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ABSTRACT

Sensor-based feedback laws such as incremental nonlinear dynamic inversion (INDI)
applied to flight control tasks have been successfully evaluated in experiments. When
deriving sensor-based feedback laws by INDI, it is assumed that a state-dependent
error term introduced by Taylor approximation of the exact feedback linearization is
neglectable. In reality, this assumption does not hold over the full state-space and
closed-loop stability is a local property. When written in the co-space of internal and
external dynamics obtained by feedback linearization, a local characterization for the
state-dependent error term by a finite-horizon output gain is proposed. Thus, an
inner estimate of the closed-loop region of attraction is derived by application of the
small-gain theorem to the interconnection of internal and external dynamics as well
as the over-approximated error term.

Keywords: Incremental nonlinear dynamic inversion, Region of attraction, Input-to-state stability,
Small-gain theorem, Finite-horizon output gain

Nomenclature

x,X : states and state-space (x ∈ X)
s,S : co-states and co-space (s ∈ S)
u,U : inputs and input space (u ∈ U)
v,V : pseudo-input and space (v ∈ V)
y,Y : outputs and output space (y ∈ Y)
KU : set of linear mappings K : U→ X
f : nonlinear state dynamics ( f : X→ X)
g : nonlinear input dynamics (g : X→ KU)
h : nonlinear output dynamics (h : X→ Y)

1 Introduction
Exact feedback linearization, also known as nonlinear dynamic inversion (NDI), is a classical

method for the derivation of linearizing control laws for nonlinear dynamics [1]. While NDI
has been applied to flight control [2–5], it depends on an algebraic model in the inversion. On
the other hand, reliable control-oriented flight dynamics models are often not available to ensure
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robust control through NDI. In order to increase robustness to modeling uncertainties, incremental
nonlinear dynamic inversion (INDI) has been proposed [6–8]. Here, an algebraic model is partially
replaced by sensor data – in particular, measured accelerations – and these measurements inform a
first-order approximation of the nonlinear dynamics. While initially proposed for attitude control
of fixed-wing aircraft, INDI has since been applied for guidance and tracking tasks for various
configuration including rotary-wing and transitioning aircraft [8–13]. Although INDI has been
demonstrated in numerous fight experiments, it lacks a rigorous foundation in control theory. The
use of an inexact feedback linearization at the core of INDI is often dismissed by the assumption
that the dynamics of the controls are significantly faster than the change of the states (timescale
separation). It is usually under this paradigm that stability of INDI as well as its robustness to
model uncertainties and disturbances is derived [8, 13–15]. A notable exception is the work of [16],
in which the error term introduced by the first-order approximation is described and investigated.

We note that this error term, since state-dependent, might be locally neglectable but the
assumption of timescale separation is unlikely to hold for all states. In this paper, we therefore
propose a method for estimating the domain of stability or region of attraction. To that extent,
we make use of the co-space of internal and external dynamics, in which the interdependency of
the error term is exposed [16]. While the external dynamics are simply an higher-order integrator,
the internal dynamics, since hidden, are often required to be robustly stable [1, 17]. In the case of
exact feedback linearization, with properly chosen linear feedback matrix, this requirement leads
to asymptotic stability of the closed-loop dynamics. Such an immediate result is unavailable for
the inexact linearization because of the state-dependent error term. We now introduce and locally
over-approximate the error by a nonlinear finite-horizon output gain based on [18] and verify local
stability by application of the small-gain theorem. In this paper, we focus on the error term
induced by the inexact linearization, whereas model uncertainties are left to future work.

The remainder of the paper is organized as follows: We introduce exact and inexact lineariza-
tion, notions of stability, and finite-horizon output gains in Section 2. As the main result, a region
of local stability is derived in Section 3, where the error term is replaced by its output gain.
In Section 4 then, methods for the computation of the finite-horizon output gain are discussed.
Lastly, the proposed methodology is illustrated on a numerical example in Section 5.

Notation
Let X and S be finite-dimensional vector spaces. Given a vector x = (x1, . . . ,xn) ∈ X, the

Lp-norm of x is ||x||p = p
√

|x1|p + · · ·+ |xn|p. The supremum norm of v : [0,∞) → X is ||v||∞ =
supt≥0 |v(t)|. The ball of radius r > 0 in S is denoted by Br(S) and defined as the set of all s ∈ S
satisfying |s| ≤ r. A smooth, strictly increasing function α : [0,∞)→ [0,∞) with α(0) = 0 is said
to be of class K ; and K L is the class of all smooth functions β : [0,∞)× [0,∞)→ [0,∞) where
β (·, t) ∈ K if t ≥ 0 is fixed and β (r, ·) is strictly decreasing with limt→∞ β (r, t) = 0 for any r ≥ 0.

2 Problem Statement
We consider a system given by the nonlinear differential equations in control-affine form,

ẋ(t) = f (x(t))+g(x(t))u(t) (1a)
y(t) = h(x(t)) (1b)

for almost all t ≥ 0 with states x(t) ∈ X, inputs u(t) ∈ U, and outputs y ∈ Y. We assume that U
and Y both have dimension one.1 The functions f , g, and h are assumed to be differentiable with

1Note that multi-input multi-output can be treated in the same framework [16], but are omitted for simplicity.
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continuous i-th derivative for i ∈ [1,n). Assume without loss of generality that f (0) = 0, h(0) = 0,
and g(0) 6= 0.

2.1 Exact linearization
Differentiating the output by time, under application of the chain-rule, for ρ < n times yields

y(ρ)(t) = a(x(t))+b(x(t))u(t) (2)

for almost all t ≥ 0, where a : X→Y and b : X→K ∗
Y are the input-output dynamics. Introducing

the diffeomorphism T : X→ S, where S= S1 ×S2, we obtain the co-dynamics

ṡ1(t) = φ(s1(t),s2(t)) (3a)
ṡ2(t) = Ais2(t)+Biv(t) (3b)
y(t) =Cis2(t) (3c)

for almost all t ≥ 0 where φ : S1×S2 → S1 are the internal co-dynamics and Ai : S2 → S2, Bi :V→ S2,
Ci : S2 →Y is a continuous integrator of order ρ (the external co-dynamics). Eq. (3) with pseudo-
input

v(t)≡ a(x(t))+b(x(t))u(t) (4)

is an exact linearization of (1) in the sense that x is a solution of (1) for u if and only if s = T ◦ x
satisfies (3) for v. Assuming that b(x) 6= 0 for all x ∈ X, we can design a feedback law v = Ks2,
where K : S2 → V is a linear function, for the system in (1). The dynamics in (3a) for s2 ≡ 0 are
denoted φ0 and called zero dynamics. Assume, again without loss of generality, that T (0) = 0 and
hence, φ0(0) = 0.

2.2 Inexact linearization
Taylor expansion of (2) yields

y(ρ)(t +δ t) = ŷ(t)+b(x(t))δu+∆(x(t),δx) (5)

for almost all t ≥ 0 and small δ t > 0, where δu= u(t+δ t)−u(t), δx= x(t+δ t)−x(t), and ŷ is the ρ-
th derivative of the output y, which is to be measured. The error term ∆(x,δx)= (∂y(ρ)/∂x)δx+ · · ·
contains the state-dependent Taylor summands of first and higher order. Taking

u(t +δ t) = u(t)+b(x(t))−1[v(t +δ t)− ŷ(t)] (6)

for all t ≥ 0 and δ t results in the input-output dynamics

y(ρ)(t +δ t)≡ v(t +δ t)+∆(x(t),δx)

where the error term ∆ acts as a disturbance. In practice, ŷ is evaluated over a discrete time grid
T = (t0, t1, . . .) and the control input is a piecewise constant function, viz.

u(tk +δ t) = uk +b(xk)
−1[v(tk +δ t)− ŷk] (7)

for tk ∈T and δ t ∈ (0,τ], where xk = x(tk), uk = u(tk), ŷk = ŷ(tk), and τ = tk+1− tk is the (constant)
sampling time of T . The pseudo-input v(·) is now defined as piecewise constant feedback law based
on the sampled external states s2(tk). In between samples, the offset between the linearized model
in (7) and the continuous-time output (2) leads to an error term ∆k in the external co-dynamics.
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Choosing v(t)≡ Ks2(tk) for t ∈ (tk, tk+1], the closed-loop co-dynamics are

ṡ1(t) = φ(s1(t),s2(t)) (8a)
ṡ2(t) = Ais2(t)+BiKs2(tk)+Bi∆k(t − tk) (8b)

for almost all t ∈ (tk, tk+1] with ∆k : t 7→ ∆(xk,x(tk + t)− xk).

2.3 Stability concepts
We are interested in the local asymptotic stability of (1) under incremental feedback (7) and

estimating the sets of initial conditions.

Definition 1. A dynamic system ẋ = ψ0(x) is asymptotically stable on Ω if and only if there exists
β ∈K L such that any trajectory x of ψ0 starting in x0 ∈ Ω satisfies |x(t)| ≤ β (|x0|, t) for all t ≥ 0.

It is well known that linear dynamic systems, if asymptotically stable, are so in a global
manner. Furthermore, if a linear dynamic system is asymptotically stable its states (and outputs)
are bounded on bounded inputs. This property can be extended to nonlinear systems as well:

Definition 2. A dynamic system ẋ = ψ(x,u) is input-to-state stable if and only if there exists
β ∈ K L and γ ∈ K such that any trajectory x of ψ under control u starting in x0 satisfies
|x(t)| ≤ β (|x0|, t)+ γ(||u||∞) for all t ≥ 0.

Clearly, an input-to-state stable dynamic system is asymptotically stable on zero input. Some-
what surprising though, it can also be proven [19] that a globally asymptotically stable dynamic
system is locally input-to-state stable. The function γ in the definition above is called gain, and
it plays an important role in the stability of interconnected systems.

Theorem 1. Let the dynamic systems ẋ1 = ψ(x1,v1,u1) and ẋ2 = φ(x2,v2,u2) be input-to-state
stable with gains γ1 and γ2, respectively; if

max{(γ1 ◦ γ2)(r),(γ2 ◦ γ1)(r)}< r (9)

for all r > 0, then the interconnection

ẋ1 = ψ1(x1,x2,u)
ẋ2 = ψ2(x2,x1,u)

with common input u is input-to-state stable. C

This result is known as small-gain-theorem [20]. A special case occurs if the connection of two
systems is unidirectional (think either γ1 ≡ 0 or γ2 ≡ 0). Such a cascade of input-to-state stable
systems is always input-to-state stable as well [21].

Assumption 1. The internal dynamics ṡ1 = φ(s1,u) are input-to-state stable.

Asymptotic stability of the zero dynamics is a classical precondition for exact linearization [1].
With the additional assumption of input-to-state stability, though a strong one, an appropriately
chosen pseudo-input feedback gain K guarantees stability in the case of exact linearization. Since
we are interested in the impact of the error term ∆ onto stability in the case of inexact linearization,
Assumption 1 is reasonable.
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2.4 Finite-horizon output gains
We make use of two metrics in order to prove closed-loop input-to-state stability of the inexact

linearization. Consider an operator G : S1 ×S2 → {[0,H]→ S2} with finite horizon H > 0 defined
by the nonlinear differential equation

ξ̇ (t) = fG(ξ (t),s1,s2) (10a)
e(t) = hG(ξ (t)) (10b)

for almost all t ∈ [0,H] and all (s1,s2) ∈ S. We require that fG : Ξ×S→ Ξ and hG : Ξ → S2 are
Lipschitz continuous with fG(0,s) ≡ 0 and hG(0) ≡ 0. Thus, the finite-time response e(·) is well
defined and finite on bounded inputs. The finite-horizon Lp-to-L∞ gain is

||G||[0,H]
p,q = sup

(s1,s2)∈S

||e(·)||q
||s1||p + ||s2||p

s.t. (10) with ξ (0) = 0 and 0 < |(s1,s2)| ≤ r

for some r > 0 and p,q ∈ N∪{∞}. By the assumptions made above, the Lp-to-Lq gain is finite
for any fixed r > 0 and H > 0 since (s1,s2) is bounded. Furthermore, the finite-horizon Lp-
to-Euclidean gain is

||G||[0,H]
p,E = sup

(s1,s2)∈S

|e(H)|
||s1||p + ||s2||p

s.t. (10) with ξ (0) = 0 and 0 < |(s1,s2)| ≤ r

for some r > 0 and p∈N∪{∞}. The Lp-to-Euclidean gain is connected to reachability in nonlinear
systems [18].

3 Stability Analysis
Our approach is based on approximating the gain of the inexact external dynamics (8b) subject

to the error term ∆k. To this extent, suppose an incremental feedback law has been designed with
τ > 0 fixed and K chosen such that all poles of the nominal closed-loop external dynamics with
zero-order hold of length τ (the sampling period),

Āi =
(

exp(Aiτ)+
∫

τ

0
exp(Ai(τ − t))dt BiK

)
are inside the right-half of the unit cycle.2 After one sampling period, the external state reads

s2(tk + τ) = Āis2(tk)+
∫

τ

0
expAi(τ − t) ·Bi∆k(t)dt (11)

with ∆k(0) = 0 for all k ≥ 0. The integral in (11) accounts for the error e(τ) of the inexact
linearization; we want to characterize this error using finite-horizon gains. To that extent, we
define an operator E on the co-states s(tk) at time tk of which the output corresponds to e(τ).
Given s̄ ∈ S, consider E given as

ξ̇0(t) = Aiξ0(t)+Bi∆
(
T−1(s̄),T−1(s̄1 +ξ1(t), s̄2 +ξ2(t)+ξ0(t))−T−1(s̄)

)
(12a)

2That is, any eigenvalue λ of Āi satisfies ℜλ > 0 and |λ |< 1.
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with output e(t) = ξ0(t), subject to the dynamics

ξ̇1(t) = φ(s̄1 +ξ1(t), s̄2 +ξ2(t)+ξ0(t)) (12b)
ξ̇2(t) = Ai(s̄2 +ξ2(t))+BiKs̄2 (12c)

for almost all t ∈ [0,τ], where the operator states are reset to ξ (tk) = 0 for any k ≥ 0. That is, if
s̄ = sk, then s2(tk+1) = Āisk + e(tk+1), where e(tk+1) is the output of E at time tk+1.

The dynamics in (11) can be viewed as sampled-data system under disturbance e(·). At any
sampling point k ≥ 0, we have that

|s2(tk)|=
∣∣Āk

i s2(t0)+ Āk−1
i e(t1)+ · · ·+ Āie(tk−1)+ e(tk)

∣∣
≤ µ exp(−`k)|s2(t0)|+

µ

1− exp(−`)
sup

κ∈(0,k]
|e(tκ)|

where µ, ` > 0 satisfy ||Āk
i ||2 ≤ µ exp(−`k) for all k ≥ 0. Moreover, at any time δ t ∈ (0,τ] in between

sample points the dynamics yield

|s2(tk +δ t)|=
∣∣∣(exp(Aiδ t)+

∫
δ t

0
exp(Ai(δ t − t))dt BiK

)
s2(tk)+ e(tk +δ t)

∣∣∣
≤ α|s2(tk)|+ sup

t∈(tk,tk+δ t]
|e(t)|

where α > 0 satisfies ||exp(Aiδ t)+
∫

δ t
0 exp(Ai(δ t − t))dt BiK||2 ≤ α for all δ t ∈ (0,τ]. Combining

these inequalities, we obtain

|s2(t)| ≤ αµ exp(−`k)|s2(t0)|+(1+
αµ

1− exp(−`)
)||e(·)||∞ (13)

for all t ∈ (tk, tk+1] and k ≥ 0. In other words, the closed-loop external dynamics are input-to-state
stable with gain γ2 = 1+ αµ

1−exp(−`) .

The interconnection of the internal co-dynamics, closed-loop external co-dynamics, and error
dynamics is shown in Fig. 1. We now make use of the finite-horizon output gain ||E||[0,τ]2,∞ of (12)
with 0 < |s̄| ≤ r as defined in the previous section for some r > 0. Since f , g, and T (thus φ and ∆)
are continuously differentiable and s̄ is bounded, the finite-horizon gains are well defined and finite
for any fixed horizon. In the next section, we propose a method to estimate the finite-horizon
output gains for given nonlinear dynamics.

𝜙 ⋅

𝐴̅!, 𝐼 𝐸

𝑠! 𝑡𝑠" 𝑡

𝑠" 𝑡

𝑒 𝑡

Fig. 1 Interconnection of inexact co-dynamics.
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Suppose that ||E||[0,τ]2,∞ ≤ γ for some r > 0 and γ > 0. Then

|e(t)| ≤ ||e(·)||∞ ≤ γ ||s1(·)||∞ + γ ||s2(·)||∞ (14)

if |s(t)| ≤ r for all t ≥ 0.

Proposition 1. Let r > 0; suppose Ω is an invariant subset of Br(S) and ||E||2,∞ ≤ γ on |s| ≤ r;
if both γ γ2 < 1 and γ (γ1 γ2) < 1, where γ1 is the ISS gain of the internal dynamics, then (8) is
asymptotically stable on Ω.

Proof. The closed-loop inexact linearization is composed as interconnection (Fig. 1). From (13),
we have that

|s2(t)| ≤ β2(|s2(0)|, t)+ γ2||e(·)||∞

with β2 ∈ K L for all s2,e : [0,∞)→ S2 and t ≥ 0, which, together with (14) and the small-gain
theorem implies that

|s2(t)| ≤ β
′(|s2(0)|, t)+ γ γ2||s1(·)||∞ (15)

with β ′ ∈K L for all s : [0,∞)→Br(S) since γ γ2 < 1. Eq. (15), again with the small-gain theorem,
implies

|s(t)| ≤ β (|s(0)|, t)

with β ∈K L for all s : [0,∞)→Br(S) since γ (γ1 γ2)< 1. As any trajectory starting in Ω remains
in Br(S), the interconnection is asymptotically stable on Ω.

Corollary 1. Under the assumptions of Proposition 1, the system in (1) under incremental
feedback (7) is asymptotically stable on T−1(Ω). C

4 Solving for Output Gains
The finite-horizon gain can be evaluated by solving an associated nonlinear optimal control

problem similar to [18]. Namely, consider the cost function

J(s̄) = κ(ξ (H))+
∫ H

0
`(ξ (t))dt −µ(s̄) (16)

subject to (10) with ξ (0) = 0. For the Lp-to-L∞ gain, choosing κ ≡ 0, `(ξ ) = |hG(ξ )|q, and
µ(s1,s2) = (γ||s1||p + γ||s2||p)q we obtain

J(s̄)≤ 0, i.e., ||hG ◦ξ ||q ≤ γ(||s̄1||p + ||s̄2||p),

for all |s̄| ≤ r if and only if ||G||[0,H]
p,q ≤ γ . In the case that q = ∞, the optimal value of J then

corresponds to minimizing

sup
t∈[0,H]

|ξ (t)|+ γ(||s̄1||p + ||s̄2||p)

which is the desired norm || · ||∞. For the Lp-to-Euclidean gain, choose κ(ξ ) = |hG(ξ )|, `≡ 0, and
µ(s1,s2) = γ(||s1||p + ||s2||p.
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The following result is a nonlinear version of [18, Theorem 1].

Theorem 2. Let r > 0 and suppose that κ, `, and µ be absolutely continuous; the following
statements are equivalent:

1) J(s̄)≤ 0 for all |s̄| ≤ r.
2) There exists an absolutely continuous function V : [0,H]×Ξ× S → R satisfying (in the

viscosity sense)

V (H,ξ , s̄)≥ κ(ξ )−µ(s̄) (17a)
∂

∂ t
V (t,ξ , s̄)+ 〈 ∂

∂ξ
V (t,ξ , s̄), fG(ξ , s̄)〉+ `(ξ )≤ 0 (17b)

V (0,0, s̄)≤ 0 (17c)

for all t ∈ [0,H], ξ ∈ Ξ, and |s̄| ≤ r.

Theorem 2 gives necessary and sufficient conditions for a finite-horizon gain to be locally upper-
bounded by γ > 0. The proof is based on textbook results for optimal control and dissipativity.
It illustrates our methodology for the computation of the output gains.

Proof. Let r > 0.

“1) ⇒ 2)” Define the value function

V ∗(t0,ξ0, s̄) = κ(ξ (H))+
∫ H

t0
`(ξ (t))dt −µ(s̄) s.t. (10) with ξ (t0) = ξ0

for any t0 ∈ [0,H], ξ0 ∈ Ξ, and |s̄| ≤ r. The assumptions on the dynamics fG and the cost functions
κ , `, and µ imply absolute continuity of V ∗. A classical result of optimal control theory states
that V ∗ is the viscosity solution to the partial differential equation

∂

∂ t
V (t,ξ , s̄)+ 〈 ∂

∂ξ
V (t,ξ , s̄), fG(ξ , s̄)〉+ `(ξ ) = 0 (18)

for all t0 ∈ [0,H] and ξ0 ∈Ξ. Moreover, V (H,ξ , s̄)= κ(ξ )+µ(s̄) and V (0,0, s̄)= J(s̄)≤ 0, completing
the result.

“2) ⇒ 1)” Suppose V satisfies (17) for all t ∈ [0,H], ξ ∈ Ξ, and |s̄| ≤ r. Take ξ (·) to be the
solution of (10) with ξ (0) = 0 for some |s̄| ≤ r. Integration of (17b) along ξ (t) for t ∈ [0,H] yields

V (H,ξ (H), s̄)−V (0,ξ (0), s̄)+
∫ H

0
`(ξ (t))dt ≤ 0

Using the inequalities (17a) and (17c) with ξ (0) = 0, we thus obtain

κ(ξ (H))+
∫ H

0
`(ξ (t))dt −µ(s̄)≤ 0

the desired result.

Given a desired upper bound γ , an upper bound J′ on the cost function J can be found by
solving for the storage function in (17), e.g., through sum-of-squares methods [22–24]. Another
option is to solve the partial differential equation in (18) with techniques similar to those arising
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in the context of Hamilton-Jacobi-Bellman problems [25, 26]. Given J′(·)� J(·), if

sup
|s̄|≤r

J′(s̄)≤ 0 (19)

then ||G||[0,H]
p,q ≤ γ (respectively, ||G||[0,H]

p,E ≤ γ) on Br(S). Furthermore, since the cost in (16) only
depends on the choice of s̄ ∈ S1×S2, we can also sample J(·) over a finite sample S ⊂ S. This leads
to a probabilistic bound [27] for r satisfying (19).

5 Numerical Example
We present a simple example, namely, the forced unstable Van-der-Pol oscillator, as proof

of concept. This example demonstrates that, despite being simple, we cannot expect an INDI
feedback to be globally stable. Moreover, linearity of the internal dynamics allows to obtain the
input-to-state stability gain immediately, without having to resort to numerical methods such as
sum-of-squares programming [28]. Consider the dynamics given by

ẋ(t) = (x2(t),−(1− x1(t)2)x2(t)− x1(t)+u(t)) (20a)
y(t) = x1(t)+ x2(t) (20b)

for almost all t ≥ 0. The first derivative of y(·) by time reads

ẏ(t) =−(1− x1(t)2)x2(t)− x1(t)+ x2(t)︸ ︷︷ ︸
=a(x(t))

+u(t) (21)

for almost all t ≥ 0 with b ≡ 1. Comparing (20) and (21) suggests the diffeomorphism T : (x1,x2) 7→
(x1,x1 + x2); taking s ≡ T (x) and u(t)≡ v(t)−a(x(t)), we obtain

ṡ(t) = T (ẋ(t)) = T (x2(t),a(x(t))− x2(t)+u(t)) = (x2(t),v(t))

and

y = x1 + x2 = s2

since s1 = x1 and s2 = x1 + x2. By Taylor expansion, we obtain the error term

∆ : (x,δx) 7→ (2x1x2 −1)δx1 + x2
1δx2 + x2δx2

1 +2x1δx1δx2 +δx2
1δx2

and choose τ = 0.1s and K =−1.

Clearly, the internal dynamics are input-to-state stable with β1(r, t) ≡ exp(−t)r and γ1 = 1.
The closed-loop external dynamics under disturbance e(·) read

s2(t) = (1−Kt)s2(tk)+ e(tk)

for all t ∈ (tk, tk+1] and k ≥ 0; hence,

|s2(tk)| ≤ (1−Kτ)k|s2(t0)|+
1

Kτ
||e||∞ (22)

|s2(tk +δ t)| ≤ |s2(tk)|+ ||e||∞ (23)
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for all k ≥ 0 and δ t ∈ (0,τ], implying input-to-state stability with gain γ2 = 1+(Kτ)−1. From the
sufficient conditions in Proposition 1 we have that the L2-to-L∞ gain of E should have an upper
bound

γ < (γ2)
−1 = 0.0909

on some Br(S) with r > 0.
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Fig. 2 Cost J(·) associated with ||E||[0,τ]2,∞ with zero level set dashed in red.

To that extent, the error dynamics E are

ξ̇0(t) = ∆((s̄1, s̄2 − s̄1),(ξ1(t),ξ0(t)−ξ1(t)+ξ2(t)))

= (2s̄1(s̄2 − s̄1)+(s̄2 − s̄1)ξ1(t)−1)ξ1(t)+(s̄1 +ξ1(t))2(ξ0(t)−ξ1(t)+ξ2(t))

and

(ξ̇1(t), ξ̇2(t)) = (s̄2 − s̄1 +ξ0(t)−ξ1(t)+ξ2(t),−s̄2)

recalling that T−1 : (s1,s2) 7→ (s̄1, s̄2 − s̄1). The partial differential equation (18) associated with
the L2-to-L∞ gain of E is

V̇ (t,ξ , s̄)+max
{

0,〈∇V (t,ξ , s̄), ξ̇ 〉
}
= 0

V (τ,ξ , s̄) = |ξ |+ γ(||s̄1||2 + ||s̄2||2)

on (t,ξ ) ∈ [0,τ]×Ξ (see [26] for details on viscosity solutions for the supremum norm). Since we
are only interested in the cost for ξ (0) = 0, that is, J(s̄) ≡ V (0,0, s̄), we can instead numerically
evaluate the dynamics of E. The result for J on an equally spaced grid [−4,4]× [−4,4]⊂ S with
more than 10.000 samples of s̄ is shown in Fig. 2. We then determine the largest value rmax such
that J(s̄)≤ 0 on any sample with |s̄| ≤ rmax, viz.

rmax = 2.2127
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Noting that s1(tk +τ) = s1(tk)+ξ1(τ) and s2(tk +τ) = s2(tk)+ξ2(τ)+e(τ) for all k ≥ 0, if ξ (0) = 0
and s̄ = sk, inspection of the simulated error dynamics verifies that

s(tk) ∈ Brmax(S) =⇒ s(tk+1) ∈ Brmax

along any solution to the co-dynamics; that is, Ω = Brmax is an invariant set in the sense of
Proposition 1. According to Corollary 1, the estimated stable domain T−1(Ω) of the Van-der-
Pol oscillator under inexact feedback linarization is shown in Fig. 3 and compared to simulated
closed-loop responses.
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Fig. 3 Simulated system responses with estimated stable domain T−1(Ω) dashed in blue.

6 Discussion
The small-gain theorem provides an upper bound on how much systems in interconnection

disturb each other, thereby disregarding possibly stabilizing feedback. Hence, the domain guar-
anteed to be stable by the small-gain condition is by its nature a conservative estimate. On the
other hand, the small-gain theorem is but one instance of a larger class of multipliers [29] for
the analysis of systems subject to components that are unknown or otherwise hard to model and
analyze. Here, the approach presented in this paper provides ample room for improved stability
estimates in future work. Thus, by the separation, the application to nonlinear flight control
would include a numerical or data-driven analysis of the internal dynamics only, which would be
more complex on the full dynamics. In addition, the finite-horizon analysis of the error dynamics
can be extended to account for uncertain models using ideas from [18, 29], again a hard task on
the closed-loop dynamics with its combined continuous and discrete-time features. Finally, the
notion of input-to-state stability allows for results on cascaded feedback [12] based on separate
analysis of each loop.
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