effect on the 

constants, which are also trained by the ANN. The covariances show a sharp increase after about 30 

seconds, which then decays. Again, the filter tuning parameters can be the trigger. Initializing with the 

stable state vector, the state covariance matrix and the constant Kalman gain set to the Kalman gain from 

the last timestep of the iUKF, the UWF provides excellent results from the beginning and confirms the 

stability of the previously found solution by the iUKF. 

5 Conclusion and Outlook 

The developed hybrid modeling approach using a modified UKF in a joint estimation represents an 

innovation in context to the literature. Modifications of the UKF show the potential to increase the 

stability and robustness with a little loss of accuracy and less complexity. The developed approach has 

the potential to identify complex model structures and their extension with an ANN. Additional data may 

be concerned and unknown effects can be mapped. A first application on a simple example has shown a 

high functionality identifying an oscillator including a time-variant parameter in the presence of noise. 

The time-variant parameter course is unknown to the user and not covered by the physical model. The 

behavior of the parameters, both constant and variant can be learned and predicted successfully by the 

ANN. 

This makes the derived approach a perfect complement to accelerate research on hybrid unmanned 

aerial vehicles, their identification and energy efficiency assessment under consideration of degradation 

and maintenance procedures. Furthermore, an extension of physical models used in commercial aviation 

and the application of the hybrid modeling approach is planned to allow a more accurate fuel efficiency 

assessment, as already postulated in [35]. 

The development and application of the presented method has raised further questions, naturally. 

Recursive estimation methods such as the Kalman Filter have compelling properties in dealing with noisy 

sensor measurements in combination with ANN. The ability to adjust the confidence level with respect 

to the sensor measurements allows a direct response to overfitting problems. It is obvious, that the ANN 

of the hybrid approach can be built on these noisy sensor measurements in future, which can lead to biased 

estimates. An alternative approach for dealing with noisy sensor measurements and bias has already been 

developed, which includes recursive minimum variance (RMV) [36]. RMV algorithms replace noisy 

sensor measurements with model estimates and provide unbiased parameter estimates. The 

Implementation of this approach can potentially increase the accuracy and reliability of the new hybrid 

model and ANNs considering filter methods, which will be the content of future research. 

                                                 
7 The Kalman gain had to be adjusted by shifting the gain of the 24th state towards zero, an absolute decrease of 70 % 

was necessary. 
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Appendix 

UKF, iUKF and UWF algorithm 

The definition of the weighting and the scaling parameters to calculate the sigma points and their 

spread around the system state �̂�𝑘|𝑘−1 is initially given in the first step of the algorithm. The spread is 

defined by 𝜆 = 𝛼2(𝐿 + 𝜅) − 𝐿, with the number of states 𝐿, a small positive value of 𝛼 ∈ (0, 1] (usually 

set to 𝛼 = 10−3) and the secondary parameters 𝜅 and β. These are set to 𝜅 = 0 or for parameter estimation 

to 𝜅 = 3 − 𝐿 [24] and to β = 2 for Gaussian distributions [12]. The weights used for the weighted 

approximation of the sample mean index (m) or the covariance (c) are given with: 

𝑤0
(𝑚)

=
𝜆

𝐿 + 𝜆
  , 

(9) 

𝑤0
(𝑐)

=
𝜆

𝐿 + 𝜆
+ 1 − 𝛼2 + 𝛽, 

(10) 

𝒘𝑖
(𝑚)

= 𝒘𝑖
(𝑐)

=
𝜆

2(𝐿 + 𝜆)
, 𝑖 = 1,… ,2𝐿. 

(11) 

The input 𝐮k is considered in the beginning to define the system and the measurement function (𝑓𝑘, 

ℎ𝑘) at time step 𝑘. The UKF (no iteration means 𝑗 = 0) including the iUKF and the UWF is presented in 

the following scheme: 

0) Input from last time step or initialization: �̂�𝑘|𝑘−1, �̂�𝑥𝑥𝑘|𝑘−1
  and optional: �̂�𝑥𝑥𝑘−1

𝑣 , �̂�𝑦𝑦𝑘−1
𝑣  in case 

of adaptive covariance adjustment 

𝒙0
𝑘|𝑘−1 = �̂�𝑘|𝑘−1, (12) 

𝑓𝑘(�̂�𝑘) = 𝑓(�̂�𝑘 , 𝒖𝑘) (13) 
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ℎ𝑘(�̂�𝑘) = ℎ(�̂�𝑘 , 𝒖𝑘) (14) 

1) Residual and covariance calculation at time k: 

Calculation of sigma points: 

�̂�𝑗
𝑘|𝑘−1 = [ �̂�𝑗

𝑘|𝑘−1         𝒙
𝑗
𝑘|𝑘−1 + √(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘−1

         �̂�𝑗
𝑘|𝑘−1 − √(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘−1

 ], (15) 

�̂�𝑗
𝑘|𝑘−1 = ℎ𝑘(�̂�

𝑗
𝑘|𝑘−1), (16) 

�̂�𝑗
𝑘|𝑘−1

= ∑𝒘𝑖
(𝑚)

�̂�𝑗
𝑘|𝑘−1

2𝐿

𝑖=0

,  
(17) 

𝒆𝑘|𝑘−1
𝑗

= 𝒎(𝑘) − �̂�𝑗
𝑘|𝑘−1

.  (18) 

2) Matrix �̂�𝑥𝑥𝑘|𝑘−1
 and output equation ℎ𝑘(�̂�

𝑗
k|k−1) provide: 

�̂�𝑗
𝑥𝑦𝑘|𝑘−1

= ∑𝑤𝑖
(𝑐)

(�̂�𝑗
𝑘|𝑘−1 − �̂�𝑗

𝑘|𝑘−1) (�̂�𝑗
𝑘|𝑘−1 − �̂�𝑗

𝑘|𝑘−1
)
𝑇

2𝐿

𝑖=0

, 
(19) 

�̂�𝑗
𝑦𝑦𝑘|𝑘−1

= ∑𝑤𝑖
(𝑐)

(�̂�𝑗
𝑘|𝑘−1 − �̂�𝑗

𝑘|𝑘−1
) (�̂�𝑗

𝑘|𝑘−1 − �̂�𝑗
𝑘|𝑘−1

)
𝑇

2𝐿

𝑖=0

. 
(20) 

3) Optimal filter gain calculation: 

�̂�𝑗
𝑒𝑒𝑘|𝑘−1

= �̂�𝑗
𝑦𝑦𝑘|𝑘−1

+ �̂�𝑣
𝑦𝑦𝑘−1

, (21) 

𝑽𝑗
𝑘|𝑘−1 = �̂�𝑗

𝑥𝑦𝑘|𝑘−1
 ∙ �̂�𝑗

𝑒𝑒𝑘|𝑘−1

−1
. (22) 

4) Apply the optimal correction: 

�̂�𝑗
𝑘|𝑘−1 = �̂�𝑗

𝑥𝑦𝑘|𝑘−1

𝑇
∙ �̂�𝑗

𝑥𝑥𝑘|𝑘−1

−1
, (23) 

�̂�𝑗+1
𝑘|𝑘−1 = �̂�0

𝑘|𝑘−1 + 𝑽𝑗
𝑘|𝑘−1 ∙ (𝒆𝑘|𝑘−1

𝑗
− �̂�𝑗

𝑘|𝑘−1 ∙ (�̂�0
𝑘|𝑘−1 − �̂�𝒋

𝑘|𝑘−1)), (24) 

Note: the standard covariance correction is calculated in the last iteration step: 

�̂�𝑥𝑥𝑘|𝑘
= �̂�𝑥𝑥𝑘|𝑘−1

− 𝑽𝑗
𝑘|𝑘−1 ∙ �̂�𝑗

𝑥𝑦𝑘|𝑘−1

𝑇
 (25) 

𝒙𝑘|𝑘 = �̂�𝑗+1
𝑘|𝑘−1 (26) 

Note: the standard covariance correction using any fixed filter gain 𝑽𝑐 is: 

�̂�𝑥𝑥𝑘|𝑘
= �̂�𝒙𝒙𝑘|𝑘−1

− 𝑽𝑐 ∙ �̂�𝑥𝑦𝑘|𝑘−1

𝑇
− �̂�𝑥𝑦𝑘|𝑘−1

 𝑽𝑐
𝑇 + 𝑽𝑐 ∙ �̂�𝑒𝑒𝑘|𝑘−1

∙ 𝑽𝑐
𝑇 (27) 

5) In case of an iterative approach: 

Go to step 1) 

6) Execute propagation for time step k+1 

Calculate the state vector covariance transformation �̂�∗
𝑥𝑥𝑘+1|𝑘

 from corrected values �̂�𝑘|𝑘, 

�̂�𝑥𝑥𝑘|𝑘
 and state function 𝑓𝑘(�̂�𝑘|𝑘) via new SP: 

�̂�𝑘|𝑘 = [ �̂�𝑘|𝑘            �̂�𝑘|𝑘 + √(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘
             �̂�𝑘|𝑘−1 − √(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘

 ] (28) 
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�̂�𝑘+1|𝑘 = 𝑓𝑘(�̂�𝑘|𝑘) (29) 

�̂�𝑘+1|𝑘 = ∑𝒘𝑖
(𝑚)

�̂�𝑘+1|𝑘

2𝐿

𝑖=0

 
(30) 

�̂�∗
𝑥𝑥𝑘+1|𝑘

= ∑𝑤𝑖
(𝑐)

(�̂�𝑘+1|𝑘 − �̂�𝑘+1|𝑘)(�̂�𝑘+1|𝑘 − �̂�𝑘+1|𝑘)
𝑇

2𝐿

𝑖=0

 
(31) 

�̂�𝑥𝑥𝑘+1|𝑘
= �̂�∗

𝑥𝑥𝑘+1|𝑘
+ �̂�𝑥𝑥𝑘−1

𝑣   (32) 

7) In case of adaptive �̂�𝑥𝑥𝑘−1
𝑣 , �̂�𝑦𝑦𝑘−1 

𝑣  calculate the update �̂�𝑥𝑥𝑘
𝑣 , �̂�𝑦𝑦𝑘 

𝑣  

8) Wait for next sampling step k = k + 1  
 

In case of the iUKF: Step 5) is performed and a new set of SP, based on the measurement-updated 

state �̂�𝑗+1
𝑘|𝑘−1, is built in the beginning cumulating the iteration variable 𝑗 by one with every iteration. 

The matrix square root √(𝐿 + 𝜆)�̂�𝑥𝑥𝑘|𝑘−1
 is calculated by the lower-triangular Cholesky factorization in 

this paper [33]. Equation (23) has been derived to implement the additional term in the optimal state 

correction in equation (24) known from the iEKF [33]. The UWF skips the optimal correction in 4) and 

uses the overall covariance correction given in equation (27) based on a constant gain 𝑉𝑐 set initially.   

Adaptive covariance adjustment using Combined Covariance Control (CCC) 

In case of using adaptive measurement and system covariance, �̂�𝑣
𝑦𝑦𝑘−1

 and �̂�𝑣
𝑥𝑥𝑘−1

, step 7) can 

be executed using different adaptive adjustment procedures. These procedures are described in the 

literature [37]. Most relevant publications are seen in the years 1951 [38] and 1972 [39,40]. Since 

divergence is observed in [41] and [42] when using the adaptive approach, instability may occur. 

Therefore, we use an adaptive approach which is controlled by the initial values (�̂�𝑥𝑥𝑖𝑛𝑖𝑡
, �̂�𝑦𝑦𝑖𝑛𝑖𝑡

): 

�̂�𝑥𝑥
𝑣

𝑘|𝑘−1
= 𝑣𝑞 ∙  𝑸𝑥𝑥𝑘|𝑘−1

+ (1 − 𝑣𝑞) ∙ �̂�𝑥𝑥𝑖𝑛𝑖𝑡
  

�̂�𝑥𝑥
𝑣

𝑘|𝑘−1
= 𝑣𝑟 ∙  𝑹𝑥𝑥𝑘|𝑘−1

+ (1 − 𝑣𝑟) ∙ �̂�𝑥𝑥𝑖𝑛𝑖𝑡
  

(33) 

The updated covariances 𝑸𝒙𝒙𝒌|𝒌
, 𝑹𝒙𝒙𝒌|𝒌

 are mixed with the initial values using the blending factors 

𝑣𝑞 and 𝑣𝑟 ∈ ℝ, [0, 1]. This ensures a lower bound on the covariances and thus stability according to the 

initially defined covariances. During initial testing the blending factors of 𝑣𝑞 = [0.8, 0.9] and  𝑣𝑟 =

[0.1, 0.5] lead to good results. The innovations are calculated as: 

𝑸𝑥𝑥𝑘|𝑘−1
= (𝑽𝑘|𝑘−1�̂�𝑘|𝑘−1) ∙ (�̂�𝑘|𝑘−1

𝑇 𝑽𝑘|𝑘−1
𝑇 ) , (34) 

𝑹𝑥𝑥𝑘|𝑘−1
= 𝑑𝑖𝑎𝑔 {𝑷𝑒𝑒𝑘|𝑘−1

− �̂�𝑦𝑦𝑘|𝑘−1
}  

(35) 
with: 𝑷𝑒𝑒𝑘|𝑘−1

= �̂�𝑘|𝑘−1 ∙ �̂�𝑘|𝑘−1
𝑇 , 

as described in the literature. The filter gain 𝑽𝑘|𝑘−1 and the residual �̂�𝑘|𝑘−1 of the current time step are 

used to calculate the adapted state covariance. Notice that in case of the adapted 𝑹𝑥𝑥𝑘|𝑘
, which describes 

the positive definite pseudo measurement noise covariance, the filter model output �̂�𝑦𝑦𝑘|𝑘−1
 is subtracted 

from the total residual covariance using the diagonal entries only. This suppresses a supposed cross-
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correlation of measurement noise from different sensors. To ensure stability using the presented adaptive 

covariance adjustments we recommend small values of 𝑣𝑞 and 𝑣𝑟 as well as the implementation of 

lowpass filtered covariances:  

�̂�𝑥𝑥
𝑣

𝑘
= �̂�𝑥𝑥

𝑣
𝑘−1

+ 𝑤𝑞 ∙ ( �̂�𝑥𝑥
𝑣

𝑘|𝑘−1
− �̂�𝑥𝑥

𝑣
𝑘−1

), 

�̂�𝑥𝑥
𝑣

𝑘
= �̂�𝑥𝑥

𝑣
𝑘−1

+ 𝑤𝑟 ∙ ( �̂�𝑥𝑥
𝑣

𝑘|𝑘−1
− �̂�𝑥𝑥

𝑣
𝑘−1

). 
(36) 

The covariance adjustment is advanced in increments using the constants 𝑤𝑞 and 𝑤𝑟 ∈ ℝ, [0, 1]. 

We recommend values of 𝑤𝑞 = [0.5, 0.9] and 𝑤𝑟 = [0, 0.1]. As we use adaptive covariance methods 

described in the literature controlled by the initial covariance values and the implementation of a lowpass 

filter8 we name the procedure Combined Covariance Control (CCC).   

Mass-Spring-Damper model 

State equation: 

�̇�(𝑡) = [
0 1

−𝜔0 −2𝐷𝜔0
] [

𝑥1(𝑡)

𝑥2(𝑡)
] + [

0
1
] 𝑢(𝑡). (37) 

Measurement equation: 

𝑦(𝑡) = [𝐾𝜔0
2 0] 𝒙(𝑡). (38) 

The measurement noise is added to the ideal measurement 𝑦𝑖𝑑(𝑡) as gaussian distributed normal 

numbers with variance 𝜎𝑛𝑜𝑖𝑠𝑒
2 = 0.01: 

𝑚(𝑡) = 𝑦𝑖𝑑(𝑡) + 𝜎𝑛𝑜𝑖𝑠𝑒 .  (39) 

The input signal is a square wave signal with amplitude 𝐴𝑢 = 0.5, period time 𝑇𝑢 = 2 𝑠 ⋅and constant 

offset of 𝐾𝑢 = 0.5: 

𝑢(𝑡) = 𝐴𝑢 ⋅ 𝑠𝑔𝑛 (cos
2𝜋

𝑇𝑢
⋅ 𝑡 +

𝜋

2
) + 𝐾𝑢. (40) 

For discretization the forward Euler approximation, i.e. 𝑥1𝑘+1
= 𝑥1𝑘

+ 𝑥2𝑘
⋅ 𝑇0, with a sample time 

of 𝑇0 = 0.01 𝑠 is used.  

 

 

 

  

                                                 
8 Note: For specific high noise signals and systems, this lowpass filter can also be applied separately to improve estimation 

and reduce noise levels. 
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Table 3: Initialization values in section 4 

 Standard UKF BS-UKF BS-iUKF and UWF 

𝛼 = 10𝑥 -2.4151 -3.9263 -2.0825 

𝜅 3.0001 -24.3460 -22.0000 

𝛽 2.0036 - - 

𝑣𝑞 0.8398 0.2875 0.1 

𝑤𝑞 0.4247 0.7524 0.2163 

𝑣𝑟 0.5248 0.3382 0.5246 

𝑤𝑟 0.0314 0.0658 0.0658 

�̂�𝑦𝑦𝑖𝑛𝑖𝑡

𝑣 = 10𝑥 -0.9590 -1.0776 -1.0776 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡

𝑣 (1) = 102∗𝑥 ∙ 10−2 -4.0000 -5.8704 -3.7720 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡

𝑣 (2) = 102∗𝑥 ∙ 10−2 -3.9931 -2.3837 -8.8495 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡

𝑣 (3) = 102∗𝑥 ∙ 10−2 -7.2280 -7.2307 -6.7098 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡

𝑣 (4) = 102∗𝑥 ∙ 10−2 -7.4135 -6.7325 -0.3928 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡

𝑣 (5) = 102∗𝑥 ∙ 10−2 -0.3362 -8.9793 -6.4787 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡

𝑣 (6 − 26) = 10∗𝑥 ∙ 10−2 -4.7443 -7.1263 -9.4375 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡
(1) = 10𝑥 -1.2950 -6.7504 -0.3160 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡
(2) = 10𝑥 -5.6771 -4.7985 -1.3010 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡
(3) = 10𝑥 -1.7935 -2.2553 -0.5358 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡
(4) = 10𝑥 -7.1054 -7.1025 -3.4683 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡
(5) = 10𝑥 -0.5933 -1.3010 -0.3539 

�̂�𝑥𝑥𝑖𝑛𝑖𝑡
(5 − 26) = 10𝑥 -0.8928 -0.9006 -1.3010 
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Fig. 5: Comparison of output and states using the certifiable modified iUKF with zoom on the first 30 seconds 
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Fig. 6: Comparison of output and states using the certifiable modified iUKF with zoom on the first 10 seconds 
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