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ABSTRACT
Eigenstructure Assignment is a powerful design technique for full state or output feedback based
MIMO control systems. It is possible to shape not only the system’s closed loop dynamics, but also
its eigenvectors - at least partially to an extent depending on the number of available control inputs.
Common treatments of the method in literature further reveal a solution to the problem, when the
desired eigenstructure refers to the systems output directions (i.e. the amount to which certain
output values participate on the various eigenmodes) rather than to the eigenvectors themself
directly. However, due to the cross coupling nature of the gain matrix, the physical system inputs
are still influenced by multiple eigenmodes, even if the outputs are perfectly decoupled. This may be
unfavorable, if certain dynamic properties of the actuation inputs are required (e.g. a low frequent
change of thrust input). In this work the concept of eigenstructure assignment is extended to the
input variables. The described method allows for a flexible formulation of structural requirements
in terms of input and output variables in arbitrary combination.
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1 Introduction
Although the roots of eigenstructure assignment technique reach back to the exploration of vibrating

strings modal shapes and is linked to the concept of generalized coordinates, the theory behind has been
exhaustively treated and developed to maturity within the late 1970’s and early 1980’s. This inolves
studying the available degree of freedom beyond pole placement [1, 2], the conditions for existence of a
solution [3, 4] as well as solution strategies [5]. The generalized problem formulation based on choosing
a gain matrix to achieve desirerable eigenvectors within the null space of[

𝜆 𝑗I − A B
]
·
[
𝒗 𝑗

𝒖 𝑗

]
=

[
0
]

(1)

was probably first mentioned in [2] and is still used today. Herein A ∈ R𝑛 × R𝑛 and B ∈ R𝑛 × R𝑚
denote the system dynamics and input matrices, 𝜆 𝑗 the eigenvalues and 𝒗 𝑗 the corresponding right-hand
eigenvectors. Following the classification suggested by [6], four different types of solution approaches
may be distinguished:

• protection methods being based on a multistep procedure, with one eigenvalue/-vector assigned
in each step and protected from changes in the further steps by rendering the mode unobserv-
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able/uncontrollable using a pre-compensator matrix, which reduces the output/input dimension by
one in each step[7–9],

• parametric methods aiming on an explicitly parametrized representation of the subspace, where
the eigenvectors are selectable from – this allows for an easy incorporation into outer procedures,
which may optimize the eigenvectors to achieve higher level design goals [10],

• orthogonal eigenvector methods where the desired eigenvectors are not explicitly specified, but an
orthogonal basis optimized for robustness and sensitivity issues is generated [5, 11, 12],

• projection methods which use the available degree of freedom in the eigenstructure to match a
subset of the desired eigenvalues/eigenvectors either exactly or as best as possible in a least squares
sense – this is achieved by augmenting Eq. 1 with additional equations relating the achievable
eigenvectors 𝒗 𝑗 to the desired ones, thus reducing the nullspace and arriving at a uniquely solvable
or even overdetermined system [2, 3, 13]. This is also the technique adopted for this work.

Since those times this powerful design technique has lost nothing of its appeal and has been used
for various flight control applications. This includes early work dealing with decoupling [14], robustness
[15, 16] and sensitivity analysis [17] as well as recent developments, focusing e.g. on application to
unconventional configurations [18, 19] aeroelastic control of flexible aircraft [20] and robust control
[21, 22].

Nevertheless, most of the published work deals with the problem of choosing righthand eigenvectors,
focusing on full state feedback [4]. Extension to the output feedback case and sometimes the selection of
output directions rather than the eigenvectors directly (output value shaping) is frequently addressed as
well [2, 3, 10]. There are some approaches which also allow for the selection of left hand eigenvectors
or a combination of both in a multistep procedure [7–10]. As the lefthand eigenvectors are related to the
input space, this enables to design the amount of the various eigenmodes excitation caused by a specific
input.

However, one aspect seldomly mentioned so far is, how to control the influence of a specific
eigenmode on the actuation inputs. Due to the feedback of potentially all output variables to all system
inputs by means of the gain matrix, the systems eigenmodes generally appear in all of the inputs, meaning
that their typical frequency characteristics will be detectable in each input signal, as long as the mode is
excited by any means. That holds even if the system is already decoupled with respect to the outputs.
A possibility to control that influence could be of great interest, as it allows to shape the frequency
content of the physical actuation variables, which might be subject to certain dynamic constraints (e.g.
in common flight control applications, a rapid thrust change is to be avoided due to limited engine
dynamics). On the other hand, this type of requirement to the eigenstructure cannot be easily translated
into eigenvector properties, as the relation depends on the gain matrix itself, which is unknown a priori
and to be determined in the procedure as well.

Roppenecker [23] probably first came up with concept of so called invariant parameter vectors (𝒖 𝑗 ).
He suggested to consider them being the true free design parameter of the eigenstructure assignment
problem, rather than the eigenvectors themselves, because they are independent of the chosen state
representation [24]. He recognized, that the parameter vectors indeed describe the modal composition
of the actuation inputs. He showed further, that many of the known design procedures (among others
also the output value shaping according to Moore [2]) may be deducted to just a special choice of these
parameter vectors. He also developed several approaches to optimize the parameter vectors in order
to achieve higher level goals, such as structural limitations of the gain matrix [23]. However, all these
approaches have in common, that the desired parameter vectors are completely determined beforehand,
and the gain matrix

K = [𝒖1, . . . , 𝒖𝑛]
[
(A − 𝜆1I)−1B𝒖1, . . . , (A − 𝜆𝑛I)−1B𝒖𝑛

]−1 (2)
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is directly calculated from the parameter vectors later. A mixed approach, where some components
of the parameter vectors and some components of the eigenvectors or output directions are specified
simultaneously, seems not considered by the authors.

This however has been described by Fichter and Stephan [25], who follow an approach to solve the
homogenous equation system [

𝜆 𝑗I − A B
Z 𝑗

]
·
[
𝒗 𝑗

𝒖 𝑗

]
=

[
0
0

]
(3)

where Z 𝑗 may comprise a set of 𝑚 − 1 additional requirements (with 𝑚 being the number of system
inputs) regarding the supression of specific eigen modes in either states, output variables or the actuation
inputs. Due to the homogeneous nature of the equation system, the approach is limited to the complete
suppression of eigen modes.

We propose a very similar procedure, which combines the concept afore mentioned with the inho-
mogeneous formulation [

𝜆 𝑗I − A B
C 0

]
·
[
𝒗 𝑗

𝒖 𝑗

]
=

[
0
𝒚0
𝑗

]
(4)

of the equation system as presented by Moore [2] and used also by Stevens et al. [13]. It involves one
additional requirement compared to the homogeneous one (overall 𝑚 requirements rather than 𝑚 − 1).
This assigns a concrete (but arbitrary) magnitude to the eigenvectors, which are uniquely defined only
with respect to their direction. Therefore the approach offers the additional flexibility to specify also a
(none zero) ratio, in which a certain eigenmode should contribute to the various quantities.

In extension to Moore [2] however, the proposed method has been generalized to allow for a flexible
formulation of eigenstructure requirements with respect to both, output and/or input variables in an
arbitrary combination.

The paper is structured as follows: In section 2 the eigenstructure assignment technique is reviewed
as presented by Stevens et al. [13] to outline the foundation and introduce the nomenclature. Section 3
presents the suggested extensions and concludes with the generalized formulation. Finally, in section 4
the concept is applied to a linear decoupling controller of the longitudinal aircraft motion, to demonstrate
the findings and their implications in praxis.

2 Review of Classical Eigenstructure Assignment (Projection Method)
Assuming a linear dynamic System

¤𝒙 = A𝒙 + B𝒖 (5)
𝒚 = C𝒙 (6)

of 𝑛-th order, given in state space representation, the output feedback law

𝒖 = −K𝒚 (7)

may be applied. Further utilizing a prefilter

𝒖 = L𝒘 (8)
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to map some reference commands 𝒘 to the physical inputs 𝒖 turns Eq. 5 to

¤𝒙 = (A − BKC)︸        ︷︷        ︸
Ã

𝒙 + BL𝒘 (9)

with Ã denoting the closed loop dynamicmatrix. The dynamic behavior is characterized by its eigenvalues
𝜆 𝑗 defined by the relationship

𝜆 𝑗𝒗 𝑗 = Ã𝒗 𝑗 ⇔ (𝜆 𝑗 𝐼 − A + BKC)𝒗 𝑗 = 0 ( 𝑗 ∈ {1 . . . 𝑛}) (10)

where 𝒗 𝑗 is the (right-hand) eigenvector corresponding to 𝜆 𝑗 . Following [13], Eq. 10 may be arranged
in form of a linear system of equations[

𝜆 𝑗I − A B
]
·
[
𝒗 𝑗

𝒖 𝑗

]
=

[
0
]

(11)

with
𝒖 𝑗 := KC𝒗 𝑗 , (12)

which contains the eigenvectors 𝒗 𝑗 and the instead of the gain matrixK newly introduced 𝒖 𝑗 as unknown
variables. Obviously the solution is not unique – due to the ambiguity of possible eigenvectors assigned
to each 𝜆 𝑗 , any vector ·

[
𝒗 𝑗 𝒖 𝑗

]𝑇 lying within the nullspace of [𝜆 𝑗I − A B
]
forms a valid solution.

The Systemmay be amended by additional equations specifying the desired system structure with respect
to components of the eigenvectors 𝒗 𝑗 , e.g.

𝒗 𝒋 := 𝒗0𝑗 ( 𝑗 ∈ {1 . . . 𝑛}) (13)

which would yield [
𝜆 𝑗I − Ã B

I 0

]
·
[
𝒗 𝑗

𝒖 𝑗

]
=

[
0
𝒗0
𝑗

]
(14)

As long as the number of inputs equals the system order (𝑚 = 𝑛), a unique solution will exist. If there
are fewer inputs available, the system would be over determined - thus a decision has to be made, which
of the additional equations could be waived. Solving the system for all 𝑘 freely configurable eigenmodes
and arranging the solution vectors in the matrices

V = [𝒗1 𝒗2 . . . 𝒗𝑘 ] and U = [𝒖1 𝒖2 . . . 𝒖𝑘 ] (15)

finally allows to determine the gain matrix

K = U(CV)−1 (16)

required to achieve the desired eigenstructure using Eq. 12.

However, the structure has been defined with respect to the eigenvectors themselves by specifying
explicitly their components - that is the participation of the state variables on the respective eigenmode.
This becomes clear in face of the systems modal representation: From Eq. 10 the dependency

Ã = V𝚲V−1 (17)
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may be derived, with

𝚲 =


𝜆1 · · · 0
...

. . .
...

0 · · · 𝜆𝑛

 (18)

being the diagonal matrix of closed loop eigenvalues. Substitution in Eq. 5 yields the modal form

¤𝒙𝑑 = 𝚲𝒙𝑑 + B𝑑𝒖 (19)
𝒚 = C𝑑𝒙𝑑 + D𝒖 (20)

where
𝒙𝑑 = V−1𝒙 B𝑑 = V−1B and C𝑑 = CV (21)

are the modal state vector, input and output matrix. Alternatively, the dual representation based on the
left hand eigenvectors taken as row vectors 𝒘 satisfying

𝜆 𝑗𝒘 𝑗 = 𝒘 𝑗 Ã (22)

may be employed, yielding
Ã = W−1𝚲W (23)

with

W =


𝒘1

𝒘2
...

𝒘𝑘


(24)

being the matrix of left hand eigenvectors. This yields equally well to the modal form 19 of this system,
using this time

𝒙𝑑 = W𝒙 B𝑑 = WB and C𝑑 = CW−1. (25)

From Eq. 21 follows directly 𝒙 = V𝒙𝑑 , spelling out that V – and thus the specified 𝒗0𝑗 – indeed describe
the contribution of each modal amplitude to the original state variables. Forcing e.g. V = I by choosing
𝑣0
𝑖 𝑗

= 𝛿𝑖 𝑗 would yield a closed loop system which is fully decoupled with respect to the chosen state
representation 𝒙, because each state variable participates on one single eigenmode only. The output
variables 𝒚 however remain still influenced by multiple eigenmodes, as they are composed of different
system states by means of the C matrix.

For most applications however, the goal would be to specify the dynamics with respect to the system
outputs rather than the internal state representation, which translates to demand

𝒚 = Y0𝒙𝑑 (26)

where
Y0 =

[
𝒚01 𝒚02 . . . 𝒚

0
𝑘

]
(27)

denote the output directions, that is, the participation of each output variable on the 𝑗 𝑡ℎ eigenmode. This
may obviously be achieved by selecting

V0 = C−1Y0 (28)

However, the explicit calculation will fail for any none square systems where the number of inputs or
outputs does not match the system order. The problem may be circumvented, when Eq.29 is integrated
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[13] in the system 11 to solve, yielding[
𝜆 𝑗I − A B

C 0

]
·
[
𝒗 𝑗

𝒖 𝑗

]
=

[
0
𝒚0
𝑗

]
(29)

This approach still works out for non square C-matrices (𝑘 < 𝑛) as well as for the case of insufficient
number of inputs (𝑚 < 𝑛), where several equations have to be omitted to end up with a solvable system.

3 Extension to Specification of Feedback Directions
The eigenstructure assignment method, as presented so far, allows to define the desired structure not

only in terms of the eigenvectors themself (that is, with respect to the internal system states), but also in
terms of output directions. However, considering the system inputs

𝒖 = −K𝒚 = −KY0𝒙𝑑 (30)

we find that those are still influenced by various eigenmodes in an unspecified way, because the gain
matrix in general is not diagonal. Therefore, many output variables contribute to each input, and even if
the outputs are decoupled, the inputs are not.

Assuming the goal would be to decouple the system inputs, or, more generally, to specify, which
influence a certain eigenmode should have on a specific input, e.g.

𝒖 := U0𝒙𝑑 (31)

with
U0 =

[
𝒖01 𝒖02 . . . 𝒖

0
𝑛

]
(32)

to be called the matrix of required feedback directions within the scope of this paper. Clearly, that could
be achieved by selecting

V0 = (KC)−1U0, (33)

but unless the systems has as many independent inputs as it has states, KC is not invertable. Further
more, the resulting gain matrixK is unknown prior to solution of Eq. 14, which on itself depends on V0.
Again, this problem may be avoided by incorporating the relationship 32 into the system. Thanks to the
definition 12, this is easily accomplished by forcing 𝒖 𝑗 = 𝒖0

𝑗
, yielding[

𝜆 𝑗I − A B
0 I

]
·
[
𝒗 𝑗

𝒖 𝑗

]
=

[
0
𝒖0
𝑗

]
(34)

With Eq. 29 and 34 we have on hand now the tools required to specify the system structure in terms of
either the outputs, or the inputs participation on eigenmodes. However, it is impossible to achieve both
for all in- and outputs simultanously. The system of equations has a number of 𝑛 +𝑚 unknown variables
(𝒗 𝑗1 . . . 𝒗 𝑗𝑛 and 𝒖 𝑗1 . . . 𝒖 𝑗𝑚). The eigenvalue equation (upper rows) makes up 𝑛 constraints, leaving over
an amount of 𝑚 degrees of freedom. These need to be specified by 𝑚 additional equations defining
the system structure, which may address the eigenmode participation of outputs and/or inputs, but both
together representing exactly 𝑚 requirements.

Therefore a selection has to be made, for which of the inputs and outputs requirements shall be
specified, or in other words, which of the additional 𝑘 equations in Eq. 29 or 𝑚 in Eq. 34 to waive on.
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This may be accomplished using a boolean selection matrix

S 𝑗 =

[
S𝑦 0
0 S𝑢

]
, S 𝑗 ∈ B𝑚 × B𝑛+𝑚,

which yields with the definitions

D 𝑗 = S 𝑗 ·
[

C 0
0 I

]
und 𝒓 𝑗 = S 𝑗 ·

[
𝒚0
𝑗

𝒖0
𝑗

]
(35)

the system of equations [
𝜆 𝑗I − A B

D 𝑗

]
·
[
𝒗 𝑗

𝒖 𝑗

]
=

[
0
𝒓 𝑗

]
(36)

to solve. The selection matrix determines, for which of the outputs and inputs requirements addressing
their participation on the 𝑗-th eigenmode shall be formulated. The overall number of requirements has
to equal the number of system inputs (𝑚), but may be arbitrarily distributed between outputs (defined by
S𝑦) and inputs (defined by S𝑢).

It should be noted that the presented method allows to decouple the inputs in the sense that the
feedback applied to a specific input represents the influence of a single eigenmode solely. This has not to
be confused with the question, whether a certain input excites only a single eigenmode. In order to control
the influence of an input on the systems eigenmodes, one would like to specify the input directions Z0 in

¤𝒙𝑑 := 𝚲𝒙𝑑 + Z0𝒖. (37)

This is, following Eq. 21, achieved by choosing

V0 = B
(
Z0

)−1
, (38)

or alternatively, using the dual equations 25, by selecting

W0 =
(
Z0

)
B−1. (39)

However, the direct inversion is limited to square (𝑚 = 𝑛) systems.

Decoupling the inputs in the latter way – that is letting each eigenmode to be excited by a single input
only – might also be of less practical relevance, as for any given eigenstructure V, a static prefilter

L = −
[
C𝑟 (A − BKC)−1B

]−1 (40)

may be designed [13], which ensures that the new reference signals 𝒘 used to calculate the input

𝒖 = L𝒘 (41)

represent the stationary end values of arbitrary outputs

𝒚𝑟 = C𝑟𝒙. (42)

As long as the system is decoupled beforehand with respect to 𝒚𝑟 , each reference signal will also affect a
single eigenmode only.
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4 Application Example
The procedure shall be applied for control of the longitudinal aircraft motion. Assume a linearized

model given in the state space representation

¤𝒙 = A𝒙 + B𝒖
𝒚 = C𝒙 + D𝒖

with

𝒖 =


𝜂

𝜅

𝐹

 𝒙 =



𝛼

𝑞

ℎ

𝛾

𝑉


𝒚 =



Θ

𝑞

ℎ

¤ℎ
𝑉


being the input, state and output vectors. The deflections of elevator 𝜂 and direct lift control flaps 𝜅
(DLC-flaps) as well as the thrust force 𝐹 are available as inputs. The system state is represented by angle
of attack 𝛼, pitch rate 𝑞, altitude ℎ, flight path angle 𝛾 and the flight speed 𝑉 . Pitch angle Θ and rate,
altitude, vertical speed ¤ℎ and the flight speed are used as output and feedback variables. The numerical
values for the dynamic matrix 𝐴, input matrix 𝐵, output matrix 𝐶 and feedthrough matrix 𝐷 are given in
the appendix.

The open loop system shows the well known eigenmodes

short period with 𝜆1,2 = −3.34 ± 1.39i rad s−1,
phugoid with 𝜆3,4 = −0.0178 ± 1.07i rad s−1,
free altitude integration with 𝜆5 = 0 rad s−1.

Assuming the goal is to decouple the vertical (ℎ) and the longitudinal (𝑉) degree of freedom from the
pitch motion (Θ), the closed loop system is expected to modify the natural system dynamics in a way,
that the following eigenmodes do appear instead:

pitch mode with 𝜆1,2 = −3 ± 3i rad s−1,
plunge mode with 𝜆3,4 = −1 ± i rad s−1,
speed dynamics with 𝜆5 = −0.1 rad s−1.

The eigenvalues have been chosen more or less arbitrarily, assuming that a rather stiff control is desired
to accurately track high dynamical attitude and flight path profiles, whereas the flight speed is expected
to change significantly slower and higher deviations are tolerated. Furthermore, high frequent changes
in the thrust input are to be explicitly avoided due to the engine characteristics. This leads directly to the
requirement, that the thrust force feedback should only participate on the speed dynamics mode, and not
on the high frequent pitch and plunge modes. To achieve decoupling of the pitch and plunge motion, it
is further required, that the pitch angle will not participate on the plunge mode, and that the altitude will
not be influenced by the pitch mode. This compiles to the following requirements scheme for the output
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and feedback directions, where unspecified components are marked as ★.

[
Y0
U0

]
=

©­­­­­­­­­­­«

𝜆1,2 𝜆3,4 𝜆5

Θ 1 0 0
𝑞 ★ ★ ★

ℎ 0 1 0
¤ℎ ★ ★ ★

𝑉 ★ ★ ★

𝜂 ★ ★ ★

𝜅 ★ ★ ★

𝐹 0 0 1

ª®®®®®®®®®®®¬
(43)

Note that one of the output or feedback direction components has to differ from zero, in order to define
their scaling. (Any arbitrary variable which is independent of the ones set to zero already may be choosen
here, e.g. also a ’1’ or any other non-zero value in the row correspondig to 𝑉 instead of 𝐹, however
we decided to complete the columns, where the zeros have been specified already.) Furthermore, as
the oscillatory modes are represented by complex conjugate eigenvalues, the eigenvectors and thus also
output/feedback directions shall also be complex conjugate, e.g. identical. Thats why they have been
summarized in Eq. 43 above.

From Eq. 43 the Selection matrices

S1,2 =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

 S3,4 =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1


S5 =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1


(44)

may be determined by deleting from a𝑚×𝑘 identitymatrix those rows, which don’t define any requirement
in

[
Y0U0

]𝑇 (★ elements) in the column for the considered eigenvalue.
Using Eq. 35 and solving 36 for all eigenvalues, the actual feedback directions

U = [𝒖1 𝒖2 . . . 𝒖5] and eigenvectors V = [𝒗1 𝒗2 . . . 𝒗5] (45)

may be determined. Eq. 16 finally allows to solve for the required gain matrix K and the prefilter L may
be calculated using Eq. 40. Both are given in the appendix.

Fig. 1 shows the step response of the system to a pitch angle command, Fig. 2 for an altitude, and
Fig. 3 for a speed command. In all cases the actual values follow the reference without stationary error,
which proves the correct prefilter design. Due to the prefilter structure, the pitch angle command excites
only pitch mode (𝜆1,2 = 3 + 3i rad s−1) and speed dynamics (𝜆5 = 0.1 rad s−1), the plunge mode remains
inactive. In consequence, pitch rate and pitch angle show a decent reaction, whereas the deviations of
vertical speed and altitude from their reference values stay below the numerical accuracy. In contrast to
a full decoupling of system outputs, here the speed dynamics is still active and it becomes clear from the
velocity response that both, the slow speed dynamics and the fast pitch mode exert their influence on the
velocity. In contrast, the thrust input shows only the slow, low frequent response attributed to the speed
dynamics. (The thrust required for stationary flight decreases, because the DLC-flap deflection is reduced
compared to the reference state, in order to compensate for the increased angle of attack. This results
in a cleaner configuration with lower drag.) The pitch mode doesn’t take any effect here, as enforced by
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the design. As no decoupling has been forced for the elevator and DLC-flap inputs, in principle they are
affected by all the dynamic modes. However, because the plunge mode is not excited by pitch commands
at all, only the effect of the slightly higher frequent pitch mode (𝜆1,2 = 3 + 3i rad s−1) can be observed in
those inputs.
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Fig. 1 Time response for an unit step in pitch angle command

The response to an altitude unit step command (Fig. 2) draws the opposite picture: Here the
pitch mode remains unexcited, whereas plunge mode and speed dynamics are active. Consequently,
the pitch angle shows no reaction, as it it is solely influenced by the pitch mode. The plunge mode
(𝜆3,4 = 1 + i rad s−1) exerts its influence on altitude and vertical speed, which is not the case for the lower
frequent speed dynamics. The latter however affects both, velocity and thrust input. It can be observed
again, that the velocity participates also on the plunge mode, whereas the thrust input does not.

For the velocity step command (Fig. 3), the prefilter guarantees, that the speed dynamics is the only
mode being excited. This results in the absence of any reaction in both, the pitch (Θ and 𝑞) as well as
the plunge (ℎ and ¤ℎ) degree of freedom, because neither of it shall be influenced by the speed mode
according to Eq.43. The velocity and all the inputs however show the slow reaction characteristics for the
speed dynamics, but no higher frequent content at all, which is because neither the pitch nor the plunge
mode has been excited by the command.

It should be noted, that the unusual configuration featuring DLC-flaps has been explicitly chosen
here to demonstrate the method proposed in section 3 and illustrate the difference between decoupling
of output and feedback directions. As already pointed out in section 3, the number of degree of freedom
available to shape the system structure beyond the pure eigenvalue placement matches the number of
system inputs 𝑚. Assuming there would be no DLC-flaps available, the eigenstructure specification
would be limited to choosing only two (rather than three) components in each column of the requirements
scheme 43. That would render a simultaneous decoupling of pitch and plunge mode impossible whilst
excluding those modes from the thrust input. Only one goal could be achieved at a time. The advantage
to consider DLC-flaps however is, that there are as many inputs available as there are eigenmodes (pitch
mode, plunge mode, speed dynamics) involved. This would theoretically enable a full decoupling as
well, which contrasts nicely to the approach demonstrated here.
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-10

-5

0

10 -18

-5

0

5
10 -18

0

1

2
10 -16

0

5

10 -7

0 10 20 30
0

0.5

1

0

0.5

1

1.5
10 -3

0

0.005

0.01

0 10 20 30
100

150

200

Fig. 3 Time response for an unit step in flight speed command

11Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



5 Conclusion
An extension to the eigenstructure assignment method has been proposed, which allows to decouple

or specify the desired system structure not only in terms of eigenvectors or output directions, but also
with respect to the control inputs of the physical plant. This enables to specify the desired participation
of certain control inputs on the various system eigenmodes. This can be especially useful, if some of the
physical actuating variables shall not be employed in certain control channels/control error constellations,
or if their nature requires a restricted frequency content. Furthermore, a consistent design methodology
has been derived, suporting also the combination of different eigenstructure requirements formulated in
terms of both, output- and input variables. This method has been demonstrated by designing a linear
decoupling controller for the longitudinal aircraft motion, which prevents the high frequent eigenmodes
from affecting the thrust input.

Appendix
All coefficients are given in the appropriate SI-units corresponding to the state-, input- or output

variables they refer to.

A =



−3.05 1.01 1.89𝑒 − 05 0 −0.00787
−1.99 −3.63 0 0 −2.07𝑒 − 06
0 0 0 50 −5.01𝑒 − 07
3.06 4.84𝑒 − 05 −1.89𝑒 − 05 0 0.00787
−4.98 −0.0394 7.44𝑒 − 05 −9.81 −0.0309


B =



−0.0513 −0.9 6.15𝑒 − 07
−13.7 2.04 0
0 0 0
0.106 0.891 −6.15𝑒 − 07
0 −1.07 0.001



C =



1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 50 0
0 0 0 0 1


D =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


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K =


−0.649 −0.175 0.00658 −0.00635 0.0013
3.51 0.0209 0.0441 −0.0231 0.00872
−30.8 −5.44 13.5 2.01 78.5


L =


−1.29 0.00658 1.01𝑒 − 05
0.155 0.0441 6.78𝑒 − 05

1.35𝑒 + 03 13.4 100


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