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The A330 SMART MRTT program will develop, certify and implement Automatic Air-to-Air Refuelling 

(A3R) capability as well as enhanced and more resilient adaptive Flying Boom Control Laws, among other 

functionalities. The present paper describes a novel algorithm developed to provide robust and adaptive 

aeroservoelastic coupling suppression functionalities to the Flying Boom Control Laws, by means of the 

cancelation of the elastic modes component in the attitudes and angular rates feedback signals, while 

maintaining the components related to the rigid dynamics of the system unaltered. The algorithm uses an 

adaptive elastic mode identification technique in combination with an exogenous boundary physical 

condition estimator to optimally fuse the measured signals, providing excellent aeroservoelastic coupling 

suppression performances for every phase of the refuelling operation. Results obtained during the 

development flight test campaign performed with both the A310 MRTT testbed and the A330 SMART 

MRTT platforms will be presented to validate the robustness and performance of the proposed algorithm.  
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Nomenclature 

𝑁 = Number of elastic modes 

𝑦𝑛
𝑋 = 𝑛𝑡ℎ sample of a discrete signal provided by a measurement source 𝑋 

𝑣𝑛
𝑋  =  Measurement noise of a generic measurement source 𝑋 

𝑙𝑋  =  Spatial location of sensors 𝑋 

𝑌𝑛
𝐹𝐴 = Filtered signal in Free-Air condition 

𝑌𝑛
𝐶  = Filtered signal in Coupled condition 

𝑌𝑛
𝐸𝑀𝐴𝐶  = EMAC filtered signal output 

𝑃𝑛 = Probability of the ARBS being in a restricted movement status 

𝐾𝑛
𝑖   =  Elastic mode cancellation parameters of the 𝑖𝑡ℎ elastic mode 

𝑟𝑛  =  Rigid dynamics 

𝛾𝑛
𝑖   =  Elastic activity of the 𝑖𝑡ℎ elastic mode 

𝜔𝑛
𝑖  =  Augmented frequency of the 𝑖𝑡ℎ elastic mode 

𝜑𝑛
𝑖 (𝑙𝑋)  =  Unitary displacements of the elastic mode 𝑖 at sensor location 𝑙𝑋 

𝐿𝑛  =  Measured telescopic beam length  

𝑀𝑛  = Measured Mach number 

𝜎  =  Small approximation error 
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𝑊𝑗𝑘
𝑖   =  Weight 𝑖𝑗 of the ANN of the 𝑖𝑡ℎ elastic mode  

𝜙𝑗𝑘
𝑖   =  Activation functions of the ANN of the 𝑖𝑡ℎ elastic mode  

𝜆𝑗𝑘𝑛   =  Learning gain 

𝐸𝑛
𝑖   =  Cancellation error 

𝐺𝑖
  =  Static learning gain of the estimation kernel of the 𝑖𝑡ℎ elastic mode 

ϵ𝑖
  =  Threshold of the dead-band for the 𝑖𝑡ℎ elastic mode 

𝜑   =  Unknown phase angle 

𝜁𝑛
𝑖   =  Notch-filter output 

𝐽𝑛
𝑖   =  Frequency cost function for the 𝑖𝑡ℎ elastic mode 

𝚵  =  Matrix containing all elastic modes unitary displacement at sensors locations 

𝜽𝑛
  = Time-varying vector containing the weight coefficients of the spatial filter 

𝛽̂𝑛
𝑠  =  Virtual signal 

𝜉𝑛
𝑖,𝑠

  = Parameter that are modified online to grant that the virtual signals are linearly independent 

with respect to their elastic modes content 

Δ𝑡 =  Discrete sample time 

ANN  =  Artificial Neural Network 

ARBS  =  Aerial Refuelling Boom System 

ASECS = Aeroservoelastic Coupling Suppression  

BCLAWs =  Boom Flight Control Laws 

CMM = Control Mode Mismatch 

EMAC  =  Elastic Modes Adaptive Cancellation 

FNN  =  Fuzzy Neural Network 

MRTT  =  Multi-Role Transport Tanker 

RIBS  =  Rigid Body Synthetic Sensor 

1 Introduction 

Throughout aerospace history, many incidents have emphasized the significant role that 

aeroservoelasticity plays in the dynamics of highly augmented aircraft with flexible structures [1, 2]. The 

stability of these types of systems is determined by the interaction between the aircraft's non-stationary 

aerodynamic forces, the flexible structure dynamics, and the flight control system dynamics. Without a 

proper Aeroservoelastic Coupling Suppression (ASECS) functionality in the flight control system, 

instabilities and handling qualities degradations could appear well below the flutter speed. From an 

energy-balance point of view, the onset of aeroservoelastic coupling instability is triggered when the flight 

control system and the non-stationary aerodynamic forces inject more energy into the system than the 

flexible structure can dissipate.  

The main objective of ASECS methodologies is to render unobservable the displacements of the 

flexible structure to the controller, breaking any coupling between the control effectors’ commands and 

the elastic dynamics of the flexible structure. Currently, notch-filtering is one of the most widely used 

ASECS methodologies in the aerospace industry [3], as it is the best and simplest solution for aircraft 

where the elastic modes’ frequencies lie outside the control frequency bandwidth of the rigid plant. In the 

particular case of highly augmented aircraft with very flexible structures, the notch-filtering methodology 

is no longer suitable to remove the elastic modes’ component from the feedback signals, given the large 
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phase lag and attenuation it introduces in the low-frequency bandwidth. Then, for aircraft or systems with 

very flexible structures, it is essential to apply alternative ASECS methodologies. 

Alternative solutions, like extended Kalman filters observers [4] and modal filters [5] have been also 

investigated to provide an estimated elastic activity of very flexible structures, with potential use in 

ASECS problems. Alternatively, recent developments have tackled the ASECS problem from an optimal 

control perspective, via the minimization of the flexible state’s observability and the maximization of the 

elastic modes controllability [6]. In addition to these solutions, the Rigid Body Synthetic Sensor (RIBS) 

approach [7] investigated for the B-2 Spirit has proved also to be a well-performing methodology for 

ASECS applications when a spatial sensor array is available and the elastic modes’ shapes are perfectly 

known beforehand. Similar spatial filtering solutions have been investigated in [8]. 

Nevertheless, all of the previous solutions, like all model-based deterministic ASECS methodologies, 

present several major drawbacks that prevent their direct application to the Aerial Refueling Boom 

System (ARBS) installed in the A330 Multi-Role Transport Tanker (MRTT), a flexible slender structure 

with highly non-linear aerodynamics and fast-time-varying aeroelastic characteristics that strongly 

depend on the flight condition, the telescopic beam length, and the exogenous physical boundary 

conditions acting on the nozzle tip. One of the main drawbacks of Kalman and modal filtering techniques 

is their lack of robustness and adaptation capabilities against time-varying aeroservoelastic uncertainties 

that can depend even on the receiver aircraft’s aerodynamics. Additionally, these methodologies, 

including RIBS, cannot cope with undetected changes in the exogenous physical boundary conditions 

acting on the ARBS’s nozzle (altering the characteristics of the aeroelastic mode). Furthermore, spatial-

filter methodologies like RIBS, would require expensive retrofits and modifications of the hardware and 

sensors of the ARBS to generate a spatial array of sensors. 

To tackle these deficiencies, Airbus Defence and Space initiated a special Research and Technology 

(R&T) project for the new A330 SMART MRTT program. The objective of this project was to fast-

develop novel adaptive ASECS methodologies that could further improve the BCLAWs performance and 

increase their robustness to aeroservoelastic coupling phenomena using only two measurement sources 

to cancel a generic number of elastic modes, as opposed to other adaptive algorithms [9]. The outcome 

of this R&T project was the Elastic Modes Adaptive Cancellation (EMAC), a novel ASECS methodology 

that delivers two unique functionalities to the BCLAWs, first, it provides adaptive multi-modal 

aeroservoelastic coupling suppression capabilities via an adaptive feedback mixing strategy requiring 

only two sensors already available in the ARBS; and second, it provides an estimated probability for the 

ARBS to be in physically Free-Air or in Coupled conditions (in contact with the receiver aircraft) based 

on the estimated elastic activity. These functionalities interlace to provide unmatched ASECS capabilities 

independently of undetected discrete changes of the exogenous physical boundary conditions of the 

ARBS.  

These features provide the new BCLAWs with unparalleled robustness to undetected operational 

failures that might derive into a Control Mode Mismatch (CMM) condition, an abnormal 

aeroservoelastic-coupling-prone condition that occurs when there is an incoherence between the 

BCLAWs control mode being active and the exogenous physical boundary condition acting on the ARBS’ 

nozzle (e.g. CLAWs being in “free-air” control mode, but the ARBS being actually latched within the 

receivers’ receptacle). Moreover, the adaptability of the EMAC algorithm also offers improved 

robustness against variations of the aeroelastic properties of an aging structure, which will protect the 

ARBS from any potential handling qualities degradation at the end of its operational life. 
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The present paper aims to provide a high-level description of the EMAC algorithm’s architecture, 

subsystems, and all their functionalities, including a formal description of their mathematical formulation, 

and finally, to present the flight test campaign results with the A310 MRTT Flight Testbed and the A330 

SMART MRTT.  

2 The Elastic Modes Adaptive Cancellation Algorithm 

The Elastic Modes Adaptive Cancellation (EMAC) algorithm can be defined as an adaptive spatial 

filtering algorithm that requires only two input signals provided by two dissimilar sensors to suppress 𝑁 

elastic modes, while maintaining the rigid dynamics in the output signal unaltered. In the specific case of 

the ARBS, these two measurement sources are: a potentiometer located at the ARBS’ ball joint, denoted 

by 𝐴, that measures angular displacements; and an IMU, denoted by 𝐵, located at the bulb close to the 

ruddervators’ hinge, which provides angular rates and accelerations. Using the rigid-body kinematic 

equations, angular rates measurements provided by sensor 𝐵 can be converted to angular displacements 

(attitudes), and vice versa. Both sensors 𝐴 and 𝐵 have been depicted in Fig. 1 along with the high-level 

architecture of the EMAC algorithm.  

In the EMAC algorithm, measurements from sensors 𝐴 and 𝐵 are first pre-conditioned for dissimilar-

sensor lag synchronization. Then, these conditioned signals are fed to a collection of 𝑁𝐹𝐴 + 𝑁𝐶 adaptive 

estimation kernels (𝑁𝐹𝐴 elastic modes in Free-Air conditions and 𝑁𝐶 elastic modes in Coupled conditions) 

that first identify the elastic modes’ shapes and augmented frequencies via adaptive Artificial Neural 

Networks (ANN), and second, they provide the estimated activity of each selected elastic mode.  

The information of the elastic modes’ characteristics (shape and augmented frequency) and the 

estimated elastic activities are feedforwarded to two different modules that run in parallel, called the 

elastic modes cancellation modules. One module is dedicated to cancel 𝑁𝐹𝐴 elastic modes assuming the 

ARBS is in free-air conditions, and its counterpart module is dedicated to cancel 𝑁𝐶 elastic modes 

assuming the ARBS is in restricted-movement conditions (latched or in contact with the receiver aircraft). 

These modules use an adaptive virtual sensor generation algorithm developed to overcome the limitations 

of the standard spatial filtering technique used in the RIBS methodology, to be able to cancel 𝑁 elastic 

modes without requiring a spatial array of 𝑁 + 1 sensors. This algorithm artificially generates 𝑁 − 1 

virtual sensors via a linear combination of the signals 𝑦𝑛
𝐴 and 𝑦𝑛

𝐵, provided by sensor 𝐴 and 𝐵 respectively, 

and the estimated modal activities, in such a way that both the non-virtual signals 𝑦𝑛
𝐴 and 𝑦𝑛

𝐵, and the 

virtual signals are linearly independent with respect to their modal activity.  

In a posterior step, the set of 𝑁 − 1 virtual signals is feedforwarded to an algebraic solver subsystem 

within each elastic modes cancellation module, where a standard spatial filtering technique is applied. 

This spatial filter combines the signals 𝑦𝑛
𝐴 and 𝑦𝑛

𝐵, and the 𝑁 − 1 virtual signals to cancel the components 

of the 𝑁 elastic modes while maintaining unaltered the rigid dynamics of the ARBS in the output signal.  

In parallel with the elastic modes cancellation modules, another estimator computes the probability 

of the ARBS being in a restricted movement status, denoted by 𝑃𝑛, using the estimated relative activity 

of the free-air and restricted movement elastic modes, and the current BCLAWs control mode being 

active (FREE AIR, COUPLED or DISCON FLIGHT).  

Finally, the probability 𝑃𝑛 is then feedforwarded to a signal-fader module that computes the 

weighted-probability sum of the filtered signals 𝑌𝑛
𝐹𝐴 and 𝑌𝑛

𝐶  generated by the elastic modes cancellation 
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modules. The output of this module, denoted by 𝑌𝑛
𝐸𝑀𝐴𝐶 , is the filtered feedback signal that will be used 

by the BCLAWs’ inner and outer loop controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.  1 High-level architecture of the EMAC algorithm 
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2.1 Elastic Mode Estimation Kernels 

Each estimation kernel (depicted in Fig. 2) has been designed to provide the following estimates for 

a generic 𝑖𝑡ℎ elastic mode: 

1) The estimated 𝐾෡𝑛
𝑖  parameter required to completely cancel the activity of the 𝑖𝑡ℎ elastic mode by 

mixing two measurement signals 𝑦𝑛
𝐴 and 𝑦𝑛

𝐵 measured by sensor 𝐴 and 𝐵.  

2) The estimated 𝑖𝑡ℎ elastic mode activity  𝛾ො𝑛
𝑖  in signal 𝑦𝑛

𝐴.  

3) The estimated augmented frequency 𝜔ෝ𝑛
𝑖  of the 𝑖𝑡ℎ elastic mode. 

 

 

 

 

 

 

 

 

 

 

 

2.1.1 Estimating the Elastic Mode Cancellation Parameter 𝐾𝑛
𝑖∗ 

The elastic mode cancellation parameters, denoted by 𝐾𝑛
𝑖∗ for a generic 𝑖𝑡ℎ elastic mode, measure the 

relative amplitude of the elastic mode component contained in two signals 𝑦𝑛
𝐴 and 𝑦𝑛

𝐵. The content of 

these discrete-time scalar signals can be expressed in terms of the measured rigid and elastic dynamics of 

the system as follows: 

𝑦𝑛
𝐴 = 𝑟𝑛 +∑𝜑𝑛

𝑗(𝑙𝐴)𝜂𝑛
𝑗

𝑁

𝑗=1

+ 𝑣𝑛
𝐴 = 𝑟𝑛 +∑𝜀𝑛

𝑗𝐴
𝑁

𝑗=1

+ 𝑣𝑛
𝐴 (1) 

𝑦𝑛
𝐵 = 𝑟𝑛 +∑𝜑𝑛

𝑗(𝑙𝐵)𝜂𝑛
𝑗

𝑁

𝑗=1

+ 𝑣𝑛
𝐵 = 𝑟𝑛 +∑𝜀𝑛

𝑗𝐵
𝑁

𝑗=1

+ 𝑣𝑛
𝐵 (2) 

where 𝑙𝐴 ∈ ℝ
3 and 𝑙𝐵 ∈ ℝ

3 denote the spatial location of sensors 𝐴 and 𝐵 respectively, 𝜑𝑛
𝑗(𝑙𝐴) ∈ ℝ 

and 𝜑𝑛
𝑗(𝑙B) ∈ ℝ denote the unitary displacements of the elastic mode 𝑗 at sensor location 𝑙𝐴 and 𝑙𝐵 

respectively, 𝜂𝑛
𝑗
∈ ℝ represent the elastic mode generalized coordinate, 𝑣𝑛

𝐴 and 𝑣𝑛
𝐵 represent the 

measurement noise in sensor 𝐴 and 𝐵 respectively, and 𝑟𝑛 is the measured rigid dynamics. The perfect 

cancellation parameter 𝐾𝑛
𝑖∗ is computed imposing that the linear combination of signals 𝑦𝑛

𝐴 and 𝑦𝑛
𝐵 results 

in the perfect suppression of the 𝜀𝑛
𝑖 𝐴 = 𝜑𝑛

𝑖 (𝑙𝐴)𝜂𝑛
𝑖  term in (1), while maintaining unaltered the measured 

rigid dynamics 𝑟𝑛. Mathematically, this condition can be expressed as: 

𝐾𝑛
𝑖∗𝜑𝑛

𝑖 (𝑙𝐴)𝜂𝑛
𝑖 + (1 − 𝐾𝑛

𝑖∗)𝜑𝑛
𝑖 (𝑙𝐵)𝜂𝑛

𝑖 = 𝐾𝑛
𝑖∗𝜀𝑛

𝑖 𝐴 + (1 − 𝐾𝑛
𝑖)𝜀𝑛

𝑖∗𝐵 = 0 (3) 

Solving (3) for 𝐾𝑛
𝑖∗ yields 

K - Fuzzy Neural Network 
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Fig.  2 Block diagram of the elastic mode estimation kernels 
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𝐾𝑛
𝑖∗ =

𝜑𝑛
𝑖 (𝑙𝐵)

𝜑𝑛
𝑖 (𝑙𝐵) − 𝜑𝑛

𝑖 (𝑙𝐴)
  (4) 

Using equation (4), one can linearly combine signals 𝑦𝑛
𝐴 and 𝑦𝑛

𝐵 using the 𝐾𝑛
𝑖∗ parameter to perfectly 

suppress the 𝑖𝑡ℎ elastic mode component in an output signal 𝑌𝑛
𝑀 as follows:  

𝑌𝑛
𝑀 = 𝐾𝑛

𝑖∗𝑦𝑛
𝐴 + (1 − 𝐾𝑛

𝑖∗)𝑦𝑛
𝐵

= 𝑟𝑛 + ∑ [𝐾𝑛
𝑖∗𝜑𝑛

𝑗(𝑙𝐴)𝜂𝑛
𝑗
+ (1 − 𝐾𝑛

𝑖∗)𝜑𝑛
𝑗(𝑙𝐵)𝜂𝑛

𝑗
]

𝑁

𝑗=1≠𝑖

+ 𝐾𝑛
𝑖∗𝑣𝑛

𝐴 + (1 − 𝐾𝑛
𝑖∗)𝑣𝑛

𝐵 
(5) 

This is a particular case of a spatial filtering technique, where only one elastic mode is cancelled and 

where any elastic mode different from the 𝑖𝑡ℎ one is still present in the filtered signal  𝑌𝑛
𝑀. In a pure 

model-based design approach, a high-fidelity aeroelastic model could provide information about the 

unitary displacement functions 𝜑𝑛
𝑖 (𝑙𝐴)

 and 𝜑𝑛
𝑖 (𝑙𝐵), and thus, 𝐾𝑛

𝑖∗ could be computed using (4). However, 

by using this approach, any aeroelastic model uncertainty could degrade the elastic mode cancellation 

performance, leading to a potential reduction of the system stability or even triggering aeroservoelastic 

coupling instabilities. To prevent this, an adaptive estimator of the 𝐾𝑛
𝑖∗ parameter has been used instead.  

 For the specific case of the ARBS, it has been proven through aeroelastic simulations and flight 

test data, that the elastic modes’ shapes, and thus the perfect cancellation parameters 𝐾𝑛
𝑖∗, depend mainly 

on the telescopic beam length (𝐿𝑛) and on the Mach number (𝑀𝑛), and thus, for the ARBS case, 𝐾𝑛
𝑖∗ =

𝑓(𝐿𝑛, 𝑀𝑛). Using the universal approximation theorem, the function 𝐾𝑛
𝑖 = 𝑓𝑖(𝐿𝑛, 𝑀𝑛) can be 

approximated using an Artificial Neural Network (ANN) as follows: 

𝐾𝑛
𝑖∗ = 𝑓𝑖(𝐿𝑛, 𝑀𝑛) = 𝐾෡𝑛

𝑖 + 𝜎 =∑∑𝑊𝑗𝑘𝑛
𝑖 𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛)

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

+ 𝜎 (6) 

Where 𝐾෡𝑛
𝑖  is the output of the ANN and denotes the best estimation of the 𝐾𝑛

𝑖∗ parameter (a priori 

unknown), 𝑊𝑗𝑘
𝑖  and 𝜙𝑗𝑘

𝑖 (𝐿,𝑀) denote the weights and the activation functions of the ANN for the 𝑖𝑡ℎ 

elastic mode, 𝐿𝑛 is the 𝑛𝑡ℎ sample of the telescopic beam length, 𝑀𝑛 is the 𝑛𝑡ℎ sample of the measured 

Mach number, and 𝜎 is a small approximation error. Flight test evidence has shown that the function 

𝑓𝑖(𝐿𝑛, 𝑀𝑛)
 is smooth in the parameters 𝐿 and 𝑀 and thus, a shallow Neural Network with a single layer 

of activation functions is sufficient to obtain a small approximation error. The selected architecture for 

the ANN estimator uses triangular activation functions that fulfil the following equations: 

∑∑𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛)

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

= 1 (7) 

𝜙𝑗𝑘
𝑖 (𝑙𝑗 , 𝑚𝑘) = 1,        ∀𝑗 ∈ [1, 𝑛𝑗], 𝑘 ∈ [1, 𝑛𝑘] 

 
(8) 

0 ≤ 𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛) ≤ 1,        ∀𝑗 ∈ [1, 𝑛𝑗], 𝑘 ∈ [1, 𝑛𝑘]

 
(9) 

 Where 𝑙𝑗 and 𝑚𝑘 are the breakpoints of a 2D discretization of the ANN’s input space 

{𝐿𝑛 ∈ [𝐿𝑀𝐼𝑁 , 𝐿𝑀𝐴𝑋], 𝑀𝑛 ∈ [𝑀𝑀𝐼𝑁 ,𝑀𝑀𝐴𝑋]}. Every ANN with triangular activations function belongs to 

the set of Fuzzy Neural Networks (FNN). The main advantage of FNN over other ANN architectures 

with multi-layer perceptrons is that the weights 𝑊𝑗𝑘𝑛
𝑖  of a FNN have a clear physical meaning and 

interpretability. Moreover, the triangular activation functions in (7-9) provide a simple implementation 

Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



of a 2D linear interpolator over a surface, and for each breakpoint 𝐿𝑗 and 𝑀𝑘, the following relationship 

is fulfilled if the FNN has been trained properly: 

𝑓𝑖(𝑙𝑗, 𝑚𝑘) ≅ 𝑊𝑗𝑘
𝑖 ,        ∀𝑗 ∈ [1, 𝑛𝑗], 𝑘 ∈ [1, 𝑛𝑘] 

 
(10) 

Equation (10) highlights the fact that for any telescopic length 𝐿𝑛 = 𝑙𝑗 and Mach 𝑀𝑛 = 𝑚𝑘 

(breakpoint coincident), the output of the FNN will be equal the weight 𝑊𝑗𝑘𝑛
𝑖 , and thus, if the FNN has 

been trained properly, the weight value and the actual function value 𝑓𝑖(𝑙𝑗, 𝑚𝑘)
 will be coincident. For 

other values of 𝐿𝑛 and 𝑀𝑛, there will be still a small approaximation error 𝜎.  

From now on, we will refer to the FNNs that estimate the perfect cancellation parameters 𝐾𝑛
𝑖∗ as the 

K-Fuzzy Neural Networks (K-FNN). Although the K-FNN ‘s weights 𝑊𝑗𝑘𝑛
𝑖  can be computed off-line 

with a best guess derived from aeroelastic model-based analyses, in order to provide a fully adaptive 

estimation during the normal operation of the ARBS, the weights 𝑊𝑗𝑘𝑛
𝑖  must be modified on-line via a 

robust update law. 

In order to perform this adaptation and training, first, a special conditioning method must be applied 

to the raw signals 𝑦𝑛
𝐴 and 𝑦𝑛

𝐵 so as to isolate the 𝑖𝑡ℎ elastic mode components in both signals, denoted by 

𝜀𝑛
𝑖 𝐴 and 𝜀𝑛

𝑖 𝐵 in equations (1) and (2). With these components, an estimation error can be computed to 

update the weights of the K-FNN via backpropagation. 

To isolate the 𝑖𝑡ℎ elastic mode in the signals 𝑦𝑛
𝐴 and 𝑦𝑛

𝐵, the estimation kernels use two notch filters 

(𝑁𝐹) centered at the estimated frequencies 𝜔ෝ𝑛−1
𝑖−1  and 𝜔ෝ𝑛−1

𝑖+1  computed at the previous time step to break 

the algebraic loop (we will describe their computation in the following subchapter). These notch filters 

cancel the 𝑖 − 1 and 𝑖 + 1 elastic modes respectively, and are intended to avoid inter-modal interferences 

in the estimation of the properties of the 𝑖𝑡ℎ elastic mode. Posteriorly, both filtered signals are 

feedforwarded to a band-pass filter (𝐵𝑃𝐹) centered at the estimated frequency of the 𝑖𝑡ℎ elastic mode 

computed at the previous time step, denoted by 𝜔ෝ𝑛−1
𝑖 . These steps are represented by the following 

discrete-time formulas: 

𝜀Ƹ𝑛
𝑖 𝐴 = 𝐻𝐶(𝑧

−1, 𝜔ෝ𝑛−1
𝑖−1 , 𝜔ෝ𝑛−1

𝑖 , 𝜔ෝ𝑛−1
𝑖+1 ) · 𝑦𝑛

𝐴

= 𝑁𝐹(𝑧−1, 𝜔ෝ𝑛−1
𝑖−1 ) · 𝑁𝐹(𝑧−1, 𝜔ෝ𝑛−1

𝑖+1 ) · 𝐵𝑃𝐹(𝑧−1, 𝜔ෝ𝑛−1
𝑖 ) · 𝑦𝑛

𝐴 (11) 

𝜀Ƹ𝑛
𝑖 𝐵 = 𝐻𝐶(𝑧

−1, 𝜔ෝ𝑛−1
𝑖−1 , 𝜔ෝ𝑛−1

𝑖 , 𝜔ෝ𝑛−1
𝑖+1 ) · 𝑦𝑛

𝐵

= 𝑁𝐹(𝑧−1, 𝜔ෝ𝑛−1
𝑖−1 ) · 𝑁𝐹(𝑧−1, 𝜔ෝ𝑛−1

𝑖+1 ) · 𝐵𝑃𝐹(𝑧−1, 𝜔ෝ𝑛−1
𝑖 ) · 𝑦𝑛

𝐵  
(12) 

Where 𝐻𝐶(𝑧
−1, 𝜔ෝ𝑛−1

𝑖−1 , 𝜔ෝ𝑛−1
𝑖 , 𝜔ෝ𝑛−1

𝑖+1 ) represent the transfer function of a conditioning filter bank 

composed of the filters defined in the previous paragraph (see also Fig. 2 for a schematic view of the 

location of the conditioning filter bank within the elastic mode estimation kernel). Once the estimations 

of the elastic mode activity have been obtained by the condition filter bank, the signals 𝜀Ƹ𝑛
𝑖 𝐴 and 𝜀Ƹ𝑛

𝑖 𝐵 are 

feedforwarded to a demodulator filter to estimate their amplitudes 𝜀Ƹ ҧ𝑛
𝑖 𝐴 and 𝜀Ƹ ҧ𝑛

𝑖 𝐵 as follows: 

𝜀Ƹ ҧ𝑛
𝑖 𝐴 =

1

2
√𝑁𝐹(𝑧−1, 2𝜔ෝ𝑛−1

𝑖 ) · (𝜀Ƹ𝑛
𝑖 𝐴)

2
 

(13) 

𝜀Ƹ ҧ𝑛
𝑖 𝐵 =

1

2
√𝑁𝐹(𝑧−1, 2𝜔ෝ𝑛−1

𝑖 ) · (𝜀Ƹ𝑛
𝑖 𝐵)

2

 (14) 

 

Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



The learning strategy implemented in each one of the estimation kernels is based on a gradient 

descent technique with backpropagation that tries to minimize a cancellation error 𝐸𝑛
𝑖  defined by: 

𝐸𝑛
𝑖 =

1

2
𝑒𝑛
𝑖 2 

(15) 

𝑒𝑛
𝑖 =

{
  
 

  
 
∑∑𝑊𝑗𝑘𝑛−1

𝑖 𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛)

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

𝜀Ƹҧ𝑛
𝑖 𝐴 − (1 −∑∑𝑊𝑗𝑘𝑛−1

𝑖 𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛)

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

)𝜀Ƹҧ𝑛
𝑖 𝐵 if 𝐾𝑛

𝑖  is expected to be ≥ 0

∑∑𝑊𝑗𝑘𝑛−1
𝑖 𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛)

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

𝜀Ƹҧ𝑛
𝑖 𝐴 + (1 −∑∑𝑊𝑗𝑘𝑛−1

𝑖 𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛)

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

)𝜀Ƹҧ𝑛
𝑖 𝐵 if 𝐾𝑛

𝑖  is expected to be < 0

 

(16) 

min
𝑊𝑗𝑘𝑛
𝑖
𝐸𝑛
𝑖  

(17) 

The expected sign of 𝐾𝑛
𝑖 , which is required in equation (16), can be obtained from model-based 

aeroelastic analysis results and flight test data evidence, if any. From now on, for readability purposes, 

we will consider only those cases where 𝐾𝑛
𝑖 ≥ 0.  The K-FNN’s weights update law is obtained by 

differentiation of equation (15) with respect to the weights 𝑊𝑗𝑘𝑛
𝑖 , yielding: 

𝑊𝑗𝑘𝑛
𝑖 = 𝑊𝑗𝑘𝑛−1

𝑖 + Δ𝑊𝑗𝑘𝑛
𝑖 = 𝑊𝑗𝑘𝑛−1

𝑖 − 𝜆𝑗𝑘𝑛
𝜕𝐸𝑛

𝑖

𝜕𝑊𝑗𝑘𝑛
𝑖
= 𝑊𝑗𝑘𝑛−1

𝑖 − 𝜆𝑗𝑘𝑛𝑒𝑛
𝑖
𝜕𝑒𝑛

𝑖

𝜕𝑊𝑗𝑘𝑛
𝑖

= 𝑊𝑗𝑘𝑛−1
𝑖 − 𝜆𝑗𝑘𝑛𝑒𝑛

𝑖𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛) (𝜀Ƹ ҧ𝑛

𝑖 𝐴 + 𝜀Ƹҧ𝑛
𝑖 𝐵) 

(18) 

Where 𝜆𝑗𝑘𝑛 is a learning gain which is dynamically saturated to always grant the numerical stability 

of the update law [11]. To analyze the numerical stability limits of (18), equation (18) will be expressed 

as a function of the weight error 𝑊̃𝑗𝑘𝑛
𝑖  defined as: 

  𝑊̃𝑗𝑘𝑛
𝑖 = 𝑊𝑗𝑘𝑛

𝑖 −𝑊𝑗𝑘
𝑖∗ 

(19) 

Where 𝑊𝑗𝑘
𝑖∗ denotes the ideal and unknown weight value that minimizes the cancellation error 𝐸𝑛

𝑖  of 

the 𝑖𝑡ℎ elastic mode. Using (19), equation (18) can be rewritten as a function of this estimation error to 

yield: 

  𝑊̃𝑗𝑘𝑛
𝑖 = 𝑊̃𝑗𝑘𝑛−1

𝑖 − 𝜆𝑗𝑘𝑛𝑒𝑛
𝑖𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛) (𝜀Ƹ ҧ𝑛
𝑖 𝐴 + 𝜀Ƹҧ𝑛

𝑖 𝐵) 
(20) 

Rearranging equation (20) and collecting the terms in 𝑊̃𝑗𝑘𝑛−1
𝑖 , as 𝑒𝑛

𝑖 =

∑ ∑ 𝑊̃𝑗𝑘𝑛−1
𝑖 𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛)
𝑛𝑘
𝑘=1

𝑛𝑗
𝑗=1

(𝜀Ƹ ҧ𝑛
𝑖 𝐴 + 𝜀Ƹҧ𝑛

𝑖 𝐴), we obtain the following equations: 

  𝑒𝑛
𝑖 = (1 − 𝜆𝑗𝑘𝑛 (𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛) (𝜀Ƹ ҧ𝑛
𝑖 𝐴 + 𝜀Ƹҧ𝑛

𝑖 𝐵))
2

) 𝑊̃𝑗𝑘𝑛−1
𝑖 + o(𝑊̃𝑙𝑚𝑛−1

𝑖 ), ∀𝑙 ≠

𝑗, ∀𝑚 ≠ 𝑘  
(21.1) 

  𝑊̃𝑗𝑘𝑛
𝑖 = (1 − 𝜆𝑗𝑘𝑛 (𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛) (𝜀Ƹ ҧ𝑛
𝑖 𝐴 + 𝜀Ƹҧ𝑛

𝑖 𝐵))
2

) 𝑊̃𝑗𝑘𝑛−1
𝑖 + o(𝑊̃𝑙𝑚𝑛−1

𝑖 ), ∀𝑙 ≠

𝑗, ∀𝑚 ≠ 𝑘 

(21.2) 

The first term in right hand side of equation (21.2) is the homogenous part and thus, the numerical 

stability of the discrete update law will be granted if the following condition holds: 
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  |1 − max 𝜆𝑗𝑘𝑛 · (𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛) (𝜀Ƹ ҧ𝑛

𝑖 𝐴 + 𝜀Ƹҧ𝑛
𝑖 𝐵))

2

| < 1 
(22) 

Rearranging (22) and solving for the maximum value of the learning gain 𝜆𝑗𝑘𝑛
 we finally obtain the 

stability condition for the learning gain 𝜆𝑗𝑘𝑛: 

  max 𝜆𝑗𝑘𝑛 <
2

(𝜙𝑗𝑘
𝑖 (𝐿𝑛,𝑀𝑛)(𝜀ො̅𝑛

𝑖 𝐴+𝜀ො̅𝑛
𝑖 𝐵))

2 < 𝜆𝑛
+ 

(23.1) 

  𝜆𝑛
+ =

2

(𝜀ො̅𝑛
𝑖 𝐴+𝜀ො̅𝑛

𝑖 𝐵)
2 

(23.2) 

The minimum response time of the update law is obtained when 𝜆𝑗𝑘𝑛 = 𝜆𝑛
∗ = 1 (𝜀Ƹ ҧ𝑛

𝑖 𝐴 + 𝜀Ƹҧ𝑛
𝑖 𝐵)

2

⁄ , and 

thus, the maximum value of the learning gains 𝜆𝑗𝑘𝑛
 is restricted to the value of the minimum time response 

gain 𝜆𝑛
∗  with a twosome objective: to grant the numerical stability of the K-FNN’s weights update and to 

avoid the shattering phenomenon in the learning phase that could appear for learning gains 𝜆𝑛
∗ < 𝜆𝑗𝑘𝑛 <

𝜆𝑛
+.  

On top of equations (23.1-23.2), a dead zone has been used to avoid the well know parameter drifting 

problem in the presence of measurement noise [12, 13, 14] as follows: 

𝜆𝑗𝑘𝑛 = {
min (𝐺𝑖 , 1 (𝜀Ƹ ҧ𝑛

𝑖 𝐴 + 𝜀Ƹҧ𝑛
𝑖 𝐵)

2

⁄ ) if 𝑒𝑛
𝑖𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛) (𝜀Ƹ ҧ𝑛
𝑖 𝐴 + 𝜀Ƹҧ𝑛

𝑖 𝐵) ≥ ϵ𝑖

0                                               if 𝑒𝑛
𝑖𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛) (𝜀Ƹ ҧ𝑛
𝑖 𝐴 + 𝜀Ƹҧ𝑛

𝑖 𝐵) < ϵ𝑖

 
(24) 

Where 𝐺𝑖
 denotes the static learning gain of the estimation kernel of the 𝑖𝑡ℎ elastic mode, and ϵ𝑖

 denotes 

the threshold of the dead-band. As an additional protection to the learning logic to ensure that the K-

FNN’s output is always contained within a predefined safety range, the update law in (18) has been 

adapted to include a real-time weight clipping mechanism as follows: 

    𝑊𝑗𝑘𝑛
𝑖 = min (𝑊𝑗𝑘

𝑖
, max (𝑊𝑗𝑘

𝑖 ,𝑊𝑗𝑘𝑛−1
𝑖 − 𝜆𝑗𝑘𝑛𝑒𝑛

𝑖𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛) (𝜀Ƹ ҧ𝑛

𝑖 𝐴 + 𝜀Ƹҧ𝑛
𝑖 𝐵))) 

(25) 

Where 𝑊𝑗𝑘

𝑖
 and 𝑊𝑗𝑘

𝑖  denote a predefined upper and lower bound for the FNN weight 𝑊𝑗𝑘𝑛
𝑖 . These 

bounds define the confidence space where the K-FNN can learn. A more detailed analysis of the 

properties of the FNN’s weights update law defined in (25) shows that with small elastic activities, the 

K-FNN weights are kept frozen thanks to the learning dead-zone of (24), but when the elastic activities 

in the measured signals 𝑦𝑛
𝐴 and 𝑦𝑛

𝐵 increase, the cancellation error converges to zero with a rate which is 

proportional to the square of the sum of the amplitudes of the elastic mode components 𝜀Ƹ ҧ𝑛
𝑖 𝐴 and 𝜀Ƹ ҧ𝑛

𝑖 𝐵. 

2.1.2 Estimating the Elastic Mode Activity 𝛾𝑛
𝑖  

With the estimation of the perfect cancellation parameter 𝐾෡𝑛
𝑖  provided by the K-FNN, each kernel 

computes an approximation of the 𝑖𝑡ℎ elastic mode activity in the signal 𝑦𝑛
𝐴, denoted with 𝛾ො𝑛

𝑖  using a 

second-order parametric band-pass filter 𝐻1(𝑧
−1, 𝜔ෝ𝑛−1

𝑖 ) with a notch centered at frequency 𝜔ෝ𝑛−1
𝑖  

𝛾ො𝑛
𝑖 = 𝐻1(𝑧

−1, 𝜔ෝ𝑛−1
𝑖 )(1 − 𝐾෡𝑛

𝑖 )(𝑦𝑛
𝐴 − 𝑦𝑛

𝐵) 
(26) 

Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



2.1.3 Estimating the elastic mode augmented frequency 𝜔𝑛
𝑖  

The last operation performed by the estimation kernels is the estimation of the elastic modes 

augmented frequencies. We define the augmented frequency, which in general differs from the elastic 

mode natural frequency, as the frequency of the elastic mode with the flight control laws being in the 

control loop. Like occurred with the perfect cancellation parameters, the augmented frequencies of the 

elastic modes mainly depend on the telescopic length and the flight condition. It is customary to obtain 

an estimation of this function via model-based aeroelastic analyses.  

As aeroelastic model uncertainties could degrade the performances of the elastic modes filtering and 

also the behavior of the boom physical condition estimator (see Section 4.2.3), an adaptive frequency 

estimator is mandatory. Once again, the methodology of approximating an unknown augmented 

frequency function 𝑔𝑖(𝐿𝑛, 𝑀𝑛) via an adaptive Fuzzy Neural Network (named Frequency Fuzzy Neural 

Network (F-FNN) to differentiate it from the FNN used for the elastic modes perfect cancellation 

parameters (K-FNN)) has been applied in this case. Flight test evidence again has shown that functions 

𝑔𝑖(𝐿𝑛, 𝑀𝑛)
 are smooth in the parameters 𝐿 and 𝑀 and thus, a single layer Neural Network is sufficient to 

have a small approximation error for the augmented frequencies. This approximation error can be 

described as 

𝜔𝑛
𝑖 = 𝑔𝑖(𝐿𝑛, 𝑀𝑛) = 𝜔ෝ𝑛

𝑖 + 𝜎 =∑∑Ω𝑗𝑘𝑛
𝑖 𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛)

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

+ 𝛿 (27) 

Where 𝜔ෝ𝑛
𝑖  is the output of the K-FNN, Ω𝑗𝑘𝑛

𝑖  denotes the weights of the K-FNN for the 𝑖𝑡ℎ elastic mode, 

and 𝛿 is a small approximation error. In order to minimize the computation time, the activation functions 

𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛)

 are shared between the K-FNN and the F-FNN (see equations (7-9)).  

In order to achieve the objective of adaptive frequency tracking for each elastic mode, a “slave” notch 

filter 𝑁𝑖(𝑧
−1) has been used to provide an indirect estimation of the Neural Network approximation error. 

The output 𝑦𝑛
𝑖  of this “slave” notch filter 𝑁𝑖(𝑧

−1) will be used to update the K-FNN weights Ω𝑗𝑘𝑛
𝑖  via 

backpropagation of the estimation error metric. The term “slave” is intended to highlight the fact that the 

notch frequency of the filter is linked to the output 𝜔ෝ𝑛
𝑖  of the F-FNN. The key idea is to exploit the 

frequency information contained in the estimated elastic mode activity signal 𝛾ො𝑛
𝑖 , defined as  

𝛾ො𝑛
𝑖 = 𝜀ҧ̂𝑛

𝑖 cos(𝜔𝑛
𝑖 𝑡𝑛 + 𝜑) + 𝑣𝑛 (28) 

Where 𝜑 is an unknown phase angle, and 𝑣𝑛 denotes the set of measurement noise and cross-elastic-

mode residuals. As exposed in equation (28), the output 𝑦𝑛
𝑖  of a notch filter applied to 𝛾ො𝑛

𝑖  will have 

minimum amplitude if the notch frequency is coincident with the actual elastic mode augmented 

frequency 𝜔𝑛
𝑖 . Then, if the notch frequency is linked to the F-FNN, the output of the notch filter can be 

used as a figure of merit of the network approximation error [15].  

The schematic architecture of the frequency estimation module implemented in the estimation kernels 

has been depicted in Fig. 7. The selected “slave” notch filter for this particular case is a parametric second-

order IIR filter with a discrete transfer function defined by 

𝑁𝑖(𝑧
−1; 𝑎𝑛

𝑖 , 𝑟) =
1 − 2𝑎𝑛

𝑖 𝑧−1 + 𝑧−2

1 − 2𝑟𝑎𝑛
𝑖 𝑧−1 + 𝑟2𝑧−2

 (29) 
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Where 𝑎𝑛
𝑖  is a time-varying parameter defining the notch frequency, r is the pole radius which controls 

the notch bandwidth (0 ≪ r < 1). It has to be noted that the transfer function defined in (29) has all the 

zeros located on the unit circle, and thus, the resulting filter is an infinite-depth IIR notch filter.  

The “slave” condition is ensured by a unique relationship between the parameter 𝑎𝑛
𝑖  and the estimated 

augmented frequency of the 𝑖𝑡ℎ elastic mode 𝜔ෝ𝑛
𝑖  provided by the F-FNN. The “slave” equation is defined 

by 

𝑎𝑛
𝑖 = cos(𝜔ෝ𝑛

𝑖 Δ𝑡) = cos(∑∑Ω𝑗𝑘𝑛
𝑖 𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛)

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

Δ𝑡) (30) 

The filter output 𝜁𝑛
𝑖  can be expressed as follows 

𝜁𝑛
𝑖 = 𝑁𝑖(𝑧

−1; 𝜔ෝ𝑛
𝑖 )𝛾ො𝑛

𝑖 = 𝛾ො𝑛
𝑖 − 2𝑎𝑛

𝑖 𝛾ො𝑛−1
𝑖 + 𝛾ො𝑛−2

𝑖 + 2𝑟𝑎𝑛
𝑖 𝜁𝑛−1

𝑖 − 𝑟2𝜁𝑛−2
𝑖  (31) 

The objective of the F-FNN training is to minimize a cost function 𝐽𝑛
𝑖  defined by the square of the 

“slave” notch filter output. This cost function is defined by 

𝐽𝑛
𝑖 =

1

2
𝜁𝑛
𝑖 2 (32) 

The cost function value will reach its minimum when the notch-filter output 𝜁𝑛
𝑖  is close to zero, and 

thus in this condition of minimum filter output, the estimated augmented frequency 𝜔ෝ𝑛
𝑖  will be equal to 

the true augmented frequency 𝜔𝑛
𝑖 . The update law of the F-FNN weights Ω𝑗𝑘𝑛

𝑖  defined in equation (27) is 

obtained by applying a gradient descent technique to minimize the cost 𝐽𝑛
𝑖  as follows 

Ω𝑗𝑘𝑛
𝑖 = Ω𝑗𝑘𝑛−1

𝑖 + ΔΩ𝑗𝑘𝑛
𝑖 = Ω𝑗𝑘𝑛−1

𝑖 − 𝜇𝑗𝑘𝑛
𝜕𝐽𝑛

𝑖

𝜕Ω𝑗𝑘𝑛
𝑖

= Ω𝑗𝑘𝑛−1
𝑖 − 𝜇𝑗𝑘𝑛𝜁𝑛

𝑖
𝜕𝜁𝑛

𝑖

𝜕𝑎𝑛
𝑖

𝜕𝑎𝑛
𝑖

𝜕𝜔ෝ𝑛
𝑖

𝜕𝜔ෝ𝑛
𝑖

𝜕Ω𝑗𝑘𝑛
𝑖

 
(33) 

Where 𝜇𝑗𝑘𝑛 is an adaptive learning gain that grants the numerical stability of the discrete update law 

in (33). The partial derivative terms in equation (33) can be computed using equations (27), (30) and (31), 

yielding   

𝜕𝜁𝑛
𝑖

𝜕𝑎𝑛
𝑖
= 𝛽𝑛

𝑖 = −2𝛾ො𝑛−1
𝑖 + 2𝑟𝜁𝑛−1

𝑖 + 2𝑟𝑎𝑛
𝑖 𝛽𝑛−1

𝑖 − 𝑟2𝛽𝑛−1
𝑖  

(34) 

𝜕𝑎𝑛
𝑖

𝜕𝜔ෝ𝑛
𝑖
= 𝛽𝑛

𝑖 = −Δ𝑡 sin(𝜔ෝ𝑛
𝑖 Δ𝑡) = − Δ𝑡√1 − 𝑎𝑛

𝑖 2  
(35) 

𝛾ො𝑛
𝑖 = 𝜀ҧ̂𝑛

𝑖 cos(𝜔𝑛
𝑖 𝑡𝑛 + 𝜑) + 𝑣𝑛 

∑∑Ω𝑗𝑘𝑛𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛)

𝑛𝑘

𝑘=1

𝑛𝑗

𝑗=1

 

𝑁𝑖(𝑧
−1; 𝑎𝑛

𝑖 , 𝑟) 

𝐿𝑛 

𝑀𝑛 

𝜔ෝ𝑛
𝑖  

𝜁𝑛
𝑖 , 𝛽𝑛

𝑖  

𝜔ෝ𝑛
𝑖  

“Slave” IIR Parametric 

Notch-Filter 

Frequency 

Fuzzy Neural Network 

The estimated elastic mode activity signal contains valuable 

information about the augmented frequency of the 𝑖𝑡ℎ elastic mode 

Fig.  3 Schematic view of the frequency estimation module 
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𝜕𝜔ෝ𝑛
𝑖

𝜕Ω𝑗𝑘𝑛
𝑖

= 𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛) 

(36) 

Reordering equation (33), we finally obtain the explicit update law of the F-FNN weights 

Ω𝑗𝑘𝑛
𝑖 = Ω𝑗𝑘𝑛−1

𝑖 + 𝜇𝑗𝑘𝑛(𝛾ො𝑛
𝑖 − 2𝑎𝑛

𝑖 𝛾ො𝑛−1
𝑖 + 𝛾ො𝑛−2

𝑖 + 2𝑟𝑎𝑛
𝑖 𝜁𝑛−1

𝑖

− 𝑟2𝜁𝑛−2
𝑖 )𝛽𝑛

𝑖Δ𝑡√1 − 𝑎𝑛
𝑖 2𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛) 
(37) 

𝛽𝑛
𝑖 = −2𝛾ො𝑛−1

𝑖 + 2𝑟𝜁𝑛−1
𝑖 + 2𝑟𝑎𝑛

𝑖 𝛽𝑛−1
𝑖 − 𝑟2𝛽𝑛−2

𝑖  
(38) 

The adaptive learning gain 𝜇𝑗𝑘𝑛  is computed on-line to grant the numerical stability of (37-38), which 

holds if  

||1 + 𝜇𝑗𝑘𝑛

((−2𝛾ො𝑛−1
𝑖 + 2𝑟𝜁𝑛−1

𝑖 )𝛽𝑛
𝑖 + 𝜁𝑛

𝑖 𝛿𝑛
𝑖 ) (1 − 𝑎𝑛

𝑖 2) − 𝜁𝑛
𝑖𝛽𝑛

𝑖 𝑎𝑛
𝑖

√1 − 𝑎𝑛
𝑖 2

Δ𝑡𝜙𝑗𝑘
𝑖 (𝐿𝑛, 𝑀𝑛)|| < 1 (39) 

𝜇𝑗𝑘𝑛 <
2√1 − 𝑎𝑛

𝑖 2

𝛥𝑡 |((2𝛾ො𝑛−1
𝑖 − 2𝑟𝜁𝑛−1

𝑖 )𝛽𝑛
𝑖 + 𝜁𝑛

𝑖 𝛿𝑛
𝑖 ) (1 − 𝑎𝑛

𝑖 2) + 𝜁𝑛
𝑖𝛽𝑛

𝑖 𝑎𝑛
𝑖 |
≡ 𝜇𝑛

+ 

 

(40) 

𝛿𝑛
𝑖 =

𝜕𝛽𝑛
𝑖

𝜕𝑎𝑛
𝑖
= 2𝑟𝛽𝑛−1

𝑖 − 𝑟2𝛿𝑛−1
𝑖   (41) 

Equations (40-41) define the upper stability bound 𝜇𝑛
+ for the learning gain 𝜇𝑗𝑘𝑛. Nevertheless, as 

previously described, the optimal gain for fast adaptation 𝜇𝑛
∗  is achieved for 0.5𝜇𝑛

+ and thus, 𝜇𝑛
∗  is selected 

as the upper bound for the learning gains 𝜇𝑗𝑘𝑛 instead. In order to prevent the parameter drifting 

phenomenon in the presence of measurement noise, on top of equations (40-41), a dead band has been 

applied. Thus, the learning gain for each weight of the F-FNN is finally set as: 

𝜇𝑗𝑘𝑛 = {
min(𝐺𝜔𝑖, 𝜇𝑛

∗ ) if ΔΩ𝑗𝑘
𝑖

𝑛
≥ ϵω𝑖

0                       if ΔΩ𝑗𝑘
𝑖

𝑛
< ϵω𝑖

 
(42) 

Where 𝐺𝜔𝑖
 denotes the static learning gain of the estimation kernel of the 𝑖𝑡ℎ elastic mode, and ϵω𝑖

 

denotes the threshold of the dead-band. As an additional protection to the learning logic, the update law 

in (37) has been modified to include a real-time weight clipping mechanism to always ensure that the F-

FNN output is kept within a predefined safety range 

    Ω𝑗𝑘𝑛
𝑖 = min (Ω𝑗𝑘

𝑖
, max(Ω𝑗𝑘

𝑖 , Ω𝑗𝑘𝑛−1
𝑖   + 

𝜇𝑗𝑘𝑛(𝛾ො𝑛
𝑖 − 2𝑎𝑛

𝑖 𝛾ො𝑛−1
𝑖 + 𝛾ො𝑛−2

𝑖 + 2𝑟𝑎𝑛
𝑖 𝜁𝑛−1

𝑖 − 𝑟2𝜁𝑛−2
𝑖 )𝛽𝑛

𝑖Δ𝑡√1 − 𝑎𝑛
𝑖 2𝜙𝑗𝑘

𝑖 (𝐿𝑛, 𝑀𝑛) ))
 

(43) 

Where Ω𝑗𝑘
𝑖

 and Ω𝑗𝑘
𝑖  denote a predefined upper and lower bound for the F-FNN weight Ω𝑗𝑘𝑛

𝑖 . These 

bounds define the confidence space where the F-FNN can learn.  
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2.2 The Elastic Modes Cancellation Module 

The elastic modes cancellation modules use an extended version of the spatial filtering methodology. 

The standard spatial filtering methodology uses the information of a sensor array to provide an output 

signal in which some, or all the elastic modes have been suppressed. In the most general case, the content 

of a signal 𝑦𝑛
𝑠 measured by a sensor 𝑠 in a sensor array composed by 𝑆 sensors can be expressed as 

𝑦𝑛
𝑠 = 𝑟𝑛 +∑𝜑𝑛

𝑖 (𝑙𝑠)𝜂𝑛
𝑖

𝑁

𝑖=1

+ 𝑣𝑛
𝑠  

(44) 

And in a more compact form: 

𝒚𝒏 = 𝑟𝑛𝟏 + 𝚵𝜼𝒏 + 𝒗𝒏
 

(45) 

where now 𝒚𝑛 = [𝑦𝑛
1, … , 𝑦𝑛

𝑆]𝑇 ∈ ℝ𝑆, 𝒗𝑛 = [𝑣𝑛
𝟏, … , 𝑣𝑛

𝑆] ∈ ℝ𝑆, 𝟏 ∈ ℝ𝑆 is a column vector of ones, and 

𝚵 ∈ ℝ𝑆 × ℝ𝑁 is a matrix containing all elastic modes unitary displacement at sensors locations from 𝑙1 ∈

ℝ3 to 𝑙𝑆 ∈ ℝ
3. 

𝚵[𝑆×𝑁] = [
𝜑𝑛
1(𝑙1) … 𝜑𝑛

𝑁(𝑙1)
⋮ ⋱ ⋮

𝜑𝑛
1(𝑙𝑆) … 𝜑𝑛

𝑁(𝑙𝑆)
] (46) 

Given an a priori known matrix 𝚵, the spatial filtering algorithm can suppress 𝑁 elastic modes using a 

linear combination of the signals 𝑦𝑛
𝑠 as follows 

𝑌𝑛
𝑆𝐹 =∑𝜃𝑛

𝑠𝑦𝑛
𝑠

𝑆

𝑠=1

= 𝜽𝑛
𝑇𝒚𝒏 = 𝑟𝑛𝜽𝑛

𝑇𝟏 + 𝜽𝑛
𝑇𝚵𝜼𝒏 + 𝜽𝑛

𝑇𝒗𝒏
 

(47) 

Where 𝑌𝑛
𝑆𝐹  is the output of the spatial filter and 𝜽𝑛 = [𝜃𝑛

1, … , 𝜃𝑛
𝑆]𝑇 ∈ ℝ𝑆 is a time-varying vector 

containing the weight coefficients of the spatial filter. In order to keep the measured rigid dynamics 

unaltered and to perfectly cancel the 𝑁 elastic modes, the weight coefficients 𝜽𝑛
 shall be compliant with 

the following equation: 

[𝚵
𝐓

𝟏𝑻
] 𝜽𝒏 ≡ 𝚽𝐧𝜽𝒏 = [

𝜑𝑛
1(𝑙1) … 𝜑𝑛

1(𝑙𝑁+1)
⋮ ⋱ ⋮

𝜑𝑛
𝑁(𝑙1) … 𝜑𝑛

𝑁(𝑙𝑁+1)
1 … 1

]

[𝑁+1×𝑆]

𝜽𝒏 = [
𝟎𝐍×𝟏
1
] 

(48) 

 

Then, solving (48) for weight coefficients vector 𝜽𝑛
 yields 

𝜽𝑛  = 𝚽
−𝟏[𝟎𝟏×𝐍 1]𝑻 

(49) 

As can be observed in (49), the standard spatial filtering method requires the matrix 𝚽 to be invertible 

in order to cancel the 𝑁 elastic modes. This mathematical constraint imposes the number of sensors 𝑆 to 

be equal to 𝑁 + 1, to make the matrix square. This constraint makes the standard spatial filtering 

methodology unsuitable for the ARBS. To overcome this intrinsic limitation, an extended spatial adaptive 

filtering method has been implemented in the elastic modes cancelation modules. This novel method uses 

the estimated perfect cancellation parameters 𝐾෡𝑛
𝑖  and the estimated elastic mode activities 𝛾ො𝑛

𝑖  that have 

been computed by each one of the elastic modes estimation kernels, to generate a set of 𝑁 − 1 virtual 

signals, denoted by 𝛽̂𝑛
𝑠, that complements the already available signals 𝑦𝑛

𝐴  and 𝑦𝑛
𝐵. These auxiliary virtual 
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signals 𝛽̂𝑛
𝑠 are constructed in such a way that they are linearly independent with respect to their elastic 

modes contents, so as to be able to generate an invertible matrix 𝚽 for the extended spatial filter: 

𝛽̂𝑛
𝑠  = 𝑦𝑛

𝐴 −∑𝜉𝑛
𝑖,𝑠𝛾ො𝑛

𝑖

𝑁

𝑖=1

, 𝑠 ∈ [1, 𝑁 − 1] (50) 

where 𝜉𝑛
𝑖,𝑠

 are parameters that are modified online to grant that the virtual signals are linearly 

independent with respect to their elastic modes contents. Using the virtual signals 𝛽̂𝑛
𝑠 as additional 

measurements provided by a set of 𝑁 − 1 virtual sensors, equation (70) can be reformulated for the 

extended spatial adaptive filter concept, yielding 

𝑌𝑛 = 𝜃𝑛
1𝑦𝑛

𝐴 + 𝜃𝑛
2𝑦𝑛

𝐵 +∑ 𝜃𝑛
𝑗+2
𝛽̂𝑛
𝑗

𝑁−1

𝑗=1

 
(51) 

Where 𝑌𝑛 is the output of each one of the elastic mode cancellation modules. The new system of 

equations to be solved in the extended spatial adaptive filtering technique depends on 𝜉𝑛
𝑖,𝑠

 parameters, so 

the elastic modes cancelation module can modify the virtual signals and thus matrix 𝚽෡𝐧  online as 

required, granting that it is always proper: 

𝚽෡𝐧 =

[
 
 
 
 
 
 
 
 

1 … 1 1
𝐾෡𝑛
1

𝐾෡𝑛1 − 1
…

𝐾෡𝑛
𝑁

𝐾෡𝑛𝑁 − 1
1

(1 − 𝜉𝑛
1,1)

𝐾෡𝑛
1

𝐾෡𝑛1 − 1
… (1 − 𝜉𝑛

𝑁,1)
𝐾෡𝑛
𝑁

𝐾෡𝑛𝑁 − 1
1

⋮ ⋱ ⋮ ⋮

(1 − 𝜉𝑛
1,𝑁−1)

𝐾෡𝑛
1

𝐾෡𝑛1 − 1
… (1 − 𝜉𝑛

𝑁,𝑁−1)
𝐾෡𝑛
𝑁

𝐾෡𝑛𝑁 − 1
1
]
 
 
 
 
 
 
 
 
𝑇

 
(52) 

 

Rearranging equations (70) and (73) with (76), the output signal 𝑌𝑛 of each elastic modes cancelation 

module is computed as: 

𝑌𝑛 = 𝚽෡𝑛
−1(𝜁, 𝐾෡)[𝟎𝟏×𝐍 1]𝑻[𝑦𝑛

𝐴 𝑦𝑛
𝐵 𝛽̂𝑛

1 … 𝛽̂𝑛
𝑁−1]𝑻 

(53) 

As depicted in Fig. 1, in the current implementation of the EMAC algorithm, there are two independent 

elastic modes cancellation modules: one dedicated to canceling the first two elastic modes component in 

“free-air” conditions (𝑁𝐹𝐴 = 2), which computes the filtered signal 𝑌𝑛
𝐹𝐴, and another one to cancel the 

first two elastic modes component in “coupled” conditions (𝑁𝐶 = 2), which computes the filtered signal 

𝑌𝑛
𝐶  as follows: 

𝑌𝑛
𝐹𝐴 = 𝚽෡𝑛

−1(𝜁𝐹𝐴, 𝐾෡𝑛
1
𝐹𝐴
, 𝐾෡𝑛

2
𝐹𝐴
)[0,0,1]T[𝑦𝑛

𝐴, 𝑦𝑛
𝐵, 𝛽̂𝑛

1
𝐹𝐴
]
𝑇  

(54) 

𝑌𝑛
𝐶 = 𝚽෡𝑛

−1(𝜁𝐶 , 𝐾෡𝑛
1
𝐶
, 𝐾෡𝑛

2
𝐶
)[0,0,1]T[𝑦𝑛

𝐴, 𝑦𝑛
𝐵, 𝛽̂𝑛

1
𝐶
]
𝑇

 
(55) 

In the previous equations, 𝐾෡𝑛
1
𝐹𝐴

 and 𝐾෡𝑛
2
𝐹𝐴

 denote the estimated perfect cancellation parameter for the 

first and second elastic mode in “free-air” conditions provided by the “free-air” elastic modes estimation 

kernels, 𝐾෡𝑛
1
𝐶

 and 𝐾෡𝑛
2
𝐶
 denote the estimated perfect cancellation parameter for the first and second elastic 
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mode in “coupled” conditions provided by the “coupled” elastic modes estimation kernels, and 𝛽̂𝑛
1
𝐹𝐴

 and 

𝛽̂𝑛
1
𝐶

 denote the virtual signals generated for “free-air” and “coupled” conditions respectively.    

2.3 Physical Status Estimator and Signal Fader 

The exogenous physical boundary conditions acting on the ARBS’ nozzle may limit the displacements 

of the flexible structure and can impose certain restrictions on the degrees of freedom of the system, which 

ultimately modify its aeroservoelastic properties. Fast discrete changes in these exogenous physical 

boundary conditions need to be identified rapidly in order to select the proper filtered signal (𝑌𝑛
𝐹𝐴 or 𝑌𝑛

𝐶) 

to feed the BCLAWs’ controllers, with independency of the automatic control mode transition 

functionality and the CLAWs control mode being active. 

To fulfil this objective, a physical status estimator has been implemented in the EMAC algorithm to 

compute the estimated probability for the ARBS of being actually in restricted movement conditions. 

This estimator uses the data provided by the elastic modes estimation kernels to monitor the elastic energy 

around two frequency bandwidths associated with the first elastic mode in free-air and restricted-

movement status. Depending on the energy content in these frequency bandwidths and the BCLAWs’ 

control mode being active, the algorithm is capable of computing the probability 𝑃𝑛 for the ARBS of 

being in restricted movement conditions.  

The probability 𝑃𝑛 computed by the physical status estimator is used to construct the EMAC’s 

algorithm output signal 𝑌𝑛
𝐸𝑀𝐴𝐶  as the weighted sum between the “free-air” and the “coupled” filtered 

signals as follows: 

 𝑌𝑛
𝐸𝑀𝐴𝐶 = 𝑃𝑛𝑌𝑛

𝐶 + (1 − 𝑃𝑛)𝑌𝑛
𝐹𝐴  

(56) 

2.4 Fuzzy Neural Networks Online Training Management 

As illustrated in Fig. 1, the elastic modes estimation kernels are divided in two different sets, those 

dedicated to analyse the properties of the elastic modes in “free-air” conditions, and those dedicated to 

analyse the elastic modes properties in “coupled” conditions. The FNN of the “free-air” elastic mode 

estimations kernels shall be trained only when there is high confidence of the ARBS for being in “free-

air” conditions, with independency of the CLAWs control modes being active. On the other hand, the 

FNN of the “coupled” elastic modes estimation kernels shall be trained only when there is high confidence 

of the ARBS being in “coupled” conditions. To accomplish this requirement, EMAC algorithm also uses 

the estimated probability of being in restricted-movement conditions 𝑃𝑛 to determine when and what FNN 

is going to be trained online.  

3 Flight Test Results 

With the aim to validate the robustness and performance of the EMAC algorithm, a dedicated flight 

test campaign was performed during the winter of 2019 over the Alboran Sea with an A310 MRTT testbed 

and during the autumn of 2020 with the new A330 SMART MRTT. In this section we will show some of 

the results obtained during the campaign, illustrating two specific functionalities of the EMAC algorithm, 

the adaptive aeroservoelastic coupling suppression functionality, and the real-time estimation of the 

exogenous boundary condition acting on the ARBS nozzle tip with a simulated coil signal failure during 

operational contacts with a squadron of Lockheed Martin F-16A from the Portuguese Air Force acting as 

the receiver aircraft.  
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For this test, ad-hoc modifications in the Boom Control Unit software were required to simulate the 

failure to receive the coil-pulse generated by the F-16A receptacle in order to reproduce undetected 

Control Mode Mismatch failure conditions in a controlled environment. One of the main objectives of 

this test was to check the capability of the EMAC algorithm to detect the “contact” with the F-16A using 

information only from the measurement sources 𝐴 and 𝐵 in a failure condition.  

In the flight envelope point where the test was performed, without the EMAC algorithm, the advent of 

an aeroservoelastic coupling phenomenon triggering an unstable motion in the lateral axis of the ARBS 

after the “contact” was expected if the BCLAWs control mode was kept in “free-air” mode. Time histories 

of 𝑦𝑛
𝐴 and 𝑌𝑛

𝐸𝑀𝐴𝐶  signals representing the measured and filtered ARBS roll angle respectively have been 

depicted in the upper subplot of Fig. 4 (a legacy non-adaptive filter was applied to the attitude feedback 

signal in this test, and the signal 𝑌𝑛
𝐸𝑀𝐴𝐶  provided by the EMAC algorithm was used only for monitoring 

purposes). The BCLAWs control mode and the estimated probability of being in “restricted-movement” 

conditions (𝑃𝑛), computed by EMAC algorithm, has been represented in the middle subplot. Finally, the 

measured lateral force in the ARBS nozzle tip has been shown in the bottom subplot in order to better 

visualize the lateral aeroservoelastic coupling instability phenomenon generated by the Control Mode 

Mismatch failure case (see the increasing lateral force amplitude after Time = 8sec in Fig. 4). The test 

Fig.  4 Undetected Contact flight test results with the EMAC algorithm disabled. Observe the 

aeroservoelastic coupling instability onset when the flying boom is in Control Mode Mismatch in this non-

operational flight condition (BCLAWs in Free-Air control mode while the boom is actually latched to the 

receiver’s receptacle). 
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with the EMAC filtering disabled was conducted safely with maximum lateral forces of 2500N, and the 

expected unstable aeroservoelastic coupling phenomenon was reproduced satisfactorily. 

A second test was performed in the same flight conditions of the previous example, but this time with 

the EMAC adaptive filtering and the exogenous boundary condition estimator enabled. The test results 

have been shown in Fig. 5, where it can be clearly observed that the EMAC algorithm was able to detect 

the “contact” condition (defined by those instants where 𝑃𝑛 > 0.9). Note that the measured nozzle force 

signal is not used by the EMAC algorithm to estimate the exogenous boundary conditions acting on the 

ARBS nozzle tip (the algorithm can be used also in case of a failed force signal). Moreover, thanks to the 

adaptive filtering of the EMAC algorithm, the aeroservoelastic coupling phenomenon was suppressed 

(note that the damping of the oscillations observed in the measured lateral force signal shown in the 

bottom subplot of Fig. 5 is related to the natural structural and aerodynamic damping of the first elastic 

mode in “coupled” conditions).            

  

Fig.  5 Undetected Contact flight test results, with the EMAC algorithm enabled. Observe the absence of 

aeroservoelastic coupling.  

Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



4 Conclusions 

The Elastic Modes Adaptive Cancellation method was created to solve the constraints of existing 

filtering algorithms in isolating the flexible dynamic in a feedback signal of a controlled system, with 

zero phase loss and attenuation. This algorithm has proven to be capable of cancelling all selected elastic 

modes, with a very limited number of sensors (only two are required) and with limited previous 

knowledge of the elastic characteristics of the system, using adaptive estimation kernels that identify their 

properties in real-time. 

The EMAC algorithm has been successfully validated through several flight test campaigns since 

2017, with the A310 MRTT flight testbed and the A330 SMART MRTT, demonstrating that it provides 

the BCLAWs with an increased robustness level to unmodelled elastic dynamics and undetected failures, 

including Control Mode Mismatch conditions, then, increasing the safety level of Air to Air Refueling 

operations with the ARBS. 

Future work includes the development of adaptive modal augmentation and adaptive flutter control 

functionalities using the elastic mode activity provided by the EMAC algorithm. 
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