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ABSTRACT

Aiming at the potential application of explainable artificial intelligence techniques in space tasks,
we propose an attention-based deep network for crater detection during Lunar landing scenarios.
A methodology combining a fully convolutional neural network and self-attention modules is de-
veloped to explore the explainability of automatically crater detection from images. By applying
the transfer learning technique, the DeepMoon model is selected as the backbone of the proposed
pipeline, and an encoder-decoder based architecture is therefore established and evaluated. The
crater images generated using the Blender platform are trained and tested to estimate the perfor-
mance of the mythology. The self-attention module and data augmentation techniques are applied
to the dataset to enhance the segmentation results and improve the generalisation of the implemen-
tation. The experiment results on the synthetic greyscale dataset show that the precision, recall,
and F1 scores of the crater detection results achieve 0.86, 0.84, and 0.83, respectively. The explain-
ability of the proposed network is achieved by visualisation of each attention map of the attention
modules, showing that the deeper attention module pays more attention to the craters.
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Nomenclature

σ(·), = Sigmoid function
C×H ×W = Dimension of feature maps, where C, H, and W represents the channels, height, and width.
f 7×7 = A 7×7 kernel of a convolutional block.
F1, P, R = Metrics of F1 score, precision, and recall respectively.
Fn, Fp, Tp = False negatives, false positives, true positives.
xi, yi = Groundtruth output target value and the network predicted one of pixel i.
⊗ = Element-wise multiplication.
FFF = Feature map.
MMMc, MMMs = Channel attention map, spatial attention map
WWW 0, WWW 1 = Network weights
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List of Acronyms

2D two-dimensional

3D three-dimensional

BCE Binary Cross-Entropy

BN batch normalization

CBAM convolution block attention module

CD Crater Detection

CI Crater Identification

CNN Convolutional Neural Network

CRO Candidate for a Regional Object

DEM Digital Elevation Map

DL Deep Learning

DNN Deep Neural Network

FCL Fully Connected Layer

IQR interquartile range

LRO Lunar Reconnaissance Orbiter

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

PyCDA Python Crater Detection Algorithm

RPN Region Proposal Network

SENet Squeezeand-Excitation Network

TRN Terrain Relative Navigation

WAC Wide Angle Camera

1 Introduction
Craters are small depressions on the surface of a planet, Moon, or asteroid, created by the hyperveloc-
ity impact of smaller objects. The detection and study of craters have been attracting a lot of interest
from both scientists and engineers. Scientific issues, such as relative age measurement of the planetary
surface, nature of degradational processes, and planetary geomorphology, can be studied from craters.
Moreover, craters are ideal landmarks for relative navigation on or around the Moon and asteroids [1, 2].
Specifically, the development of optical techniques leads to crater-based autonomous spacecraft naviga-
tion being a popular and reliable method.

Natural craters vary in shapes, including morphology, peak rings, central pits, wall terraces, or
maybe overlap with others [3]. Conventional crater detection can be classified as the unsupervised de-
tection method, which detects the edges of the crater by extracting the circular or elliptical features using
image processing and target detection. For example, Ref. [4] use the Hough Transform and the Radial
Consistency measure to detect craters on Earth and Mars from remote sensing images. Ref. [5] devel-
ops an improved morphological image processing and fast Fourier transform-based template matching
methodology for detecting craters from planetary surface. Ref. [6] studies an automated counting and
template generating method to detect very small craters in LROC NAC images of the Moon. Recently,
Ref. [7] combines the Hough transform and unsupervised neural network to detect craters in the image.
The unsupervised conventional crater detection methods do not need to label a large number of samples.
However, they are not robust to complex terrain detection, as the imaged craters can be diverse in dimen-
sions and appearance because of varying illumination conditions and different poses of onboard cameras
[1].

Convolutional Neural Network (CNN)-based crater detection algorithms emerged due to the ad-
vances in computer vision and successful applications of CNNs in the object detection area. Most earlier
methods utilise a CNN as a classifier to validate selected features for crater detection, such as Refs. [8–
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10]. Recent research has given more attention to robust crater detection algorithms that utilise CNNs to
fully process raw crater images. For instance, Ref. [11] develops an open-source crater detection library
named Python Crater Detection Algorithm (PyCDA) to detect new craters using U-Net architecture from
greyscale images. Ref. [1] proposes the CrateIDNet, an end-to-end fully CNN, to detect craters from
also greyscale images. Additionally, Refs. [12, 13] study the CNN-based crater detection methods from
Digital Elevation Map (DEM) images by presenting DeepMoon and LunaNet, respectively. Moreover,
Ref. [14] uses multiple neural networks to process digital terrain model and thermal infrared imagery to
identify and locate craters on Mars, where the ResUNETs are used to extract crater rims from images.

CNNs-based algorithms provide a lot of potential for improving the performance of crater detection.
However, some of them are unable to explain their predictions, which poses a challenge to their usage
in critical systems, such as space applications. Previous work has developed various CNNs for crater
detection, while few studies have looked into the explainability of the proposed networks in terms of
crater detection tasks. Thus, the motivation of this study is to investigate explainable crater detection
CNN that plays an end-to-end manner for a more reliable crater detection for space applications, which
attention-based DeepMoon network is proposed. The remaining part of the paper proceeds as follows:
Section 2 presents the literature review of previous CNN-based crater detection works and an overview
of the attention mechanism. Section 3 details the methodology of the proposed algorithm, including the
attention-based DeepMoon model, data augmentation, and evaluation metrics. Section 4 gives experi-
ments and discussion. In Section 5, concluding remarks end the work.

2 Related work

2.1 Review of CNN-based Crater Detection
The PyCDA is an open-source crater detection library composed of a detector, extractor, and classifier,
which focuses on detecting new craters that have never been catalogued [11]. PyCDA uses a downsized
U-Net architecture to compute the per-pixel likelihoods of a crater rim from inputs of greyscale intensity
images. The pixel prediction map is then fed to the extractor to generate a list of crater candidates. A
classifier CNN is finally applied to determine true craters. Thanks to PyCDA, numerous craters have
been detected and categorised, thus helping to generate new labelled datasets for training and testing of
Deep Learning (DL) algorithms.

CrateIDNet is an end-to-end fully CNN for simultaneous crater detection and identification [1].
CraterIDNet takes remote sensing images in various sizes and outputs detected crater positions, apparent
diameters, and indices of the identified craters. Instead of using large off-the-shelf Deep Neural Network
(DNN) models, a small CNN architecture pre-trained on Martian crater samples [15] is first developed
to extract feature maps. Next, two pipelines, namely Crater Detection (CD) and Crater Identification
(CI) are proposed for simultaneous detecting and identifying craters. The CD process involves detecting
the presence of craters and locating them within the image if they exist. The output of CD is then fed to
the CI process to match the detected craters to surface landmarks in a known database, and matches of
CI will provide position estimation. The CD modifies the Region Proposal Network (RPN) architecture
[16] as the backbone, regressing objectness scores and crater diameters from feature maps. Experiments
reveal that the light CraterIDNet with a size of 4 MB performs better than previous algorithms [9].

LunaNet framework is proposed in Ref. [13] to detect craters for lunar Terrain Relative Navigation
(TRN) and take greyscale images as inputs. Thus, the method is more suitable for implementation
aboard a spacecraft equipped with an optical camera without the need for a depth sensor. The output of
the CNN is a crater rim prediction mask. Each feature extraction step of the LunaNet includes prediction
mask, eroded and thresholded prediction, contour detection, and ellipse fitting. The data preparation is
with the Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) Global Lunar DEM dataset
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[17], followed by a histogram rescaling of the input greyscale images to match the intensity distribution
of a DEM image. The LunaNet reduces the training effort and final detection results by applying the
transfer learning from the DeepMoon model. Experimental results indicate that LunaNet’s performance
surpasses DeepMoon and PyCDA in terms of robustness to noisy images, location accuracy, and average
crater detection time.

It has been observed that areas with low solar angles have heavy shadowing, resulting in reduced
crater detection reliability. To identify high-value landmarks by optical navigation systems, Ref. [18]
employs a CNN-based object detector to distinguish likely landmark candidates and predict detection
probabilities along various lighting geometric flight paths. A massive dataset based on real lunar-surface
data is collected. A Candidate for a Regional Object (CRO) is defined as an image object with spe-
cific latitudes and longitudes. The LunaNet architecture is then used and trained to identify CROs by
maximising the discrimination between local areas of the Moon. Finally, the CRO performance map
is formed based on the scored CROs arranged by considering the azimuth and elevation angles of the
Sun during the year. Numerical experimental results demonstrate that the proposed landmark detection
pipeline can provide usable navigation information even at Sun angle elevations of less than 1.8 deg in
highland areas, which indicates a successful application for the worst dark highlands near the South Pole.

2.2 DeepMoon Network
DeepMoon network is proposed in Ref. [12], employing a CNN architecture for robust crater detection
on the lunar surface using DEMs. The method relies on the developed DeepMoon network to identify
the craters in terms of their centroid and radii and outputs pixel-wise confidence maps of crater rims
on the surface of a rocky body. DeepMoon modifies U-Net [19] by changing the input image size, the
number of filters in each convolution layer, and the use of dropout [20] in the expansive path for memory
limitations and regularisation, respectively. Fig. 1 presents the architecture of the DeepMoon network.

The input of DeepMoon are 256×256 pixels Lunar DEM images, and correspondingly, 256×256
pixels target with activated pixels corresponding to the locations of the crater rims is the output from a
final layer following the expansive path. DeepMoon differs from the original U-Net by the number of
filters in each convolution layer and the use of dropout in the expansive path. In the contracting path,
each convolutional layer in blocks 1, 2 and 3 contain 112, 224 and 448 filters, respectively. While filters
of blocks 5, 6 and 7 in the expansive path are 224, 122 and 122, respectively. Each convolutional layer
in the connecting path contains 448 filters. The total trainable parameters of DeepMoon is 10 278 017.

For training, the data used in DeepMoon is generated by merging two human-generated crater cat-
alogues, which are the LRO WAC Global Lunar DEM [17] and the LRO Lunar Orbiter Laser Altimeter
DEM [21]. The dataset is split into equal train-validation-test parts, yielding 30 000 DEM images per
part. The minimised loss function is chosen as the pixel-wise Binary Cross-Entropy (BCE). DeepMoon
produces a crater rim prediction mask that further feeds to a low-level image process and a template
matching procedure to determine the actual craters. The median fractional longitude, latitude and radii
errors are 11% or less, representing good agreement with the human-generated datasets. Additionally,
transfer learning from training on lunar maps to testing on maps of Mercury is demonstrated successfully
in qualitative.

2.3 Attention mechanism models
Attention mechanism is born to investigate the links between inputs and outputs of DL models in the
field of natural language processing [22]. Because of the significant improvements made by attention
mechanisms in machine translation, it soon expands to the computer vision field [23], and various other
types of attention mechanisms are explored [24].
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Fig. 1 Architecture of DeepMoon network (Reproduced from [12]).

In Ref. [23], the image is first encoded to extract features by a CNN. The Long Short-Term Mem-
ory (LSTM) decoder then consumes the convolution features to generate descriptive phrases, with the
weights learned through attention. The attention weights are visualised to show the model pays attention
to which portions of the image produce a specific word. The research also introduces the distinction
between soft and hard attention, depending on whether the attention has access to the complete image or
merely a patch of it. The alignment weights of soft attention are learned and softly assigned the whole
patches in the source image, whereas hard attention only attends to one patch of the image at a time.

The soft attention-based model is smooth and differentiable, but the hard attention-based model is
non-differentiable and generally trained by reinforcement learning. Therefore, we focus on soft attention
methods in this report. In terms of the attention domain, soft attention can be classified into spatial
domain[25], channel domain[26], mixed domain[27, 28] etc.

2.3.1 CBAM Attention Module
Ref. [28] studies the spatial and channel attention in convolution block attention module (CBAM), and
the corresponding structure is given in Figure 2. Assuming an intermediate feature map FFF ∈C×H ×W
as input, CBAM sequentially infers a 1D channel attention map MMMccc ∈C×1×1 and a 2D spatial attention
map MMMs ∈ 1×H ×W . The following is a summary of the overall attention process,

FFF ′ = MMMccc(FFF)⊗FFF (1)

FFF ′′ = MMMsss(FFF ′)⊗FFF ′ (2)

where ⊗ represents element-wise multiplication and FFF ′′ is the refined feature output.

2.3.2 Channel Attention Module
Channel attention is developed to boost the representational power of a network by enhancing spatial
encoding. Ref. [26] focuses on the channel relationship and proposes the Squeezeand-Excitation Net-
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Fig. 2 The convolution block attention module (Reproduced from [28]).

work (SENet). The channel attention module of SENet consists of three parts: squeeze, excitation, and
scaling(attention). First, the AdaptiveAvgPool is applied to the spatial dimension. For example, the input
dimension of 7×7 is squeezed to the output of 1×1. Next, the channel attention is learnt through two
Fully Connected Layers (FCL), followed by the Sigmoid function to normalise, which this step is called
excitation. Finally, the learned matrix by excitation step is multiplied with the original matrix to get the
feature weighted by the channel dimension (e.g. each 7×7 feature map is multiplied by 1×1 weight).

The channel attention module in [28] (see Fig. 3) is nearly identical to [26], except that MaxPool
is added to get more unique channel characteristics. The methodology of channel attention in Ref. [28]
is: (1) Performing both average-pooling and max-pooling on the input features, generating two different
spatial descriptors denoted as FFFc

avg and FFFc
max, respectively. (2) Feeding both descriptors to a shared

Multilayer Perceptron (MLP), where the number of channels is first compressed and then reconstructed.
(3) Element-wise summation of the output feature vectors from MLP. The Sigmoid function is then
connected to generate attention weights of 0∼1 between channels. (4) Multiplying the scale back to the
original input feature. Mathematically, the channel attention of CBAM is computed as,

MMMccc(FFF) = σ(MLP(AvgPool(FFF))+MLP(AvgPool(FFF)))

= σ(WWW 1(WWW 0(FFFc
avg))+WWW 1(WWW 0(FFFc

max)))
(3)

where σ denotes the Sigmoid function. The MLP weights are WWW 0 ∈C/r×C, and WWW 1 ∈C×C/r, followed
by ReLU activation function.

Add, sigmoid

MaxPool 

AveragePool

F

MLP

Channel Attention Module Feature map

AveragePool Layer

MaxPool Layer

Channel Attention Layer

Mc

Convolutional Block Attention Module (CBAM)Fig. 3 Channel attention module of CBAM (Reproduced from [28]).

2.3.3 Spatial Attention Module
A Spatial Attention Module generates spatial attention in convolutional neural networks by utilizing the
inter-spatial relationship of features. Spatial attention focuses on where is an informative part, which
is complementary to channel attention. To compute the spatial attention of CBAM, there are steps: (1)
Both Global max-pooling and Global average-pooling operations are applied to input features along the
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channel axis and (2) concatenated to generate an efficient feature descriptor. (3) Applying convolution
operation, the demission of the channel decreases to 1. (4) The above results are fed to the Sigmoid
function to generate spatial attention feature. The spatial attention feature furthermore can be multiplied
with the input feature map to increase spatial attention. The mathematical expression of the spatial
attention is,

MMMsss(FFF) = σ( f 7×7([AvgPool(FFF);MaxPool(FFF)]))

= σ( f 7×7([FFFs
avg;FFFs

avg]))
(4)

where f 7×7 is a 7×7 kernel of a convolutional block, FFFs
avg ∈ R1×H×W , FFFs

max ∈ R1×H×W

Feature map

Global AveragePool 

Global MaxPool 

Spatial Attention Layer

Conv, sigmoid

MaxPool 

AveragePool

F Ms

Spatial Attention Module

Fig. 4 Spatial attention module of CBAM (Reproduced from [28]).

3 Methodology
In this work, we propose an attention-based DeepMoon framework that exploits either DEM images
or greyscale images. The proposed network takes advantage of attention mechanism techniques and
DeepMoon structure, which performs a better segmentation for crater detection with the explainability.

3.1 Attention-based DeepMoon Using Transfer Learning
Fig. 5 shows a framework of attention mechanism-based DeepMoon for crater classification problems.
We present a similar architecture from DeepMoon, which fully introduces the short-cut layers to com-
bine the encoder information and decoder information. The existing architecture contains many feature
channels in the upsampling part, which allows the network to propagate context information to higher
resolution layers. Consequently, the expansive path is more or less symmetric to the contracting part and
yields an encoder-decoder architecture. The network only uses the valid part of each convolution without
any fully connected layers. The attention-based DeepMoon network can be first trained by using a trans-
fer learning of DeepMoon, where the pre-trained parameters are given to achieve an efficient training
process. Additionally, self-attention modules are motivated by how we pay visual attention to different
regions of an image, which gives a way to show the explainability of the network. Thus, we introduce
two self-attention modules for further enhancing the performance and explainability of crater detection.
The proposed attention modules combine the spatial attention module and channel attention module,
similarly to CBAM but with adding a batch normalization (BN) layer before the activation function.
The spatial and channel attention modules are utilised in both encoders and decoders of the pixel-level
detection models.

As discussed in Section 2, the size of the feature map introduces to the self-attention modules is
C × H ×W , where C is the number of channels, and H ×W is the height and width of the feature
map. The channel attention module is utilised to model and dig the inter-dependencies between feature
channels. The proposed feature map is first reshaped and fed into fully connected layers and BN layers,
which generates a new feature map with the size of 1× 1×C. After that, the feature map is fed to a
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Fig. 5 Architecture of the proposed attention-based DeepMoon network.

sigmoid layer to calculate the channel attention map. Then the generated feature map and an element-
wise multiply with the input feature map are used to obtain the output of the channel attention modules.
In the spatial attention module, the feature map is input to the convolutional block with a kernel size of
3×3 and BN layers, which generates a new feature map. Then the new feature map is again fed into the
convolutional block with activation layers to reshape its channels and generate a new feature map with
the size of 1×H ×W . The sigmoid function is widely employed to map the non-normalised output of
a neural network to a probability distribution over predicted classes. Finally, an element-wise multiply
operation is applied to the generated feature map to obtain the final output of attention modules.

3.2 Lunar Landing Scenario
To evaluate the proposed network, we first generate the dataset of crater images using the Blender plat-
form. Blender is an open-source 3D creation that is suitable for creating planet and crater models. Figure
6 illustrates different phases of descent and landing on the lunar surface, which craters are ideal mark-
ers for relative navigation. First, crater detection is achieved by DNN frameworks and further used to
estimate poses in the Lunar landing scenario.

In this study, we investigate the last landing phase that supposes the landing path is a projectile
trajectory ranging from 1500 m to 200 m in altitude, as shown in Figure 6. The motivation for the choice
of this scenario comes from two following aspects: 1) During the last landing phase, the craters in images
captured by onboard camera change variety with the landing trajectory, which challenges conventional
crater detection methods as most of them considering images that generated by an orbital camera. 2)
Additionally, the detected craters in this landing scenario can be further applied in hazard detection and
avoidance for Lunar landers. Therefore, the area around the Apollo 12 landing site is selected to build
the scenario, in which the corresponding 3D model is loaded from NASA 3D resource1. The rendering
output images are generated by 3D models built in Blender.

3.3 Database Collection
In this research, the DeepMoon dataset is first collected for the training and evaluation, which are gen-
erated by randomly cropping DEM images from the Lunar Reconnaissance Orbiter and Kaguya merged
digital elevation model [29]. Furthermore, a synthetic dataset is generated for refined training, evalua-

1https://nasa3d.arc.nasa.gov/search/lunar
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Fig. 6 Scenario built in Blender for Lunar crater detection.

tion, and testing. The data collection phase has been performed using the camera and Rendering function
provided by Blender. Output images are generated as follows:

• Parabola trajectory: 8 trajectories along ±x, ±y, ±x±y, z range(from 1500 m to 200 m)
• camera: tracking the Lunar surface along the -z direction, which camera follows the aforemen-

tioned parabola trajectories.
• Rendering: Cycles and Workbench rendering methods, 100 frames
• Output: Depth images by Cycles rendering method, Visual RGB images by Workbench rendering

method, size of 256 ×256 pixels

The groundtruth for DNN training dataset is labelled manually, shown as Fig. 7. First, black balls
are used to cover the craters shown in the 3D model, of which the total number of craters is 94. Second,
images, namely groundtruth images, are captured by a camera following the same trajectories. Next,
We import the groundtruth images in MATLAB as a 2D matrix for each frame. Then a circle detection
algorithm is applied to obtain the list of the position and radii of each crater in the image frame. Finally,
the mask images are generated from the computed crater list, and greyscale images are used as an input
for the network. By limiting the size of detecting craters using data preprocessing, 764 images are
generated for developing and evaluating the proposed network.

Fig. 7 Pipeline of groundtruth mask generation.
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3.4 Accuracy Metrics
Several useful metrics are introduced to evaluate the performance of the proposed model. The pixel-
wise BCE is used as the loss function for training the network, which is a standard loss function used for
segmentation problems:

BCE =− 1
N ∑

i
yilog(p(yi))+(1− yi)log(1− p(yi)) (5)

where y is the label (1 for "crater" and 0 for "no crater"), p(yi) is the predicted probability of the pixel i
being a crater, and N is the total number of pixels. The p(yi) values are the classification output of the
CNN, which are subject to a sigmoid function. Since it is a binary classification problem, it takes the
simplified form of a sigmoid function:

σ(x) =
1

1+ e−x (6)

Thus, by substituting the p(yi) with Eq. 7, Eq. 5 can be rewritten as,

BCE =
1
N ∑

i
xi − xiyi + log(1+ exp(−xi)) (7)

where xi is the network predicted one of pixel i.

After generating the predicted the binary image from network, template matching is then applied
to the output image to extract detected craters. The recall(R), precision(P), and F1 score are utilised
to analyse the matched craters with the ground truth to further validate the performance of proposed
network. Precision is the ratio of correctly predicted positive to the total predicted positive. Recall is
the ratio of correctly predicted positive to the all observations. F1 Score is the weighted average of
Precision and Recall, which takes both false positives and false negatives into account. Following gives
the corresponding definition and formula:

R =
Tp

Tp +Fp
(8)

P =
Tp

Tp +Fn
(9)

F1 = 2
PR

P+R
(10)

where Tp are true positives, Fp are false positives, and Fn are false negatives.

Furthermore, considering the further application of detected craters in the navigation system, the
detected craters in the image frame can be identified and matched to a local crater database in the landing
site frame. In that case, by solving a two-dimensional (2D)-three-dimensional (3D) matching problem
the pose of an onboard camera can be determined. By knowing the configuration matrix of the camera,
we can compute the pose of the spacecraft with respect to the landing site frame. As the detection error
on crater position and radii will affect the performance on crater identification, and then translate to the
navigation error, we, therefore, analyse the median and interquartile range (IQR) of the position and radii
of detected craters.
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4 Experiments

4.1 Training Initialisation
The DeepMoon dataset contains 30 000 DEM images which the median number of craters per DEM
image is 21. We apply transfer learning to train the proposed attention-based DeepMoon by taking
advantage of the trained DeepMoon on its corresponding dataset for the DEM-based crater detection
task. We then use the learned features, transfer them to our proposed attention-based network, training
on the Blender-generated dataset for crater detection from greyscale images. To do so, the pretrained
layers and parameters of the DeepMoon are first frozen in the proposed network and train the rest layers
by using the DeepMoon dataset. Secondly, we unfroze the layers of DeepMoon and fine-tuning the
whole proposed network with both the DeepMoon and Blender-generated datasets.

We divide the Blender dataset into three essential parts, training, validation and testing, showing
in Figure 8. Additionally, data augmentation in data analysis is the technique utilised to enhance the
amount of data by adding slightly modified copies of already existing data or newly created synthetic
data from existing data. Its effectiveness has been verified in many computer vision tasks. Thus, various
mainstream data augmentation techniques are introduced and used in this task, such as random colour
inversion, horizontal/vertical flips, random row or column pixel shifts, and random 90 deg rotations. The
ground-truth is applied for the evaluation and test of the crater detection model. We implement all of our
models using the Tensorflow framework. All methods are trained in Python environment with an Inter
Xeon W-10855M CPU with 64-GB RAM and Quadro GTX 5000 GPU with 16GB RAM. The learning
rate is initially 1E-4 for the training of frozen backbone model layers and the training of fine-tuning. The
batch size of the training phase is 8 due to the computational efficiency. The filter size and dropout are
set to be 3×3 and 0.15, respectively.

Fig. 8 Dataset splitting.

Table 1 Score comparison of the validation and test on the synthetic dataset for DeepMoon and Attention-
based DeepMoon

Model Image Type Dataset
Accuracy Metric

Recall Precision F1 score BCE

DeepMoon
DEM

Validation 78% ± 22% 90% ± 15% 82% ± 17% 0.011 029
Test 74% ± 18% 89% ± 15% 80% ± 14% 0.015 370

Greyscale
Validation 72% ± 21% 90% ± 16% 78% ± 18% 0.011 724

Test 71% ± 22% 88% ± 16% 76% ± 18% 0.012 256

Attention-based
DeepMoon

DEM
Validation 87% ± 18% 83% ± 17% 84% ± 15% 0.010 199

Test 84% ± 15% 85% ± 16% 83% ± 13% 0.010 457

Greyscale
Validation 84% ± 17% 87% ± 15% 84% ± 13% 0.010 528

Test 86% ± 17% 84% ± 16% 83% ± 14% 0.011 045

4.2 Experimental results and discussion
Post-process is applied to the output of the crater detection network, aiming to extract crater coordinates
(in pixels) from the CNN-predicted target and compare the results to the corresponding human-counted
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crater data. The minimum and maximum ring radius to search target over are set to be 3 pixels and 50
pixels, respectively. We apply the proposed attention-based DeepMoon pipeline for explainable crater
detection on the Blender-based synthetic dataset and list the various accuracy metrics in Table 1 for both
the validation and test datasets. To compare the performance with the DeepMoon, Table 1 also shows
the score of DeepMoon on our synthetic dataset. As we can see, while the Recall has a marked growth
after adding self-attention to DeepMoon, the Precision decreases slightly, which results in a bit better
performance in terms of F1 score. Moreover, the BCE metric achieved by the proposed network supports
the conclusion that the attention-based network outperforms the DeepMoon model. Additionally, the
similarity between our validation and test set statistics achieved by the proposed method, as shown in
Table 1, suggesting that overfitting is avoided almost or completely. Especially for the greyscale image
dataset, a small decrease from the test dataset to the validation dataset indicates good robustness of the
attention-based DeepMoon on greyscale images for further on-board application.

(a) Case of wrong-size detected craters (b) Case with detected craters but not labelled

Fig. 9 Results on DEM images by proposed pipeline for crater detection.

Figures 9 and 10 show the results by the attention-based DeepMoon and post-process of the in-
put images in different sampling trajectories, illustrating that the proposed crater detection method can
extract craters from both DEM and greyscale images. However, the performance is affected by the illu-
mination, as shown in Fig. 9a where detected craters are in a smaller size than the groundtruth caused
by light. Furthermore, with a good light condition, the proposed network is able to detect the craters in
small radii that are not labelled. As can be seen, the green rectangle in Figure Fig. 9b shows the craters
that can be detected by the network but are not labelled because of small radii. A similar but slightly
worse performance can be achieved with the visual images due to the lack of depth information, showing
in Fig. 10. The explainability of the crater detection results is achieved by the visualisation of attention
maps. To verify whether self-attention focuses on the craters, Fig. 11 shows the attention maps for each
attention module layer on synthetic greyscale/DEM dataset. In Fig. 11, the AttModule represents for the
output of sigmoid function of the spatial attention, and the AttMask represents for a refined feature map,
which the output of sigmoid is multiplied by the input feature. Thus, the AttModule show where the
attention focus to, while the AttMask is a visualisation of feature map, representing the value of feature
map calculated by the mean of feature maps in different channels. When visualising the attention maps,
the deeper attention map of the proposed network highlights craters more accurately. Moreover, this
attention map can focus on multiple craters in one image.
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(a) Case with non-detected results (b) Case with false detection results

Fig. 10 Results on greyscale images by proposed pipeline for crater detection.

(a) DEM images

(b) Greyscale images

Fig. 11 Visualization example of mask-attention in different layers.
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For the purpose of crater-based navigation, the median and IQR error of position and radius of the
detected crater are calculated, with the result of 0.320142, 0.219679 (25%), 0.424127 (75%) in ver-
tical axis, 0.223745, 0.175686 (25%), 0.307039 (75%) in horizontal axis, 0.147974, 0.095238 (25%),
0.197090 (75%) in radius. The effects of detected error on navigation performance are out of this pa-
per and will be investigated in future. The proposed network contains a total parameter number of
10,651,775 with a size of 122 MB, and it uses ∼0.3853 s to predict the output image from the input
greyscale image at each frame. To study the capability of the proposed network implementation on the
onboard system, the codes need to be optimised and then translate to the embedded system for further
analysis.

5 Conclusion
In this paper, an effective attention-based DeepMoon model is proposed to give the explainability of the
DeepMoon network and improve the data processing efficiency. A new crater dataset is generated based
on the Blender platform. The experiment results on the generated dataset demonstrate that the precision,
recall, and F1 scores of the crater detection results achieve 0.86, 0.84, and 0.83, respectively, which
shows competitive performance compared with the DeepMoon model. Additionally, the explainability
of crater detection results is presented by the attention maps visualisation. There are still several as-
pects left for future improvement. To achieve better results, convolutional layers of the encoder-decoder
framework could be changed with more complex modules, such as the Inception module, Residual mod-
ule, and Dense module. To explore the possibility of onboard application for crater detection, details
such as onboard image transformation and algorithm implementation will be researched further. Other
datasets will also be used or generated to improve the performance of the proposed framework, such as
training with PANGU2 generated dataset and physical simulation dataset.
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