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ABSTRACT

Preview control using wind estimates derived from Doppler wind lidar measurements is a promis-
ing technique for designing active gust load alleviation functions. Due to high noise levels in the
lidar measurements, the associated estimator must use some type of smoothing to obtain a reason-
able estimate, which entails a loss of some information. Taking this loss into account during control
synthesis should help ease the tuning procedure and improve the performance and robustness of
the resulting controller. This paper proposes a method to consistently design a linear filter which
closely approximates the behavior of the wind estimator and which can be integrated into a linear
robust control framework. Its characteristics are shown to closely match the real estimator over a
range of types of turbulence using a standard set of system parameters, and in a control synthesis
example, it demonstrates a significant improvement in load alleviation performance.

Keywords: Preview control; Lidar-based gust load alleviation; Robust control; Estimation losses

Nomenclature

−→
δ act = Commanded control surface deflections
δnoise,i = Measurement noise of measurement i
D(z) = Tapped delay line
ηapert = Lidar sensor aperture angle
fscan,φscan = Lidar sensor scanning rotation rate and angle
γ1,γ2 = Tikhonov regularization weighting parameters
GLA = Gust Load Alleviation
G(z) = Aircraft model
H = Discrete gust half-length
J = Jacobian of the wind field estimation algorithm
J̃ = Jacobian augmented with regularization terms
Kinterp = Interpolation matrix which converts −→w f ilt,est to −→w f ilt,ctrl
KWFE = Filter matrix approximating the wind field estimation algorithm
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LOS = Line Of Sight
LTI = Linear Time Invariant
nmeas,LOS = Number of measurement points along the lidar LOS
nmeas = Total number of measurements available for wind field estimation
nnodes = Number of nodes in the estimated wind field
PRF = Pulse Repetition Frequency (of the lidar)
PAP = Power Aperture Product
PSD = Power Spectral Density
r̃,r = Residual vector with and without regularization terms, respectively
Ri = LOS range of a lidar measurement
Rmin = Minimum measurement range
∆R = Range resolution
σi = Standard deviation of measurements (due to measurement noise)
θ = Vector of estimated wind field parameters (i.e. vertical wind speeds)
θp,i,θp+1,i = Wind field nodes adjacent to measurement i
τlead,τlag = Fore and aft limits (in relative time) of the estimation window
∆tθ = Relative time between adjacent estimation wind field nodes
∆tctrl = Controller sampling time
−→u meas = Relative wind speed measurements collected by the lidar sensor
VTAS = True airspeed
−→
VK = Aircraft inertial velocity vector
−→w ctrl = Controller wind field
−→w est = Estimated wind field
−→w f ilt,ctrl = Filtered vertical wind speeds at the controller wind field nodes’ position
−→w f ilt,est = Filtered vertical wind speeds within the estimation window
−→w turb = Vertical wind speed caused by atmospheric turbulence
−→w turb,ctrl = True vertical wind speeds at the controller wind field nodes’ positions
−→w turb,est = True vertical wind speeds within the estimation window
wturb,lead = True vertical wind speed at the forwardmost point in the estimation window
wturb,ctrl,lead = True vertical wind speed at the forwardmost node of the controller wind field
−→w turb,AC = Vertical wind speeds impacting the aircraft
wturb,0 = True vertical wind speed at the aircraft nose
−→xk = Flight path direction
xlead,xlag = Fore and aft bounds of the wind field estimation window
∆xθ = Distance between adjacent estimation wind field nodes
∆xctrl = Distance corresponding to one controller time step at constant airspeed
∆xa,i = Distance between measurement i and θp,i
∆xb,i = Distance between measurement i and θp+1,i
yi = Estimated vertical wind speed at the location of measurement i
zi = Measured vertical wind speed component of measurement i
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1 Introduction
Modern aircraft development places a strong emphasis on improved efficiency and reduced emis-

sions. As part of these efforts, active control of loads in flexible structures not only offers the opportunity
to improve flying qualities and reduce structural weight, but also enables otherwise impractical design
features, such as high aspect ratio wings. Gust load alleviation (GLA) is particularly challenging due to
the inherent unpredictability of atmospheric turbulence and to the limitations of flight control systems,
which together make it difficult to detect and react to disturbances in a timely manner.

Unlike more traditional feedback-based GLA systems [1], feedforward GLA functions using directly-
sensed wind information can compensate for both system delays and aircraft dynamics to reduce the tur-
bulence loads. Direct sensing methods for GLA have included angle-of-attack vanes [2] and differential
pressure sensors [3], however the lead-time that can be obtained this way is limited, especially at high
speeds.

Starting principally with the AWIATOR project [4], lidar systems capable of detecting the relative
wind vector well ahead of the aircraft have also been developed. With an effective range up to a few hun-
dred meters ahead of the aircraft, this technology is particularly promising for gust load alleviation [5].
For example, it enables the adoption of a pitching strategy to alleviate aerodynamic loads by controlling
the aircraft’s overall angle of attack, which would otherwise be difficult or impossible due to slow short-
period dynamics and late gust detection. On the other hand, like any feedforward control, lidar-based
GLA functions are sensitive to model uncertainties, especially those inherent to the lidar system. Given
that the airframe’s structural integrity may potentially rely on such systems, they must be designed to be
either adaptive or robust with respect to such uncertainties. Several different approaches to lidar-based
controllers, including MPC [6], adaptive control [7], and robust control [8] have been developed. Pre-
view control using a wind field estimated from a set of lidar wind measurements has proven to be an
effective method to design such functions [9–11], and serves as the principal control framework for this
paper.

In the interest of improving the control design process for lidar-based GLA as well as the resulting
controllers, the present work proposes a linear filter which models the characteristics of the true lidar
wind estimation system. The following section (Sec. 1.1) explains this concept in greater detail. In
Section 2, the design and assembly of the proposed filter are described, as well as the key assumptions
and simplifications upon which it rests. In Section 3, the characteristics and performance of the filter are
evaluated. Finally, in Section 4, the filter is applied to a control design example and evaluated.

1.1 Problem definition
The lidar-based gust detection system considered here is the same as that described in [12], which

establishes a public GLA benchmark based on the Common Research Model, and which also describes
a benchmark control challenge and a default controller. The lidar system consists of a lidar sensor and
a wind field estimation algorithm which fits a linear, free-form model of the vertical wind speed along a
section of the aircraft’s flight path to the set of lidar measurements stored in memory [9]. Note that only
the vertical wind speed is considered here because vertical gusts are more critical in terms of loads and
load alleviation, however lateral and longitudinal wind speeds could just as easily be estimated from the
same measurements.

The wind field model, shown in Fig. 1, consists of a set of nnodes evenly spaced nodes aligned
with the aircraft’s flight path direction −→xk . The space between the first and last nodes is referred to as
the estimation window and is defined relative to the aircraft itself. Its parameter vector θ has nnodes
elements, each of which represents the value of the estimated vertical wind speed at the x-positions of
each wind field node west, j. This assumes that the vertical wind speed is uniform in the vertical and
spanwise directions, so the vertical wind field profile varies only along−→xk . Between nodes, the estimated
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vertical wind speed (y(θ)) is the linear interpolation of the values at the two adjacent nodes. The nodes
are numbered from aft to fore, such that θ1 is at position xlag = −τlagVTAS while θnnodes is at position
xlead =+τlead VTAS.

𝑥𝑜𝑓𝑓𝑠𝑒𝑡

𝑥𝑙𝑎𝑔 = 𝑉𝑇𝐴𝑆 ⋅ 𝜏𝑙𝑎𝑔 𝑥𝑙𝑒𝑎𝑑 = 𝑉𝑇𝐴𝑆 ⋅ 𝜏𝑙𝑒𝑎𝑑

𝑥

Wind field node 𝜃𝑗

Wind estimate 𝑤𝑒𝑠𝑡,𝑗

Aircraft model input

Lidar sensor

Δ𝑥𝜃 = 𝑉𝑇𝐴𝑆 ⋅ Δ𝑡𝜃

Fig. 1 Wind field model
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Fig. 2 Comparison between regularized and non-
regularized vertical wind field estimates (−→w est),
both with and without measurement noise.

Due to the fairly high level of noise in the
individual measurements, Tikhonov regularization
terms are introduced into the estimation problem to
obtain a reasonably smooth estimate. Figure 2 com-
pares wind field estimates with and without the reg-
ularization terms, both with and without measure-
ment noise. Without noise, the non-regularized es-
timate matches the true wind almost perfectly, how-
ever it is ultimately very sensitive to noise. The reg-
ularization effect largely filters out higher-frequency
noise, but it invariably also results in the loss of a
significant part of the actual gust information, even
if no actual noise is present in the measurements.
This effect is especially strong at locations far ahead
of the aircraft (right edge of the figure).

A schematic overview of the full lidar-based
gust load alleviation control system (as found in e.g. the ‘hybrid’ simulation in [12]) is shown in Fig. 3.
−→w turb,AC represents the part of the wind field which directly impacts the aircraft and generates gust
loads. The lidar sensor produces measurements −→u meas of the relative airspeed along its line of sight
(LOS), which includes components of the true vertical wind field −→w turb and of the aircraft’s inertial
velocity vector

−→
VK (in this case equivalent to the true airspeed), as well as their associated metadata,

i.e. Earth-relative position, LOS direction, measurement range, expected measurement error, etc [5].
These measurements are collected at a high rate (on the order of 500 Hz) and stored in a database. The
wind field estimation algorithm described above processes the contents of the measurement database at
a significantly lower rate (10 Hz [10]), producing an estimated vertical wind field−→w est , shown already in
Fig. 2. The controller K uses the controller wind field −→w ctrl to calculate actuator deflection commands−→
δ act . Generally speaking, it does not operate at the same sampling rate as the wind field estimation,
nor does it use the same wind field node coordinates. In fact, the controller usually has a much faster
sampling rate (on the order of 100 Hz) and more closely spaced wind field nodes, so −→w ctrl needs to be
resampled from −→w est .

The linear preview control problem used in previous papers (e.g. [11, 12]) is schematically illustrated
in Fig. 4. The entire system is modeled and tuned in discrete time with a sampling time equivalent to the
desired sampling time of the final controller. The aircraft model G(z) accepts as inputs the true vertical
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𝑢𝑚𝑒𝑎𝑠

(incl. metadata)

Aircraft

Lidar 
Sensor

𝑤𝑡𝑢𝑟𝑏,𝐴𝐶

Ԧ𝛿𝑎𝑐𝑡

Controller
𝑲

𝑤𝑐𝑡𝑟𝑙

Atmosphere

Wind Field 
Estimation

Wind Field 
Resampling

𝑤𝑒𝑠𝑡
𝑤𝑡𝑢𝑟𝑏

𝑉𝐾

Fig. 3 Schematic view of the lidar-based feedforward gust load alleviation system.

wind speed at the nose wturb,0 as well as a set of commanded actuator deflections. The tapped delay line
D(z) consists of a series of unit delays which delay the true vertical wind speed at the forwardmost node
of the controller wind field wturb,ctrl,lead until it reaches the aftmost node. ‘Taps’ between the individual
unit delays extract the intermediate wind speeds. The number and position of these taps is chosen so as
to produce the full controller wind field profile −→w turb,ctrl , as well as wturb,0.

𝑤𝑡𝑢𝑟𝑏,𝑐𝑡𝑟𝑙,𝑙𝑒𝑎𝑑

Aircraft
Tapped 

Delay Line

𝑤𝑡𝑢𝑟𝑏,0

𝑤𝑡𝑢𝑟𝑏,𝑐𝑡𝑟𝑙 Ԧ𝛿𝑎𝑐𝑡

Controller

𝑲
𝑮(𝒛)𝑫(𝒛)

Fig. 4 Schematic view of the legacy control design problem.

Unlike −→w ctrl in Fig. 3, −→w turb,ctrl neglects the effects of the sensing, estimation, and resampling
process, so the controller is designed as if it had access to the true wind field. The implication is that, in
terms of control synthesis, it receives the full spectrum of wind information up to the Nyquist frequency
of the controller, and depending on how the controller and the control design requirements are defined,
may try to control the aircraft up to that frequency.

It is clear that such precise wind information is never actually available, and coupling such a con-
troller to a realistic lidar system could result in a significant loss of performance. In fact, control design
using the problem in Fig. 4 (see e.g. [11, 12]) typically requires several iterations in which the synthe-
sized controller is evaluated in a higher-fidelity simulation environment including the lidar and wind
field estimation. Based on this evaluation, the designer adjusts the control specifications to indirectly
compensate for the characteristics of the lidar system. This lengthy and laborious process is necessary
because of the nonlinear elements ‘Lidar Sensor’ and ‘Wind Field Estimation.’ Attempting to include
them in the control problem would prohibit the use of control design tools for linear time invariant (LTI)
systems.

To reduce the required time and effort and help ensure the robustness and performance of the con-
troller, here it is proposed to model the nonlinear lidar sensor and wind field estimation as a single-input
multiple-output (SIMO) LTI filter which approximates the smoothing effects of the wind field estimation
algorithm. Figure 5 shows the control problem including the proposed filter contained in the dashed box.
wturb,lead corresponds to the forwardmost node of the estimated wind field and D(z) now produces the
true wind field profile within the estimation window −→w turb,est . The block KWFE applies the smoothing
effect of the wind field estimation algorithm to −→w turb,est , yielding the filtered wind field profile −→w f ilt,est .
Finally, Kinterp approximates the wind field resampling process to calculate the controller wind field
−→w f ilt,ctrl .
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𝑤𝑡𝑢𝑟𝑏,𝑙𝑒𝑎𝑑

Aircraft
Tapped 

Delay Line

𝑤𝑡𝑢𝑟𝑏,0

𝑤𝑡𝑢𝑟𝑏,𝑒𝑠𝑡
Ԧ𝛿𝑎𝑐𝑡

Controller

𝑲

𝑮(𝒛)𝑫(𝒛)

𝑲𝑾𝑭𝑬

𝑤𝑓𝑖𝑙𝑡,𝑐𝑡𝑟𝑙

𝑲𝒊𝒏𝒕𝒆𝒓𝒑

𝑤𝑓𝑖𝑙𝑡,𝑒𝑠𝑡

Fig. 5 Schematic view of control problem including the proposed linear filter, contained within the dashed
box.

In [13], a way to characterize the low-pass behavior of the lidar wind field estimation based on
long (≈1000 s) continuous turbulence simulations and spectral analysis was presented. The obtained
spectrum could serve as reference to identify a linear filter matching the true frequency-domain charac-
teristics of the system. While this method would certainly deliver suitable linear filters, it would be fairly
computationally expensive. Furthermore, any change in system parameters would require performing
another long simulation and reidentifying the filter.

Instead, the present work aims to propose a method to directly calculate such a filter using the
parameters of the lidar system and of the wind estimation algorithm. This should result in an efficient,
consistent, and potentially even more precise1 approach.

2 Construction of the linear filter

2.1 Concept and overview
The construction of the linear filter and in particular KWFE is closely tied to the wind field estimation

algorithm. This section briefly reviews the contents of the algorithm before outlining the steps needed to
derive the full filter. For a more detailed description of the wind field estimation algorithm, see [9].

As described in [9], the wind field estimation algorithm optimizes a regularized least-squares prob-
lem which is defined as:

θ̂ = argmin
θ

(
θ 7→

nmeas

∑
i=1

(zi− yi(θ))
2

σ2
i

+ γ1 ||Γ1 θ ||2 + γ2 ||Γ2 θ ||2
)
. (1)

in which nmeas is the number of available measurements within the estimation window, zi is an individual
measurement, yi is the estimated value at the coordinates of a given measurement, and σi is the expected
standard deviation of a given measurement. σi is used to weight the measurements according to their
accuracy: measurements with a higher standard deviation are less accurate, and so will have a smaller
impact relative to other measurements. Γ1,Γ2 and γ1,γ2 are the Tikhonov regularization matrices and
weights, respectively, and are expressed as:

1The continuous turbulence simulation involves random number generation; extremely long simulations would be required
to really obtain the best average linear filter.
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Γ1 =



−1 +1 0 · · · · · · · · · 0

0 −1 +1 0 . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . 0 −1 +1 0
0 · · · · · · · · · 0 −1 +1


, Γ2 =



−1 +2 −1 0 · · · · · · · · · 0

0 −1 +2 −1 0 . . . . . . ...
... . . . . . . . . . . . . . . . . . . ...
... . . . . . . 0 −1 +2 −1 0
0 · · · · · · · · · 0 −1 +2 −1


(2)

Γ1 and Γ2 represent the finite-difference approximations of the first and second (spatial) derivatives2 of
θ , respectively, such that γ1 and γ2 can be used as weights to penalize them. These terms are responsible
for creating the smoothing effect shown in Fig. 2.

The optimization problem is solved using the Gauss-Newton algorithm, whose standard expression
(with Tikhonov regularization) is:

θ
[k+1] = θ

[k]+

(
J̃
(

θ
[k]
)T

J̃
(

θ
[k]
))−1

J̃
(

θ
[k]
)T

r̃
(

θ
[k]
)

(3)

in which θ [k+1] and θ [k] are the current and previous iterations of the estimate, respectively. J̃ (θ) is the
augmented Jacobian matrix, and r̃ (θ) is the augmented residual vector. They are written:

r̃
(

θ
[k]
)
=

[
r
(

θ [k]
)

Γθ [k]

]
, ∀i ∈ J1 nmeasK, ri

(
θ
[k]
)
=

zi− yi

(
θ [k]
)

σi
(4)

J̃
(

θ
[k]
)
=

[
J
(

θ [k]
)

Γ

]
, ∀i ∈ J1 nmeasK,∀ j ∈ J1 nnodesK, J

(
θ
[k]
)
(i, j)

=
∂ ri

(
θ [k]
)

∂θ j
(5)

Γ =

[√
γ1 Γ1√
γ2 Γ2

]
(6)

in which J(θ) and r(θ) are the (unaugmented) Jacobian and residual vector, respectively.

Thanks to how the wind field model is defined, the estimation problem has a few convenient prop-
erties. Firstly, y (and therefore r) is linear in parameters, so the Jacobian does not depend on θ . As a
result, the Gauss-Newton algorithm converges in its first iteration, regardless of the value of θ [0], so it is
safe to impose θ [0] = 0 [9]. Furthermore, looking at the expressions for J̃ and r̃ in Eqs. 5 and 4, once
θ [0] = 0 the contributions of θ and Γ disappear in the product J̃ T r̃, leaving J̃ T r̃ = JT r. In other words,

the smoothing effect of the regularization is wholly contained in the product
(

J̃ T J̃
)−1

. The expression
thus reads:

θ
[1] =

(
J̃ T J̃

)−1
JT r (7)

2The products Γ1θ and Γ2θ are not, of course, the precise derivatives of θ . Rather, they are proportional to the derivatives,
which is sufficient in combination with their weights γ1 and γ2.
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Recall (from Sec. 1.1) that the desired filter is an LTI representation of the average behavior of
the wind estimation algorithm, formulated in such a way that it can be efficiently applied to control
synthesis. The ‘wind field estimation’ filter matrix KWFE should take as input the ‘true’ vertical wind
speeds at the estimated wind field node positions −→w turb,est and produce a ‘filtered’ estimated wind field
−→w f ilt,est . Essentially, KWFE must geometrically transform −→w turb,est to ‘reconstruct’ the measurements in
the residual r, from which it then performs an estimation. Based on Eq. 7, KWFE must thus be found
such that:

−→w f ilt,est = KWFE
−→w turb,est =

(
J̃ T J̃

)−1
JT r (8)

−→w turb,est is determined by simply delaying the forwardmost measurement wturb,lead nnodes times (D(z) in
Fig. 5). This establishes the dynamic part of the filter.

In the real estimation process, J and r are recalculated at each estimation step based on the mea-
surements available within the estimation window. The number, orientation, and relative position of
available measurements varies slightly between estimation windows and the aircraft motion can induce
differences in the spatial distribution of the measurements and their line-of-sight directions, so the size
and composition of J and r vary as well.

KWFE must be constant, so the first task is to create a ‘reference’ measurement database which is
representative of the quantity, quality, and distribution of the average set of measurements (Sec. 2.2).
From this, the reference Jacobian J can be constructed (Sec. 2.3) and KWFE can be assembled (Sec. 2.4).
Next, D(z) must be calculated and KWFE must be adapted to be compatible with the discrete-time system
shown in Fig. 5 (Sec. 2.5), and Kinterp must be calculated accordingly (Sec. 2.6).

2.2 Reference measurement database
The considered lidar sensor collects measurements of the relative wind speed by scanning the sur-

face of a cone ahead of the aircraft, as illustrated in Fig. 6. With each laser ‘shot’, a set of nmeas,LOS
measurements, starting from Rmin and spaced evenly along the lidar line-of-sight (LOS) is taken. The
range resolution ∆R defines the spacing between individual measurements. The LOS rotates (approxi-
mately) around the principal longitudinal axis of the aircraft at the scan rate fscan, and measurements are
taken at the Pulse Repetition Frequency (PRF).

Looking at Fig. 6, the LOS direction is determined by two angles: the aperture angle ηapert and the
scan angle φscan. Assuming that only vertical turbulence wturb is present (i.e. no lateral or longitudinal
disturbances), and that the steady-state angle of attack α is negligible (such that cosα ≈ 1), the relative
wind speed detected by the lidar is:

∀i ∈ J1 nmeasK, umeas,i =VTAS cosηapert +wturb,i sinηapert sinφscan,i +δnoise,i (9)

Note that at scan angles of 0 and 180 deg, the vertical wind speed is perpendicular to the LOS and there
is no component of the vertical wind speed in the measurement. Indeed, for the purposes of vertical wind
estimation, the ‘signal-to-noise ratio’ of measurements taken around these angles is so small as to make
them worthless.

The considered measurement noise δnoise,i is characterized by a Gaussian distribution centered at 0
(i.e. E(δnoise) = 0) with an expected standard deviation σi which depends on atmospheric conditions,
lidar technology, and several design parameters [12]. In reality, the noise is not necessarily centered,
however it is assumed that the lidar is correctly calibrated and that the potential bias has already been
compensated. As only one flight condition is considered in the present work, the atmospheric conditions

8Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



𝜙𝑠𝑐𝑎𝑛
𝜂𝑎𝑝𝑒𝑟𝑡

Fig. 6 Lidar system measurement geometry

are constant and the parameters driving the noise are the measurement range Ri, the range resolution ∆R,
and the Power Aperture Product PAP:3

∀i ∈ J1 nmeasK, σi ∝ Ri ·
√

1
∆R
·
√

1
PAP

(10)

PAP and ∆R are generally fixed for a given lidar configuration, whereas Ri increases along the LOS.
Each measurement point along the LOS therefore has a fixed σi.

As they are collected, measurements are stored inside a database along with a set of metadata,
i.e. their LOS directions, expected standard deviations σi, and Earth-relative positions. All measurements
whose positions fall within the estimation window can then be extracted from the database and used for
estimation. For the purposes of this paper, the actual measured values are not needed: Eq. 8 shows that
−→w turb,est provides the values of the vertical wind. As will be demonstrated in the following sections,
only the position (i.e. x-coordinate relative to the aircraft), scan angle φscan,i, aperture angle ηapert , and
expected standard deviation σi of each measurement are needed.

Accordingly, given the parameters of the system, a measurement database containing only the afore-
mentioned elements of the measurement metadata can be built up. Sets of LOS measurements are evenly
spaced (along −→xk ) with VTAS/PRF , so the x-coordinates can be easily calculated. As mentioned already,
spanwise and vertical variations in the wind field are neglected, so the y- and z-coordinates are not
needed. Only the measurement points relevant to the estimation are needed, so those which fall outside
the estimation window are ignored. Each measurement has the same aperture angle, and the expected
standard deviation can be calculated from the LOS range of the measurement Ri.

Assigning φscan values to the measurement points is more delicate: as discussed above and in Eq. 9,
the vertical wind component of a measurement is proportional to sinφscan, so the distribution of φscan
among the measurements can locally affect the quality of the estimate. For example, a local concentration
of measurements taken near φscan = 0 or 180 deg would result in a poorer estimate in its vicinity. In
the real system, the ‘leading’ scan angle of each estimation window (i.e. the one corresponding to the
current LOS) changes with each estimation unless the scan rate and PRF are both integer multiples of
the estimation rate, and if the scan rate is too slow or the estimation window too small, the ‘average’
value of sinφscan may vary significantly between windows.

Like KWFE , the value of φscan attributed to each measurement point in the reference measurement
database must remain constant across estimation windows. The goal is for the filter to be representative of
the average estimation quality, so instead of arbitrarily choosing a ‘leading’ scan angle and extrapolating
φscan for all measurement points based on the scan rate, here a single ‘expected’ value of sinφscan is

3The Power Aperture Product is the product of the lidar’s transmitted power and the area of the receiving telescope’s
objective, and serves as a general indicator of the sensor’s performance and sizing.
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assigned to all measurements. Seeing as the wind estimation algorithm is based on a least-squares
optimization (Eq. 1), taking the root mean square of sinφscan as the ‘expected’ value provides an excellent
approximation:

∀i ∈ J1 nmeasK, sinφscan,i = E(sinφscan) = (sinφscan)RMS =
1√
2

(11)

Figure 7 shows an example of the positions and standard deviations contained in a reference mea-
surement database built up in this way. In this example, a laser PRF of 500 Hz is used. Each pulse
provides measurements at nmeas,LOS = 9 uniformly spaced points ranging from 60 m to 180 m along the
laser’s LOS. The expected standard deviation σi for each measurement (i.e. the expected standard devi-
ation of δnoise,i from Eq. 9) is plotted against its relative position along the flight path, and is represented
by a blue dot. Each new laser pulse adds new measurements on the red line at the measurement posi-
tions (red dots; the standard deviations increase linearly with the distance, cf. Eq. 10). Older sets of
measurements are separated by ∆x = VTAS/PRF = 0.52 m. Due to this small ∆x, the old measurements
(blue dots) appear as solid lines. The dashed lines indicate the bounds of the estimation window, which
in this case is defined by τlag = 0.3 s and τlead = 0.55 s, and which at an airspeed of 260 m/s results in
xlag =−78 m and xlead = 143 m. In this case, the real database would be filled completely within about
one second. It is the time that the forwardmost measurement at x = 180 m takes to reach the rear end of
the estimation window at x =−78 m, i.e. 258 m / 260 m/s.

Figure 8 shows the same information as Fig. 7 in the form of a histogram whose bins are defined
as the space between adjacent nodes of a wind field with nnodes = 33. The value of σi is denoted here
by color: dark blue indicates the best measurements (i.e. with the lowest σi) and yellow the worst. Note
how the density of measurements at a given position is lowest at x = xlead ≈ 145 m, increases until the
aftmost LOS measurement point at x ≈ 55 m, and then remains approximately constant until the end of
the estimation window. Furthermore, note the significantly lower average quality of measurements in
the bins further ahead of the aircraft. Both effects combined result in a significantly poorer quality of the
estimated wind far ahead of the aircraft, see e.g. the non-regularized estimate in Fig. 2.
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2.3 Construction of the reference Jacobian
The reference Jacobian can now be constructed using the reference measurement database. The

first step is to identify yi (θ) from Eq. 4, as it is the only value in ri (θ) which depends on θ . Each
measurement umeas,i is taken in the lidar sensor’s LOS. VTAS is measured separately, so its contribution
can be removed from umeas,i, leaving zi as the projection of the vertical wind speed on the LOS:

∀i ∈ J1 nmeasK, zi = umeas,i−VTAS cosηapert = wturb,i sinηapert sinφscan,i +δnoise,i (12)

yi (θ) is essentially the linear interpolation of the θ values of the two adjacent nodes, as illustrated in
Fig. 9. To remain consistent with zi, it must also include the trigonometric term sinηapert sinφscan,i. This
gives:

∀i ∈ J1 nmeasK, yi(θ) =

[
∆xb,i

∆xa,i +∆xb,i
θp,i +

∆xa,i

∆xa,i +∆xb,i
θp+1,i

]
sinηapert sinφscan,i (13)

Node p Node p+1

𝜃𝑝,𝑖 ∙ sin 𝜂𝑎𝑝𝑒𝑟𝑡 sin𝜙𝑠𝑐𝑎𝑛,𝑖

𝜃𝑝+1,𝑖 ∙ sin 𝜂𝑎𝑝𝑒𝑟𝑡 sin𝜙𝑠𝑐𝑎𝑛,𝑖

𝑧𝑖

𝑦𝑖(𝜃)

𝑟𝑖 𝜃 ⋅ 𝜎𝑖

Δ𝑥𝑎,𝑖 Δ𝑥𝑏,𝑖

Fig. 9 Geometrical relation between zi, yi, and θ .

noting that here nodes p and p+1 are the nodes adjacent (along flight path direction−→xk ) to measurement
i, and ∆xa,i, ∆xb,i are the distances along−→xk between measurement i and nodes p and p+1, respectively.
They can both be easily calculated from the set of x-coordinates (from the metadata associated to each
measurement) in the reference measurement database. Taking the partial derivative as in Eq. 5:

∀i∈ J1 nmeasK,
∂ ri (θ)

∂θp,i
=

sinηapert sinφscan,i

σi

∆xb,i

∆xa,i +∆xb,i
,

∂ ri (θ)

∂θp+1,i
=

sinηapert sinφscan,i

σi

∆xa,i

∆xa,i +∆xb,i
(14)

The Jacobian J therefore has as many rows as there are measurements in the database (nmeas) and
as many columns as there are nodes (nnodes). Each row Ji contains only zeros, except for columns p and
p+1:

∀i ∈ J1 nmeasK, Ji =
[
0, · · · 0, ∂ ri(θ)

∂θp,i
, ∂ ri(θ)

∂θp+1,i
, 0, · · · 0

]
(15)

Note that due to the fact that expected values are used for sinφscan (since Eq. 11), there are no terms
in the reference Jacobian less than 0.

2.4 Construction of KWFE

The product from Eq. 8 can be divided into two parts:

(
J̃ T J̃

)−1
JT r = KWFE

−→w turb,est = Kinv Kweight
−→w turb,est (16)
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Kinv =
(

J̃ T J̃
)−1

is trivial to obtain once the reference Jacobian has been calculated.

The ‘weighting gain’ Kweight is somewhat more difficult. The product JT r results in a vector with
nnodes elements. Conceptually speaking, this product could be thought of as a kind of weighted sum
of the measurements at each node, with the weights determined by the distance of the measurements
from their adjacent nodes, their standard deviations, and their scan angle. The regularization terms are
constant across the wind field, so their effect at more highly weighted nodes is reduced relative to the
measurements. In other words, higher values indicate that more is known about the wind at that location,
so the estimate has greater confidence in the measured values.

If the measurement noise δnoise is neglected, and recalling that yi(θ
[0]) = 0, each residual term is:

∀i ∈ J1 nmeasK, ri = wturb,i
sinηapert sinφscan,i

σi
(17)

If wturb is then assumed to only vary linearly between estimation nodes, not unlike the schematic in
Fig. 9, wturb,i can be expressed as the linear interpolation of the wind speed at the adjacent nodes:

∀i ∈ J1 nmeasK, wturb,i =
∆xb,i

∆xa,i +∆xb,i
wturb,p,i +

∆xa,i

∆xa,i +∆xb,i
wturb,p+1,i (18)

where wturb,p,i is the true vertical wind speed at the position of node p. Combining Eqs. 17 and 18 and
recalling section 2.3, it becomes clear that Kweight = JT J.

To give an indication of how the weighting is distributed across the nodes, an example of the values
along the main diagonal of Kweight is shown in Fig. 10. Comparing it to Figs. 7 and 8, note how the value
of Kweight increases as more and better measurements are available at each node. Similarly, because
the minimum measurement range corresponds to node 19, no new measurements are added between
nodes 1 and 18, so Kweight remains constant over those nodes. The value at node 1 is substantially lower
than neighboring nodes due to the fact that while most nodes are weighted by measurements from both
adjacent bins (i.e. one forward and one aft of the node), the nodes at the boundary of the estimation
window (in this case nodes 1 and 33) only have access to one. This effect can be traced directly to the
construction of the Jacobian in Eqs. 14 and 15. Node 1 only uses the measurements from the leftmost
bin in Fig. 8, which means that it has slightly less than half as many available measurements as node 2.
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Fig. 10 Diagonal elements of weighting gain Kweight
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2.5 Discrete-time implementation
KWFE = KinvKweight is simply a static gain matrix. As mentioned in the introduction (see Fig. 5),

it must be coupled with a tapped delay line D(z) which takes as input the true wind corresponding to
the foremost node θnnodes , i.e. at x = xlead (see Fig. 1), and outputs the true vertical wind across the
estimation window −→w turb,est . Note that this assumes that the wind field does not change over the time
it takes the aircraft to traverse it. However, considering the speed of the aircraft and the time scales at
which atmospheric phenomena change, this is not a particularly strong assumption.

The configuration of D(z) depends mainly on the required discrete sampling time. KWFE , as derived
in the sections above, is based on the original parameter vector θ , which has nnodes elements. An initial
choice might be to keep KWFE as it is and to define −→w turb,est in accordance with the estimated wind field
node positions. The sample time must then be:

∆tθ =
τlag + τlead

nnodes−1
(19)

This is referred to hereafter as the estimation-native sampling time. This choice has the advantage of
being simple and relatively low-order, as the filter only has nnodes states. Unfortunately, ∆tθ is typically
not equal to the controller sampling time ∆tctrl , so it can’t be applied directly to control synthesis. One
solution is to then resample the entire filter to the controller’s sampling time,4 denoted hereafter as the
resampled estimation-native implementation.

The alternative is to use the controller-native sampling time. This involves essentially replacing the
original wind field nodes with ‘new’ nodes spaced with ∆xctrl = ∆tctrl ·VTAS. The number of nodes is
then:

nnodes,c-n =
τlag + τlead

∆tctrl
+1 (20)

D(z) must be recalculated with sampling time ∆tctrl and (nnodes,c-n− 1) delays, and −→w turb,est is conse-
quently redefined as having nnodes,c-n elements. The new nodal coordinates are then used as the basis for
a 2-D linear interpolation of KWFE . The sum of the elements of each row of KWFE is always 1 (equiva-
lent to saying the filter has a static gain of 1), so the newly interpolated matrix must be renormalized by
dividing each element by the sum of its row. Typically, ∆tθ > ∆tctrl , so this will result in an increase in
resolution at the cost of a significant increase in states.

The practical differences between these methods are examined below, in Section 3.3.

2.6 Controller wind field interpolation
As already mentioned in the introduction, the controller has neither the same sampling rate as the

wind field estimation nor the same wind field node coordinates. In fact, the controller usually has a
much faster sampling rate and more closely spaced wind field nodes, although it could also use sparsely
or irregularly spaced nodes. To produce the necessary controller wind field −→w ctrl at the correct rate, the
estimated wind field must be resampled.

In [12], for example, this resampling is done by linearly reinterpolating the estimated wind at the
controller sampling rate. For example, the ‘real’ wind field estimation algorithm usually runs at 10 Hz
and a typical controller runs at 100 Hz, so the controller wind field will be resampled from the estimated
wind field 10 times for each estimate produced by the algorithm. The controller wind field coordinates
take the aircraft’s motion into account, so they ‘slide’ forward along the estimated wind field between

4The example shown in this paper was resampled using the MATLAB function d2d with Tustin’s method.
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estimation steps. For the nodes positioned in the region ahead of the aircraft, where the maximum
measurement density is not reached (x > 50 m in Fig. 8), the wind estimate becomes progressively worse
with each resampling due to the poorer quality of the estimate further ahead.

This can be reproduced in the filter by introducing an interpolation gain matrix Kinterp which linearly
interpolates the estimated wind speed at any given point within the wind field. This is done by applying
the expression from Eq. 18 and building up the matrix in a similar way to the Jacobian in Eq. 15. In the
resulting matrix, each column would therefore correspond to an estimated wind field node and each row
to a controller wind field node. Note, however, that the relative coordinates of the controller wind field
cannot change over time, so the effect of the ‘sliding’ mentioned above cannot be reproduced.

2.7 Simplifications and limitations
Several assumptions have been made above to obtain the desired results, so it is important to discuss

them and their implications for the filter’s accuracy.

First and foremost, this model does not include the effect of the real measurement noise on the
estimate. The noise δnoise is assumed to have a centered probability density function, i.e. E(δnoise) = 0,
so it does not introduce a bias into the estimate. Under this assumption, it is dropped starting in Eq. 17.
To be clear, the standard deviation σi found, for example, in Eq. 4, represents the expected measurement
noise, and is used to correctly weight the measurements according to the degree of confidence in their
values. Indeed, as stated in Section 1, the purpose of this work is mainly to model the smoothing effect
and the related loss of information in the estimated wind field. This loss of information is mainly driven
by the number of measurements and noise standard deviation σi. The impact of a non-centered noise
E(δnoise) 6= 0 would be limited and could be compensated through means not discussed in the present
paper. Therefore, the noise considered here is assumed to follow centered Gaussian distributions and
with standard deviation values that depend on the range, range resolution, and PAP. It should be noted
that the respective values of the standard deviation are sufficient for the proposed method: no stochastic
evaluation e.g. based on random number generators is required to determine the average information loss
induced by the wind estimation.

Secondly, the scan angle approximation in Eq. 11 may result in significant differences when com-
pared to the actual estimate, especially far ahead of the aircraft, where fewer measurements are available.
For example, if the most recent measurements (i.e. those furthest ahead of the aircraft) are made with
φscan near 0 or 180 deg, sinφscan is smaller, so the linear filter will be somewhat more accurate than the
estimate. Similarly, if the scan rate is too slow, such that large parts of the measurements in the buffer
have |sinφscan|< 1/

√
2, the estimate will be less accurate than the filter, and vice versa.

The linear interpolation introduced in Eq. 18 effectively adds an additional low-pass filtering effect.
The true wind field is not restricted to varying linearly between nodes, so unless it is a predominantly
low-frequency signal, some information will be lost. In fact, one can expect to see the greatest difference
for turbulence fields with strong high-frequency components. A higher native sampling rate, such as that
used by the controller-native implementation, could help reduce this effect.

The assumption that the rotational axis of the lidar sensor is aligned with the aircraft’s flight path,
i.e. that cosα ≈ 1, may cause the linear filter to produce different results than the actual estimator in
some situations. The real wind estimation system saves the position and orientation of measurements
in absolute spatial coordinates, so it can partially compensate for the effects of aircraft motion and
orientation. The effects this may have on the quality of the estimated wind field have, however, not yet
been quantified.

Finally, deterioration in the controller wind field due to resampling is not modeled in the linear
filter. As mentioned in Section 2.6, this is caused by the controller wind field node coordinates moving
relative to the estimated wind field nodes between estimation steps. Depending on how the controller

14Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



wind field coordinates are chosen, the effect on the linear filter can change: if the ‘nominal’ coordinates
are used, i.e. those corresponding to the first instant of the current estimation step, the filter will be overly
optimistic. To be conservative, the controller wind field nodes could be chosen further forward so as to
always use the worst case, i.e. immediately before the following estimation step. For the rest of this
paper, only the nominal controller node positions are considered.

3 Results and evaluation of the linear filter
The default lidar settings used in the examples below are defined in Table 1. Note that σi/Ri is a

function of several other parameters (see Eq. 10), however it also depends on other parts of the surrogate
model presented in [12]. Its calculation falls beyond the scope of this paper, so this may be used as a
reference value in combination with Eq. 10.

Table 1 Default lidar system parameters

Parameter ηapert fscan PRF PAP Rmin ∆R nmeas,LOS

Value 15° 13 Hz 500 Hz 0.05 Wm2 60 m 15 m 9

Parameter nnodes τlead τlag γ1 γ2 VTAS σi/Ri

Value 33 0.55 s 0.3 s 3.2 5.5 260 m/s 0.0278 s−1

3.1 Evaluation of Estimation-Native filter
The lidar system described in Table 1 results in an estimation-native (see 2.5) sample time ∆tθ =

0.0266 s, implying a sampling frequency fs ≈ 37.6 Hz. The resulting discrete filter is of order 32. To
make it easier to compare it with the original wind field estimation, Kinterp is chosen such that−→w f ilt,est =−→w f ilt,ctrl , i.e. the outputs correspond to the estimated wind field nodes θ . Figure 11 shows the Bode
magnitude plots of the transfer paths from wturb,lead to nodes 1, 5, 11, 22, and 33, and Fig. 12 shows the
values of the corresponding row in KWFE .
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Fig. 11 Bode magnitude plot of a selection of
nodes for the estimation-native filter
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It is clear from both figures that the further forward a node is positioned, the stronger the smoothing
effect is, as evidenced by the lower cut-off frequencies in Fig. 11 and the wider, more gently sloped
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curves in Fig. 12. Due to their positions at the edges of the estimation window, θ1 and θ33 are some-
what more sensitive at higher frequencies than their neighboring nodes. Comparing both figures to
Figs. 7, 8, and 10, the influence of the density of available measurements and their standard deviations
on the filtering at each node is clearly visible.

Figure 13 compares the actual estimated wind field (with no measurement error) with the output of
the linear filter for both a discrete gust and continuous turbulence. In each row, each window shows the
estimated wind field at a given point in time; as the aircraft moves forward, the estimate proceeds along
the true wind field. In Fig. 13a, the match is nearly perfect, with the greatest error appearing near the
leading edge. Fig. 13b contains more significant errors, particularly around x = 9350 - 9400 m. Given
the presence of strong high-frequency content in that area, it is likely due to interpolation approximation
discussed in Sec. 2.7.
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Fig. 13 Comparison of estimated wind field−→w est with the estimation-native filtered wind field−→w f ilt,est over
3 sequential estimation windows.

3.2 Power spectral analysis
Another way to compare the filter with the estimation algorithm is to perform a power-spectral

analysis similar to that presented in [13]. In essence, a fairly long (>1000 s) continuous turbulence wind
field is simulated. The power spectral density (PSD) of the error between the estimated wind speed and
the true wind at a particular point in the estimated wind field Φ∆w is calculated and then normalized
using the PSD of the true wind Φturb. The resulting curve Φ∆w/Φturb gives an indication of the relative
precision of the wind field estimation across the frequency spectrum. A value near 0 indicates that the
wind is estimated nearly perfectly at those frequencies, whereas a value near 1 indicates that it is not
tracked at all. Accordingly, the closer the curve comes to 1, the worse the performance of the estimation.

Figure 14 shows an analysis of this type evaluated at the aircraft nose. The curve representing the
output of the estimation algorithm is calculated through simulation as described. The curve for the linear
filter is instead derived directly from the transfer function of the filter, i.e. by augmenting the filter with
an output ∆w f ilt which subtracts the filtered wind speed at the nose w f ilt,0 from the true wind speed
at the nose wturb,0, taking the magnitude of this transfer function wturb,lead → ∆w f ilt , and squaring it
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to find its power spectral density. It is clear here that the filter matches the true estimate quite well
up to approximately 3 Hz, but between 3 and 8 Hz the estimation algorithm performs visibly worse.
The reasons for this discrepancy are currently unclear, however the frequencies relevant for gust load
alleviation are generally below 4 Hz, so it is still a suitable approximation for this application.
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Fig. 14 Comparison of relative PSD of wind estimation error at the aircraft nose between the estimation
algorithm and the estimation-native filter.

3.3 Comparison of discretization methods
Seeing as the estimation-native filter described above is not necessarily compatible with the con-

troller’s sample time, Section 2.5 defines two ways to convert it to the controller’s sample time: the
resampled estimation-native and the controller-native filters. Here, the controller sample time is taken
as 0.01 s, i.e. 100 Hz, which results in 85 delay states for the controller-native filter. To allow for com-
parison with the estimation-native filter, all filters have as output the original estimated wind field nodes
(instead of the controller’s wind field nodes).

To provide a quantitative measure of their performance against the estimation algorithm, the mean
ε WF of the root mean square error can be defined, in which the root mean square error between the
filtered values and the estimated values of a given estimation window is averaged over an nwindows set of
estimation windows. These samples are chosen 0.1 s apart to take into account the normal estimation rate
of 10 Hz. To avoid mistakenly taking the frames before and after the actual gust encounter into account,
they include only frames in which at least one node of either of the two wind fields is nonzero.

εWF =

nwindows

∑
s=1

√
∑

nnodes
j=1

(
w[s]

f ilt,est, j−w[s]
est, j

)2

nnodes

nwindows
(21)

Table 2 Comparison of εWF among available discretization methods

Test case Estimation-Native Resampled E-N Controller-Native
10 m Discrete Gust 0.041 m/s 0.107 m/s 0.021 m/s
30 m Discrete Gust 0.061 m/s 0.145 m/s 0.043 m/s
60 m Discrete Gust 0.075 m/s 0.069 m/s 0.058 m/s

100 m Discrete Gust 0.066 m/s 0.035 m/s 0.047 m/s
Continuous Turbulence 0.272 m/s 0.208 m/s 0.107 m/s
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Table 2 compares the mean-RMS error of the 3 filter implementations for a set of turbulence cases.
In all but one of the listed cases (100 m discrete gust), the controller-native filter has the best performance
and the resampled filter has the worst of the three.

4 Effect on control synthesis
To demonstrate the effect of the filter developed above on control design, this section relies on the

means and methods of the GLA benchmark presented in [12].5 Firstly, the default controller from the
benchmark is used to show that the filter is representative of the real system for the purposes of control
design. Secondly, a simple preview controller is synthesized using the new synthesis problem along
with precisely the same method and requirements as the default controller. It is then compared with the
default controller and evaluated against the benchmark problem.

Figure 15 shows time-domain responses to a set of discrete gusts with H = 30, 70, and 80 m, in-
cluding the incremental wing root bending moment (row 1), the elevator deflection (row 2), and the
incremental HTP-root bending moment (row 3) of the aircraft using the default controller. Three curves
are shown: the ‘hybrid’ simulation including the full nonlinear model of the lidar and wind estimation
system (Fig. 3), the linear model without the filter (Fig. 4), and the linear model including the controller-
native filter (Fig. 5). It is obvious that the model including the filter matches the hybrid simulation much
more closely than the one without. For all three gust lengths, without the filter, the elevator reaches
greater deflections, leading to an improved reduction in wing root bending moment and increased HTP
loads. The very small differences between the linear model including the filter and the hybrid simulation
are possibly caused by the simplifications discussed in Sec. 2.7. Altogether, this indicates that the linear
system including the filter is much more representative of the real system for the purposes of control
synthesis and evaluation.

Next, the control synthesis example is described. Recall that the default control synthesis problem
was shown in Fig. 4, whereas the new control synthesis presented here uses the setup from Fig. 5. As
a rule, the linear filter uses the controller-native discrete implementation. To summarize briefly, the
controller wind field −→w ctrl has 66 nodes, with 40 nodes ahead of the aircraft nose and 25 behind. This
covers a section of the flight path starting from the aircraft’s tail to approximately 100 m ahead. The
controller itself is a 3×66 gain matrix in which each row calculates commanded deflections for one of
three actuator inputs: the elevator, the outer (symmetric) ailerons, or the inner (symmetric) ailerons.

The tuning goals include an H2 requirement on the wing root bending moment which is weighted
using a linear filter derived from the von Kármán continuous-turbulence PSD, roll-off H∞ requirements
for all actuators, and roll-on H∞ requirements for the inner and outer ailerons. Once synthesized, the
controller is scaled down to ensure the maximum commanded actuator deflections and rates do not
exceed the actuator limits for any given discrete gust encounter.

The benchmark problem involves a series of simulations using an aeroelastic model of a large com-
mercial aircraft in combination with the full lidar simulation and nonlinear actuators. Responses to the
full spectrum of discrete gusts and continuous turbulence as defined in EASA CS-25 [14] are simulated,
and the bending moment along the wing as well as several constrained quantities are evaluated. Two
scenarios are envisioned: a nominal scenario in which all parameters have their nominal values, and
a robust scenario in which the PAP, actuator dynamics, and system time delay are varied. For more
information about the benchmark problem, see [12].

Figure 16 compares the results of the benchmark problem evaluation of the peak bending loads along
the wing for the default and new controllers. The new controller, shown in Fig. 16b, shows a nominal

5The publicly available benchmark, including the controllers and filter discussed here, can be accessed at: https://

github.com/dlr-ft-gla/GLA-Benchmark

18Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://github.com/dlr-ft-gla/GLA-Benchmark
https://github.com/dlr-ft-gla/GLA-Benchmark


0 0.5 1 1.5 2
-6

-4

-2

0

2

4

6

In
c
r.

 w
in

g
 r

o
o

t 
b

e
n

d
in

g
 m

o
m

e
n

t,
 N

m

10
6 H =  30 m

0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

E
le

v
a

to
r 

d
e

fl
e

c
ti
o

n
, 

d
e

g

0 0.5 1 1.5 2

Time, s

-5

0

5

10

In
c
r.

 H
T

P
-r

o
o

t 
b

e
n

d
in

g
 m

o
m

e
n

t,
 N

m

10
5

0 0.5 1 1.5 2
-6

-4

-2

0

2

4

6
10

6 H =  70 m

0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

0 0.5 1 1.5 2

Time, s

-5

0

5

10
10

5

0 0.5 1 1.5 2
-6

-4

-2

0

2

4

6
10

6 H =  100 m

0 0.5 1 1.5 2
-4

-3

-2

-1

0

1

2

0 0.5 1 1.5 2

Time, s

-5

0

5

10
10

5

Gust Response Comparison - Default Controller

Hybrid Simulation Linear Simulation - No Filter Linear Simulation - With Filter

Fig. 15 Simulation of discrete gust responses of the default controller from [12] comparing the full hybrid
simulations against linear models with and without the linear filter.

improvement of slightly more than 10 % of the reference bending load envelope compared to the default
controller. The robust case, however, improves by, at best, less than 6 %. For conciseness, most of the
constrained variables have been omitted here, however one in particular is worth mentioning: the HTP-
root bending moment. The limit load of 10.45 ·105 Nm was never exceeded by the default controller; the
new controller exceeds the old one in both the nominal and robust scenarios, and violates the limit load
in the robust scenario (13.6 ·105 Nm). This suggests that the new controller makes more aggressive use
of the elevator.

Figure 17 contains a series of Bode magnitude plots for the transfer paths between the gust input
and five key outputs: the wing root bending moment, the HTP-root bending moment, and the deflections
of the 3 sets of control surfaces. Each plot, in addition to the linear models including the linear filter
(i.e. Fig. 5), shows the model with the default controller but without the linear filter (i.e. Fig. 4, the same
model used to tune the default controller).
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(a) Default controller from [12].
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Fig. 16 Comparison of wing bending moment envelopes from the benchmark problem in [12]

A direct comparison of the default controller with and without the linear filter illustrates the effect
of the estimation-induced losses on the controller’s effectiveness. As might be expected, having seen
Fig. 11, the default controller without the filter is more active with increasing frequency (Figs. 17c, 17d,
17e) and enjoys noticeably improved load alleviation performance up to 3 Hz (Fig. 17a). Due to this
increased activity, HTP loads are increased below 3 Hz, however they are significantly reduced between
3 and 4 Hz (Fig. 17b).

0 1 2 3 4 5 6

Frequency, Hz

0

5

10

15

M
ag

ni
tu

de
, a

bs
ol

ut
e

105 Bode Plot - Gust to Wing Root Bending Moment

Open-Loop
Default Controller - No Filter
Default Controller
New Controller

(a) Wing root bending moment

0 1 2 3 4 5 6

Frequency, Hz

0

0.5

1

1.5

2

M
ag

ni
tu

de
, a

bs
ol

ut
e

105 Bode Plot - Gust to HTP-Root Bending Moment

Open-Loop
Default Controller - No Filter
Default Controller
New Controller

(b) HTP-root bending moment

0 1 2 3 4 5 6

Frequency, Hz

0

0.1

0.2

0.3

0.4

0.5

M
ag

ni
tu

de
, a

bs
ol

ut
e

Bode Plot - Gust to Elevator Deflection

Default Controller - No Filter
Default Controller
New Controller

(c) Elevator deflection

0 1 2 3 4 5 6

Frequency, Hz

0

0.2

0.4

0.6

0.8

M
ag

ni
tu

de
, a

bs
ol

ut
e

Bode Plot - Gust to Inner Aileron Deflection

Default Controller - No Filter
Default Controller
New Controller
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Fig. 17 Comparison of magnitudes of transfer functions from the gust input to key outputs.

Next, the default controller can be compared with the new one. Looking at the loads in Figs. 17a
and 17b, it is clear that the new controller is more successful at reducing the wing root bending moment,
and that it generates more loads on the HTP. The control surface deflection transfers in Figs. 17c, 17d,
and 17e show that below 2 Hz, the new controller mostly resembles a more aggressive version of the
default controller, whereas above 2.5 Hz or so it is clearly less aggressive.

20Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



The filter can also be used to efficiently analyze the sensitivity of the new controller to the parameter
variations in the robust scenario using linear techniques. Figures 18 and 19 illustrate the variation of
the magnitude of the normalized transfer function between the gust input and the wing root and HTP-
root bending moments, respectively, when subject to all the possible parameter variations of the robust
scenario. The wing root plots in Fig. 18 show that the new controller is overall more sensitive to the
parametric uncertainties: the variation in its magnitude for nearly all frequencies between 0.5 Hz and
4 Hz is greater than for the default controller. Its H∞ norm, i.e. the peak around 1.3 Hz, increases by
nearly 30%, compared to less than 15% for the default controller. The HTP-root plots in Fig. 19 reveal
that the default controller is more sensitive below 1.5 Hz, the new controller is somewhat more sensitive
between 2.5 and 3.5 Hz, and they are roughly similar between 1.5 and 2.5 Hz.
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(a) Default controller from [12].
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(b) New controller synthesized using linear filter.

Fig. 18 Comparison of variation in magnitude of the transfer function between the gust input and the wing
root bending moment for all cases in the robust scenario. Magnitudes are normalized with respect to the H∞

norm of their respective nominal case.
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Fig. 19 Comparison of variation in magnitude of the transfer function between the gust input and the
HTP-root bending moment for all cases in the robust scenario. Magnitudes are normalized with respect to
the H∞ norm of their respective nominal case.

5 Conclusion
A method for designing a linear filter which closely approximates the smoothing effects of the wind

field estimation algorithm has been presented. This method allows for the direct calculation of the filter
based on the lidar system and estimator parameters. The performance of the filter compared to the real
estimator has been evaluated, demonstrating an excellent match in several different kinds of turbulence.
Furthermore, some of its frequency-domain characteristics have been examined to show the information
loss caused by the filter compared to the estimator. Finally, its effect on gust load alleviation control has
been demonstrated through an example of a controller synthesized using the linear filter.

Altogether, the filter has been shown to be sufficiently representative of the true lidar-based wind
field estimation. The control design problems built using this filter closely match the characteristics of
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the nonlinear system including the real wind estimation system. Consequently, the behavior and perfor-
mance of controllers tuned on these design problems should be obtained on the final system as well. The
legacy control design problems led to larger differences in behavior which had to be artificially compen-
sated by tweaking the control specifications. This compensation would typically be made manually and
iteratively by the designer. The effort this process requires is saved when using the proposed filter. Future
work will focus on modeling the uncertainties in the wind field estimate induced by the measurement
noise. This could, for instance, be used to tune the controller for improved robustness against noise.
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