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ABSTRACT

Most helicopters experience a significant level of vibrations. Active vibration control techniques
aimed at reducing helicopter vibrations have been extensively studied during the last decades.
Most of the techniques developed so far make use of frequency-domain based algorithms, and
thus require the computation of the Discrete Fourier Transform (DFT) of the output. Recent
developments in the field have shown that time-domain adaptive methods can improve the conver-
gence time of the widely adopted Higher Harmonic Control (HHC) algorithm, the main limitation
of which is the need to update the control action after a sufficient amount of time (i.e., the time
required for the transient to decay following the last change in the control action). The application
of such new methods is tested on a virtual helicopter and the result is compared with the one ob-
tained with the HHC algorithm. Moreover, to improve the performance of the adaptive algorithm,
continuous identification of the unknown parameters is proposed and compared with the discrete
counterpart, in which the update of the control and the update of the parameters are performed
synchronously.
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1 Introduction
Vibration is one of the major drawbacks in helicopters and the main rotor represents the principal

source of it. Indeed, the main rotor transmits to the fuselage vibratory loads at the frequencies multiple
of the blade passage frequency NΩ, where N is the number of blades and Ω is the rotor angular velocity.
Therefore, active vibration control aims to attenuate disturbances with known frequency, where the main
goal is the first harmonic NΩ. The problem has been extensively studied and several approaches have
been proposed [1], [2]: Higher Harmonic Control (HHC), Individual Blade Control (IBC), and Active
Control of Structural Response (ACSR). The main difference between these approaches relies on the
actuation system; both HHC and IBC aim at vibration reduction on the rotor, HHC uses the non-rotating
swashplate at higher harmonics of the rotor rotational speed while IBC controls each blade individually
in the rotating frame using actuated pitch links. On the other hand, ACSR controls the vibrations in the
fuselage. Regardless of the approach, the most adopted control algorithm is the T-matrix algorithm. The
T-matrix algorithm is a frequency-domain method, based on a quasi-steady representation of the plant.
Since the disturbance has a known frequency, the dynamic model of the helicopter can be reduced to a
linear relationship in the frequency domain between the outputs and the inputs at that frequency. This
relationship is represented by the T-matrix, which is an accurate description of the system, but only at
steady state. For this reason, in a digital implementation of an active vibration control scheme, the time
interval between the updates of the control action must be long enough to allow the transients to decay.
The T-matrix algorithm has been extensively studied, in [3] the convergence and the robustness of the
algorithm were analysed considering only the steady state model, in [4] a continuous time analysis of the
HHC was presented for the first time, while in [5] a discrete time stability analysis was carried out using
a coupled rotor-fuselage model. The T-matrix cannot be computed reliably from first-principle models
and is usually estimated from data; the estimate can be computed both offline or online. Therefore,
researchers have investigated both robust and adaptive control approaches, in [6] the control problem
was formulated in a robust control framework and an H∞ synthesis was used to design fully parametrized
gain matrices; on the other hand, adaptive techniques based on recursive least squares methods have
been widely used to estimate the T-matrix online, in [7] Johnson presented a survey of different adaptive
implementations. Recently, a different adaptive approach was presented in [8]. Namely, Kamaldar and
Hoagg moved the quasi-steady model from the frequency domain to the time domain and proposed
an adaptive algorithm in which the adaptive law is updated minimizing an instantaneous cost function.
This approach avoids the computation of the Discrete Fourier Transform (DFT) of the outputs needed
to extract the harmonic information and reduces the convergence time. Indeed, they showed that the
update of the control action can be accelerated with respect to the standard HHC algorithm. In this
paper, the adaptive algorithm used in [8] is investigated and a modification of the algorithm is proposed
to further improve the convergence time. The paper is organised as follows: in Section 2 the HHC
algorithm is presented, while in Section 3 the adaptive HHC algorithm used in [8] is illustrated and a
continuous identification is proposed to improve the performance of the algorithm. Finally, in Section 4
the performance is assessed through numerical simulations. In particular, a two-mass structure example
is used to compare the performance of the adaptive HHC with the proposed one, then the revisited
algorithm is applied to a virtual helicopter and compared with the standard HHC.

2 The Higher Harmonic Control Algorithm
The HHC algorithm has been developed to reduce the vibratory loads transmitted by the main rotor

of the helicopter to the fuselage. It takes its name from its early implementations, in which the swashplate
was controlled at higher harmonics of the rotor rotational speed to modify the airload distributions and
thus attenuate the vibrations transmitted to the structure. In general, the algorithm is used to attenuate
disturbances with known frequency and is formulated in the frequency domain. The update of the control
input is performed at discrete times t(k) = kτ , where τ is approximately the time required for the plant
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to reach the steady state. Let u ∈ Rm be the vector of control inputs and y ∈ Rp the vector of measured
outputs; then the general HHC system is based on a quasi-steady model relating the response of the plant
to the harmonics of the control inputs at the disturbance frequency

yω(k) = Tuω(k)+d, (1)

where uω(k) ∈ R2m is the vector that contains the cosine and sine harmonics of the control input,
d ∈ R2p represents the vibration affecting the system (assumed constant) and yω(k) ∈ R2p is the vector
containing the harmonics of the response. T ∈ R2p×2m is a constant coefficient matrix. Assuming that
the dynamics relating u to y is linear time-invariant, then T is related to the frequency response matrix
G( jω) by the following equation

T =

[
Re G( jω̄) Im G( jω̄)

−Im G( jω̄) Re G( jω̄)

]
, (2)

where ω̄ is the frequency of the disturbance we aim to eliminate. The general HHC algorithm
aims to derive the control harmonics that minimize the effect of d on yω(k), the control signal u is then
obtained from uω(k) through a modulation of its components. In [9] Shaw and Albion proposed the
following control law:

uω(k+1) = uω(k)−T †yω(k), (3)

where T † ∈ R2m×2p denotes the Moore-Penrose pseudoinverse of the T-matrix, which guarantees
deadbeat rejection of the disturbance in one discrete-time step.

3 The Adaptive Higher Harmonic Control Algorithm
Online identification techniques can be adopted in case T is unknown. In this section, the adap-

tive HHC proposed in [8] is briefly presented and, then, a modification of that algorithm is proposed.
The following adaptive HHC algorithm is formulated in the time domain, thus the determination of the
harmonics of y is not required. Let yhss(t,uω) ∈ Rp be the steady state response of the closed-loop sys-
tem, u ∈ Rm be the vector of control inputs, uω ∈ R2m be the vector that contains the cosine and sine
harmonics of the control input and φ(t) ∈ R2p×p be defined as follows:

φ(t) =

[
cos(ωt)
sin(ωt)

]
⊗ Ip×p (4)

where ⊗ is the Kronecker product. Equation (1) can be expressed in time-domain as shown in
equation (5), where the subscript ∗ is used to characterize the true values of the parameters,

yhss (t,uω) = φ
T (t)(T∗uω +d∗), (5)

and T∗ ∈R2p×2m represents the linear relationship between the input and the output that holds in the
frequency domain and d∗ ∈R2p contains the harmonics of the disturbance. It can be noted that the main
difference between equation (1) and equation (5) is represented by the term φ(t).
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The control law

uω =−T †
∗ d∗ (6)

is obtained by minimizing the average power of yhss:

2π

ω

∫
ω/2π

0
|yhss (t,uω) |2 =

1
2
|T∗uω +d∗|2, (7)

where T∗ and d∗ are computed iteratively using a gradient descent algorithm, therefore uω(k) is
computed at each time step using equation (6), based on the current estimate of the adaptive law. The
control signal is obtained modulating the components of uω . More precisely, let τ > 0 be the update time
of the control action. Then for each k ∈ N and for all t ∈ [kτ,(k+1)τ), the control update equation is
given by:

u(t) =

([
cos(ωt)
sin(ωt)

]
⊗ Im×m

)
uω(k). (8)

The following adaptive law is denoted D-AHC (discrete-adaptive harmonic control). For all j ∈Z+,

define Λ j =

[
0 −1
1 0

]
⊗ I j ∈ R2 j×2 j and consider T = {T ∈ R2p×2m : T = ΛT

p T Λm} which is the set

of 2p×2m matrices that have the block structure of equation (2). For each k ∈ N, the sampled data are
defined as:

y(k) = y(kτ) ∈ Rp (9)

φ(k) =

[
cos(ωt)
sin(ωt)

]
⊗ Ip ∈ R2p×p (10)

and consider the cost function:

J(k, d̂, T̂ ) =
1
2

∣∣y(k+1)−φ
T (k+1)

(
T̂ uω(k)+ d̂

)∣∣2+
1
2

∣∣y(k+1)−φ
T (k+1)

(
Λ

T
p T̂ Λmuω(k)+ d̂

)∣∣2, (11)

where the second term constrains the estimate T̂ to be contained in the T set, since for T̂ ∈ T the
two terms are equal and then J(k) can be interpreted as a measure of how well φ T (k+ 1)

(
T̂ u(k)+ d̂

)
approximates the measurement y(k + 1), which itself is an approximation of yhss. If the steady state
assumption is satisfied and assuming no measurement errors are present, then J(k) is minimized by
d̂ = d∗ and T̂ = T∗, which leads to J(k) = 0.

To obtain the update equations the gradient descent method is used, and the derivatives of the func-
tional are evaluated at d̂ = d(k) and T̂ = T (k)

d(k+1) = d(k)+2γdη(k)φ(k+1)[y(k+1)−φ
T (k+1)(T (k)uω(k)+d(k))] (12)
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T (k+1) = T (k)+ γT η(k){φ(k+1)[y(k+1)−φ
T (k+1)(T (k)uω(k)+d(k))]uT

ω(k)+

Λpφ(k+1)[y(k+1)−φ
T (k+1)(T (k)uω(k)+d(k))]uT

ω(k)Λm
T}, (13)

where η(k) = 1
1+uT

ω (k)uω (k)
is a normalization term. The stability of the algorithm and the conver-

gence of y to zero are provided assuming steady state conditions (i.e., y(k+ 1) = yhss (tk+1,uω(k)) ) in
[8]. This implies that the control update time must be long enough to allow the transients to decay. In
[8], the authors have shown through simulation results that the update time can be drastically reduced by
adjusting the update gains of the adaptive law, without destabilizing the plant and therefore better results
in terms of convergence time can be obtained. However, this procedure relies on a fine tuning of the
gains, which may result in instability.

The proposed modification aims to obtain faster convergence time of the parameters and conse-
quently of the response, while keeping the update of the control action at a slow rate. The basic idea is to
decouple the sampling rate used for the parameters identification from the one used to update the control
action. Indeed, it was noted that by performing the identification at a higher sampling rate than the con-
trol update, the performance is improved without the need to reduce too much the update time. Taking
this approach to the limit, a continuous identification of the parameters can be performed. Therefore, the
adaptive law is now described by equations (14) and (15). In this way, larger adaptive rates can be used
since the update is not immediately reflected on the control action. The following equations describe the
update laws of the proposed continuous time adaptive HHC denoted as C-AHC :

ḋ = 2γdη(k)φ(t)[y(t)−φ
T (t)(T (t)uω(k)+d(t))] (14)

˙̄T =γT η(k){φ(t)[y(t)−φ
T (t)(T (t)uω(k)+d(t))]uT

ω(k)+

Λpφ(t))[y(t)−φ
T (t)(T (t)uω(k)+d(t))]uT

ω(k)Λm
T}, (15)

where uω(k) = T †(t = kτ)d(t = kτ) is given by sampling the identified parameters at every control
update. The adaptive law described in equations (14) and (15) is denoted as C-AHC to distinguish it from
the D-AHC. Moreover, a projection operator can be used to enforce a bound on the adaptive parameters
[10]. The modified algorithm is expected to lead to a faster convergence of the parameter estimates, since
it performs more iterations within the same amount of time. However, the stability proof of the feedback
system under the continuous adaptive law (C-AHC) that does not rely on the steady state assumption is
still an open problem.

4 Numerical Simulations
In this section the algorithm is tested on two applications: the first one is a two mass-structure,

which is used to compare the D-AHC with the C-AHC; the second one is a virtual helicopter where the
C-AHC is compared with the HHC algorithm.

4.1 Two Mass Structure Example
In this subsection the proposed algorithm is compared with the one proposed in [8], applying them

to the system shown in Fig. 1, where ψ1 and ψ2 are the control forces and d1 and d2 are the disturbance
forces. The numerical values used are the following: m1 = 2(kg), m2 = 1(kg), c1 = 60(kg/s), c2 =
50(kg/s), c3 = 40(kg/s), k1 = 300(N/m), k2 = 200(N/m), and k3 = 400(N/m). Let y = ξ1, u = ψ1,
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Fig. 1 Two-mass structure, [8]

ψ2 = 0, d1 = 0 and d2(t) = 10cos(ω1t) + 10sin(ω1t), where ω1 = 9π (rad/s). Let Gyu( jω) be the
frequency response function from the control u to y, then the initial condition for the estimate of the T-
matrix is obtained using equation (2) and considering G0 = 5exp( j 5π

12 )Gyu( jω1). The update time of the
control action is 0.25(s) and the control system is turned on after 1(s). The update gains for the D-AHC
are γd = γh = 2 which in [8] were shown to give the best convergence time, while for the C-AHC are
γd = γh = 15. As anticipated for the C-AHC the choice of the gains is easier and larger values can be
picked, since the identification algorithm has time to adapt before the control action is updated. In Fig. 2
the closed-loop responses obtained with the C-AHC and the D-AHC algorithms are compared, Fig. 2(a)
shows the response using the C-AHC while Fig. 2(b) shows the response using the D-AHC. In addition,
Fig. 3 compares the control action of the two algorithms. It can be seen from Fig. 2 that the convergence
of the proposed method, the C-AHC, is remarkably faster compared to the D-AHC. Furthermore, to
compare the performance of the algorithms, the Root Mean Squares (RMS) and the settling time of the

responses, denoted ts, are shown in Table 1. The RMS is defined as xRMS =
√

1
N ∑

N
i=1 |xi|2 and ts is the

time (computed starting from t = 1(s)) required by the closed-loop system response to reach and stay
within a range of 2% of the steady-state value produced by the disturbance. From Tab. 1 it can be seen
that the RMS of the C-AHC response is 18% lower than the one obtained with the D-AHC.

Table 1 Performance comparison between C-AHC and D-AHC

Algorithm yRMS(mm) uRMS(N) ts(s)

C-AHC (proposed) 1.1x10−3 5.3 1.74

D-AHC ([8]) 1.3x10−3 5.7 3.29

4.2 Virtual Helicopter Example
The framework of this example is Active Control of Structural Response (ACSR). ACSR is based on

the superposition of the primary uncontrolled vibration response and the controlled secondary vibration
response, controlled in such a way to minimize the vibrations transmitted from the main rotor at key
locations of the fuselage. These locations are selected to account for the global vibration behavior of
the structure. The helicopter model is built based on data representative of a generic, medium weight
(6 t) helicopter with a conventional articulated 5 blade main rotor and tail rotor configuration. The
model has been realized using MASST, Modern Aeroservoelastic State Space Tools, a MATLAB tool
developed at Politecnico di Milano for the aeromechanical and aeroservoelastic analysis of fixed and
rotary wing aircraft [11]. The model is built from subcomponents, each component is assembled in an
overall model using the Craig Bampton’s Component Mode Synthesis approach. The airframe elastic
model was generated in NASTRAN while both the main rotor and the tail rotor aeroelastic models are
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Fig. 2 Closed-loop time response of the two mass structure example: a) the C-AHC is implemented with
an update time of 0.25(s) and γd = γh = 15; b) the D-AHC is implemented with an update time of 0.25(s) and
γd = γh = 2.
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Fig. 3 Control signal of the two mass structure example: a) the C-AHC is implemented with an update time
of 0.25(s) and γd = γh = 15; b) the D-AHC is implemented with an update time of 0.25(s) and γd = γh = 2.
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obtained in CAMRAD/JA. The model is formulated as a linear system in state-space form, given by the
following equations:

ẋ = Ax+Bu (16)
y =Cx+Du, (17)

where y ∈ R10 is the vector containing the accelerations measured by the sensors placed on the
airframe critical points; the vector u ∈R7 accounts for the three external forces and for the four actuator
forces acting on the gearbox struts. In order to fairly compare the HHC algorithm and the C-AHC the
T-matrix is considered known. Since the HHC attenuates the vibrations in one step in case the T-matrix
is known, the difference in terms of convergence time between the invariant HHC and the adaptive one
is not expected to be significant if the same control update time is chosen. However, the C-AHC can be
implemented with a shorter update time, resulting in a faster convergence.

The objective is to attenuate the vibration at the blade passage frequency of NΩ = 25 Hz, the simu-
lation lasts 20(s), the disturbances are the three forces components acting on the main rotor hub. Because
of the linearity of the system, the amplitude of the disturbance can be chosen arbitrarily; therefore the
response obtained is not a real representation of the vibration level experienced by the helicopter, but it
is more than sufficient to compare the performance of the control algorithms. Thus, the disturbance is
initially set to 1 in each direction and then reduced after 11(s) by 50%, 30% and 20% in the longitudinal,
lateral and vertical direction, respectively, to show how smaller update times can improve the response
when abrupt changes in the disturbance occur. The control system is turned on after 2(s). The HHC
algorithm is implemented with an update time of 0.5(s), as a smaller update time leads to instability,
while the C-AHC is implemented with an update time of 0.1(s) and γd = 8. The C-AHC algorithm
implemented is a simplified version of the one described by equations (14) - (15), since the T-matrix is
known and only the identification of the disturbance is considered. The update equations used are the
following:

˙̄d = γdφ(t)[y(t)−φ
T (t)(Tuω(t = kτ)+d(t))], (18)

ḋ = pro j(d, ˙̄d, f ) =

{
˙̄d− ∇ f (d)∇ f (d)T

‖∇ f (d)‖2
˙̄d f (d), i f f (d)> 0 ∧ ˙̄dT f (d)> 0

˙̄d, otherwise
(19)

where a projection operator is used following [12] to bound the estimate of the disturbances and f (d) =
(1+ε)‖d‖−d2

max
εd2

max
.

Fig. 4 and Fig. 5 show the response scaled with respect to the corresponding steady state value
without the control action. In Fig. 4 the time response of one of the outputs for both the controllers
HHC, Fig. 4(a), and C−AHC, Fig. 4 (b) are shown. It can be seen that the transient is slightly improved
in the C-AHC case; the same consideration can be done for the other outputs that are not shown here.
Indeed, Fig. 5 shows the norm of the amplitudes of the vibrations as a measure of the global vibration
behaviour; it can be seen that the peak due to the change in the disturbance obtained with the C-AHC
is 40% lower than the one obtained with the HHC. The reason is that the C-AHC algorithm can be
implemented with a smaller update time, thus, it is able to react earlier to the change in the disturbances.
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Fig. 4 Closed-loop scaled response of a selected output location of the virtual helicopter: a) HHC response
using an update time of the control action of 0.5(s); b) C-AHC response using an update time of the control
action of 0.1(s).
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Fig. 5 Scaled norm of the amplitudes of the closed-loop response of the virtual helicopter.
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5 Conclusion
In this paper the problem of active vibration control in helicopters is considered and a modification

of an existing adaptive control algorithm for harmonic disturbance suppression is proposed. In particular,
the T-matrix and the disturbance are identified in a continuous manner and the control action is updated
in discrete time. The performance of the algorithm is assessed through numerical simulations, and the
advantages of the presented technique with respect to the state-of-the-art are highlighted.
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