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ABSTRACT

An efficient capture region estimation algorithm is proposed for a missile. The Gaussian pro-
cess classifier and active sampling technique are combined to improve the accuracy of the predic-
tive model while efficiently using data. The key idea is to actively sample the data required for
the learning method, which uses the information on the uncertainty predicted from the Gaussian
process classifier. Data necessary for training are obtained using a planar missile simulator, and
impact-angle control composite control guidance is used for intercepting the target while satisfying
the impact angle requirement. Through numerical simulation, it is shown that the accuracy of the
trained model gradually increases during training progress, and the performance of the finally-
trained predictive model is verified. It is also shown that the efficiency of the data usage and
the accuracy of the trained model are relatively better than a Gaussian process classifier trained
without active sampling.

Keywords: Gaussian Process Classification; Active Sampling, Capture Region Estimation, Impact Angle Control
Composite Guidance

Nomenclature

f = The latent function
p = The size of input space
n = The number of training data
nt = The number of test data
X = Input space
µ = Expectation function
k = Kernel function
σ f = Signal standard deviation
σ1, ...,σn = Length-scale
L = Given dataset
aM = Normal acceleration
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ψ = Vector of hyperparameters
γM = The flight path angle of missile
γT = The flight path angle of target
γM f = The flight path angle of missile at impact
λ = Line-of-sight (LOS) angle
r = Relative distance between missile and target
VM = Speed of missile
VT = Speed of target
σlim = Field-of-view limit of seeker
G = Look angle gain
N = Navigation constant
λs = Switching LOS angle
η = The speed ratio of missile and target
σd = The desired look angle

1 Introduction
Recently, research on the reachability analysis of tactical missiles has been drawing much attention.

Since missiles cannot always successfully intercept the target due to various constraints, a set of initial
conditions capable of intercepting a target called a capture region should be determined. Obtaining an
accurate capture region is crucial in determining the performance of the missile system. According to
recent research trends, guidance laws that can achieve additional requirements such as impact angle and
time control have been studied [1–4]. Consideration of practical constraints such as the field-of-view
limit of missiles has also been addressed [5, 6], and maneuvering target has also been considered [7, 8].
As the additional mission requirements and physical constraints of the missiles are added, the capture
region becomes narrowed. The narrower the capture region of the missile, the more critical the accurate
estimation of the capture regions becomes.

There are two approaches to estimating the capture regions. First, capture regions are computed
analytically using a theoretical approach. For example, the capture regions for planar engagement sce-
narios were derived through a theoretical methodology [9, 10]. However, these methodologies have clear
limitations. Capture regions obtained analytically may be inaccurate in a real engagement environment.
Note that it is impossible to analyze the capture region considering all of the uncertain factors in real-
world engagement, such as aerodynamic uncertainties or disturbances. As an alternative, the capture
region can be estimated through numerical simulation. This method determines successful interception
regions by using a high fidelity simulator and performing simulations for all initial conditions of interest.
If the reliability of the simulator is guaranteed, then it is possible to estimate the capture region accu-
rately. However, this approach requires a significant amount of computation. In general, the higher the
reliability of the simulator, the much more calculations are required to perform the simulation.

Studies related to the design of a predictive model estimating the capture regions based on data have
been conducted to overcome these shortcomings. In [11], a predictive model was designed to obtain a
probability of successful interception using an artificial neural network. In [12], the capture region of the
proportional navigation guidance law was computed using a support vector machine technique. In these
studies, capture regions are estimated by applying supervised learning techniques. Note that a artificial
neural network is one of the strong candidates among supervised learning algorithms, but unfortunately,
it usually requires a considerable amount of data. Therefore, a method ensuring accuracy with fewer
data usage is needed.

This study proposes a methodology for estimating capture regions using the data more efficiently. To
this end, an algorithm combining the Gaussian process classification and the active sampling is proposed
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to use as little data as possible. Active sampling is adopted, which obtains an accurate model using fewer
data by automatically selecting data in areas where the model’s predictive power is uncertain. The active
sampling algorithm actively determines and selects the data required to improve the performance of a
given predictive model [13].

The Gaussian process classifier is trained with some of the data generated by numerical simulation.
Then, the performance of the proposed technique is analyzed by separating it into learning data and
test data. For comparison, the actual capture region data is obtained by performing many numerical
simulations. Compared to the method without using active sampling, it was confirmed that the proposed
method showed satisfactory performance using fewer data.

This paper is organized as follows. Section 2 mainly explains the theoretical background of Gaus-
sian process classification techniques and active sampling. Section 3 describes the engagement scenario
considered in this study and the guidance law to obtain the capture region. Section 4 presents the re-
sults of calculating the capture region, followed by the analysis of the results. Finally, we provide the
concluding remarks of this study.

2 Theoretical Background
In this section, the theoretical background is briefly introduced for designing a Gaussian process

classifier (GPC) with active sampling (AS).

2.1 Gaussian Process Classification
Gaussian process classification model can be briefly described as

p( f ) = GP( f ,µ,k) (1)

where f is a latent function, µ : X→R is an expectation function, k : X×X→Rn×n is a kernel function,
and X ⊂ Rp is input space. For any inputs X = [x1 . . .xn], xi ∈ X, f = [ f (x1) . . . f (xn)]

T is assumed to
follow a multivariate Gaussian distribution with µ = [µ(x1),µ(x2), ...,µ(xn)]

T as an expectation vector
and K as a covariance matrix, where K is n by n matrix whose (i, j) element is k(xi,x j). To design a
classification model, a relationship between the latent variable and the output variable is determined by
a nonlinear function σ called the link function as

p(y|x, f ) = σ(y f ) (2)

where x ∈ Rp, y ∈ {−1,1}, and σ : R→ [0,1]. σ is a function that satisfies the following property;
σ(x) = 1−σ(−x).

2.2 Design parameters

2.2.1 Expectation and kernel function
Given training data, mean function, kernel function, and link function should be determined. In this

study, zero mean function and exponential kernel are used as

µ(x)≡ 0 (3)

k(x,x′) = σ
2
f exp(−1

2
(x−x′)T M(x−x′)) (4)
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where x,x′ ∈X, σ f ∈R, and M ∈Rp×p,with Mii = σi ∈R. σ f and σi deonte signal variance and length-
scale, respectively.

2.2.2 Link function
The classification model requires a nonlinear function with a paricular property called the link func-

tion. In this study, the following cumulative Gaussian distribution function is used.

σ(x) = Φ

(
x−µ

ζ

)
=

1
2

[
1+ erf

(
x−µ

ζ
√

2

)]
(5)

where ζ is standard deviation of a Gaussian random variable and

Φ(x) =
1
2

[
1+ erf

(
x√
2

)]
(6)

erf(x) =
2√
π

∫ x

0
e−t2

dt (7)

2.3 Inference
The procedure for obtaining the probability of success in Gaussian process classification is as fol-

lows. First, a posterior distribution of latent variables is required. Then, the success probability predic-
tion model is calculated using the obtained posterior distribution and link function. According to the
characteristics of the Gaussian process, the joint distribution of the training output and the test output
follows a multivariate Gaussian distribution, and the expected value and covariance can be determined
as [

f
f∗

]
= N

([
µ

µ∗

]
,

[
K K∗

KT
∗ K∗∗

])
(8)

where µ = [µ(x1),µ(x2), ...,µ(xn)]
T , µ∗ = [µ(x1∗),µ(x2∗), ...,µ(xnt∗)]

T , K is n by n matrix whose (i, j)
element is k(xi,x j), K∗ is n by nt matrix whose (i, j) element is k(xi,x j∗), and K∗∗ is nt by nt matrix
whose (i, j) element is k(xi∗,x j∗). Using the useful properties of the Gaussian distribution, the posterior
probability distribution can be obtained as follows.

f∗|X ,y,X∗ ∼N (f̄∗,cov(f∗)) (9)

where
f̄∗ = E[f∗|X ,y,X∗] = µ∗+KT

∗ K−1(y−µ) (10)

cov(f∗) = K∗∗−KT
∗ K−1K∗ (11)

The probability of success can be calculated by integrating the distribution of the posterior latent vari-
ables and the link function as

π̄i∗ := p(yi∗ = 1|X ,y,xi∗,ψ) =
∫

σ( f )p( f |X ,y,xi∗,ψ)d f (12)
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2.4 Laplace approximation
Finding the closed-form expression of the posterior predictive distribution is not analytically tractable.

Therefore, the distribution is approximated with the Laplace approximation. Laplace approximation can
approximate any posterior distribution as a Gaussian distribution. The approximate Gaussian distri-
bution is obtained using second-order Taylor approximation at the maximum point of the probability
distribution function. Let us denote the approximated distribution as

q(f|X ,y) = N (f; f̂,−(∇∇
T log p(f|X ,y)|−1

f=f̂
) =: N (f, f̂, Σ̂)) (13)

where f̂ = argmaxp(f|X ,y), and Σ̂ = −(∇∇T log p(f|X ,y)|−1
f=f̂

) is the inverse of Hessian of the negative
log posterior at that point. The detailed procedure of obtaining f̂ and Σ̂ can be found in [14]. The posterior
expectation and variance for f∗|X ,y,x∗ under the Laplace approximation can be expressed as follows,

Eq[ f∗|X ,y,x∗] = k(x∗)T K−1f̂ (14)

Vq[ f∗|X ,y,x∗] = k(x∗,x∗)−kT
∗K−1k∗+kT

∗K−1(K−1 +W )−1K−1k∗
= k(x∗,x∗)−kT

∗ (K +W−1)−1k∗
(15)

Given the expectation and variance, Eqs. (14) and (15), a prediction can be obtained by

π̄∗ ≈ Eq[π∗|X ,y,x∗] =
∫

σ( f∗)q( f∗|X ,y,x∗)d f∗ (16)

where q( f∗|X ,y,x∗) is the probability distribution of the posterior latent variable approximated by the
Gaussian distribution.

2.5 Hyperparameter tunning
There are multiple hyperparameters in the kernel function in the Gaussian process classification

model.. These hyperparameters should be determined appropriately. Hyperparameters can be estimated
using given data. Applying the Bayes rule, the posterior distribution of the hyperparameters is expressed
as

p(ψ|X ,y) =
p(y|X ,ψ)p(ψ)∫

p(y|X ,ψ)p(ψ)dψ
(17)

where p(y|X ,ψ) is marginal likelihood of y, and p(ψ) is prior distribution on the hyperparameters. If
there is no prior knowledge of the choice of ψ , the prior distribution of ψ is generally set to be a uniform
distribution. The posterior predictive distribution should be marginalized over p(ψ|X ,y) as

p(f|X ,y,x∗) =
∫

p(f|X ,y,x∗,ψ)p(ψ|X ,y)dψ (18)

In practice, the analytic integration of Eq. (18) is generally intractable. Rather than computing full
distribution over the hyperparameters, a maximum likelihood estimator is needed in this study, which
is computationally tractable. Assuming that the prior distribution of hyperparameters is uniformly dis-
tributed, the posterior of the hyperparameter distribution p(ψ|X ,y) is proportional to the p(y|X ,ψ).
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Therefore, the maximum likelihood estimator can be obtained by maximizing p(y|X ,ψ) for hyperpa-
rameters ψ as

ψ
∗ = argmax

ψ

p(y|X ,ψ) (19)

Note that the optimal value ψ∗ can be computed using the conjugate gradient method [15]. Now, the
integration of Eq. (18) is replaced with a point estimate at the maximum likelihood values.

2.6 Active sampling
Active sampling is a technique that selects the subset of data from the given data to improve the

performance of a given predictive model. Various methods exist according to the criteria for selecting
data and the method of sampling the data [13]. Among these methods, the importance-weight random
sampling method is adopted in this study. The specific algorithm of the importance-weight random
sampling method is as follows. First, the weight is determined according to a predetermined measure.
Then, a probability value for each data is allocated based on the determined weight. The probability
distribution can be obtained as

PV ( f ) =
1

ZV
Var( f |X ,y,x) (20)

where ZV =∑
Xd
i=1Var( fi|X ,y,xi). The discrete probability distribution is determined from the probability

values obtained by Eq. (20). Then, a new dataset is obtained by sampling from the probability distribu-
tion. In this way, data with a high weight can be selected with high probability. In addition, data with
low weights can be evenly selected, thereby preventing overfitting. The output data is obtained by per-
forming a simulation with the data input obtained. Finally, the obtained input/output data are combined
to generate a new dataset. In the importance-weight random sampling method, it is crucial to determine
a criterion for appropriate data selection. In this study, the variance value obtained from the predictive
model is chosen as the selection criterion. The closer the probability value obtained from the predictive
model is to 0.5, the greater the data variance will be. Therefore, it may be expected that the prediction
model’s performance near the decision boundary will be improved by focusing on collecting data in such
regions.

3 Engagement Kinematics
This section describes the missile engagement and guidance law. The engagement kinematic of the

missile and target is shown in Fig. 1. VM,VT are the speeds of missile and target, respectively, and γM,γT
are the flight path angles of the missile and target, respectively. aM is the normal acceleration of the
missile. The relative position between the missile and target is expressed as a line-of-sight (LOS) angle
and a relative distance r. The look angle σ of the missile is expressed as

σ = λ − γM (21)

It is assumed that the angle of attack (AoA) of the missile is small, and the range of the field-of-view
is symmetric. That is, σmax = σlim, and σmin =−σlim. The relative nonlinear kinematic equations of the
missile and target are expressed in the polar coordinate system as

ṙ =VT cos(γT −λ )−VM cos(γM−λ ) (22)

rλ̇ =VT sin(γT −λ )−VM sin(γM−λ ) (23)
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Missile

Target

Fig. 1 Planer engagement geometry

γ̇M =
aM

VM
(24)

In this study, impact-angle control composite guidance (IACCG) law is considered [5]. IACCG is
one of the guidance methods that consider the impact angle requirements. In the case of proportional
navigation (PN) guidance law the range of impact angles that can be achieved is limited depending on the
initial launch location and navigation gain. Therefore, IACCG introduced a deviated pursuit guidance to
expand the range of the achievable impact angle while intercepting the targets. IACCG is divided into
two stages. First, the deviated pursuit guidance law makes a missile reach a position that can satisfy the
impact angle requirement within the range of the missile field-of-view. After that, the target is intercepted
while satisfying the impact angle requirement using PN guidance law. The IACCG can be represented
as follows,

aM =

{
VMλ̇ +G(σd−σ) for |λ |< |λs|
NVMλ̇ with N ≥ 3 for |λ | ≥ |λs|

(25)

λs =

[
tan−1

(
sinγM f −η sinγT

cosγM f −η cosγT

)
−

γM f −σd

N

](
N

N−1

)
(26)

where γM f is the flight path angle of the missile at the interception, η = VT/VM, N is a navigation
gain, and σd is look angle command. The navigation gain and σd should be determined in advance. The
navigation gain is set to 3 in this study. According to Ref. [5], it is crutial to set σd to meet the conditions.
In this study, for the convenience of analysis, the values of the initial look angle and σd are set equally.
The reason for this setting is not to consider the transient response of the look angle converging to σd
from the initial value. Therefore, the missile maintains a constant look angle until the guidance law is
switched to PN guidance law.
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4 Numerical results
Numerical simulations are performed to demonstrate the performance of the proposed method. First,

a dataset is generated based on the missile simulator with the initial launch condition as input and the
intercept success or failure as output. The generated dataset is divided into a training dataset and a test
dataset. The training dataset is used to learn the prediction model, and the test dataset is used to verify
the performance of the trained prediction model. In the process of active sampling, the learning process
of the model is examined, and the performance of the final model is confirmed. After that, the benefits
of active sampling are analyzed by comparing the performance with the learning model that does not use
active sampling.

4.1 Given dataset
Data on the accurate capture region is required to evaluate the performance of the proposed algo-

rithm—the reference dataset is generated as follows. IACCG is used as the guidance law. The relative
distance between the guided bomb and the target, the LOS angle, and the look angle are the inputs to the
dataset, and whether or not the engagement is successful is the output of the dataset. The input of the
reference dataset is configured as follows. The relative distance is divided into 250 m intervals between
250 m and 5,000 m. The LOS angle is divided into 1 deg intervals from -40 deg to 40 deg, and the look
angle is divided into 1 deg intervals from -45 deg to 45 deg. The data pair is obtained by performing
simulations to intercept the target moving at a constant speed of 50 m/s. Finally, a total of 147,240
datasets is collected. There are four conditions for intercept success. If all of the following conditions
are satisfied, the intercept is considered successful.

i) The missile does not exceed the field-of-view limit (45 deg) during the engagement.
ii) The maximum acceleration of the missile does not exceed 20 g.

iii) The maximum allowable miss-distance error is within 1 m.
iv) The maximum allowable impact angle error is within 1 deg.

4.2 Simulation setting
Table 1 summarizes the parameters for training. An initial prediction model is needed before active

sampling begins. The initial number of data is the number of data used to learn the initial prediction
model. Ten data points were uniformly sampled without replacement from the data pool, used to learn
the initial prediction model. The batch is the number of data to be sampled during active sampling. Data
can be efficiently selected by appropriately setting the number of batches. Twenty data are extracted
from the entire learning data and used as batch data at each iteration. Active sampling is repeated 20
times, and as a result, 390 data are used.

Table 1 Training parameters

Parameters Values

Number of initial data 10
Number of batch 20

Number of iteration 20
Number of test data 14,724

4.3 Training results
Figure 2 shows the accuracy of the prediction model along with the number of data used in training.

The accuracy of the prediction model represents a ratio at which the output of the prediction model and
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the output of the test data match among the total test data. At the beginning of the training, 100 data are
used, and 10 data are added every iteration. Under the same conditions, 100 Monte Carlo simulations
were performed, and the mean and standard deviation of the accuracy of the predictive model was shown.
The solid blue line shows the average accuracy, and the blue translucent colored area shows the standard
deviation. At the beginning of learning, the average accuracy is about 78 %, and the standard deviation
is relatively large. It can be seen that as learning progresses, accuracy improves on average, and standard
deviation gradually decreases. It can also be confirmed that the average accuracy after 100 repetitive
learning converges to a value of about 99.0 %. In addition, as learning progresses, the uncertainty of
accuracy gradually decreases. These results show that stable learning is achieved by performing active
sampling regardless of the distribution of the initial dataset.
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Fig. 2 Accuracy history

Figure 3 shows the change in the capture region predicted by the trained model as the data is grad-
ually added through active sampling. In Fig. 3, only the data with a look angle of 0 are shown in a
two-dimensional plane with relative distance and LOS angle as axes because the three-dimensional fig-
ure is very complex to understand. The red dot represents the data that failed to intercept, and the blue
dot represents the data that succeeded in intercepting. The black line represents the boundary of the
capture region estimated by the prediction model, which is called the decision boundary. The decision
boundary of the capture region is a contour line in which the output value of the predictive model has
a value of 0. As the number of data increases to 140, 190, 240, 290, it can be seen that the decision
boundary of the predictive model (black line) divides the success and failure points of the actual data
more accurately. These results visually show that the accuracy of the predictive model is improved as
training progresses.

The performances of the three differently trained models are also compared. Cases 1 and 2 are the
cases in which the model is trained using 1,100 and 3,300 data, respectively, without active sampling.
Case 3 is the one in which the model is trained using 1,100 data with active sampling. Computational
time, data usage, and accuracy are used for performance evaluation metrics, which are summarized in
Table 2. In Table 2, simulation time is the time obtaining data through a simulator. The total calculation
time is the sum of simulation time and training time. It can be seen that the accuracy of Case 2 (99.01
%) is higher than that of Case 1 (98.30%). Compared with Case 1, a more accurate predictive model
can be obtained by using more data for training in Case 2. However, the most accurate predictive model
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Fig. 3 Evolution of the decision boundary of the predictive model

Table 2 Comparison of performance

Case 1 (GPC) Case 2 (GPC) Case 3 (GPC + AS)

Simulation time (s) 220 660 220
Training time (s) 33 1,320 2,251

Total computation time (s) 253 1,980 2,471
Number of used data 1,100 3,300 1,100

Accuracy (%) 98.30 99.01 99.69

is obtained in Case 3, although it uses the same number of data as in Case 1. This result shows that
GPC+AS can efficiently obtain a predictive model with high accuracy using fewer data.

For the training time, Case 3 is the largest at 2,251 seconds. Conducting training several times
is the dominant factor for increasing the training time. Due to this effect, the total calculation time
for Case 3 amounts to 2,471 seconds, the largest among the three cases. In this study, a relatively
simple planar missile simulator was used to verify the performance. In general, the higher the degree of
freedom and reliability of the simulator, the more computational resources are required to obtain data.
From this point of view, it is crucial to reduce the total number of data generated through numerical
simulation. Therefore, active sampling significantly reduces total computation time when creating data
using a computationally expensive simulator.

In the case of GPC prediction models that do not use active sampling, they are trained with uni-
formly sampled data from the entire input space. However, in the case of predictive models using active
sampling, data near the boundary of the capture area are actively added, resulting in relatively more
data near the boundary. As a result, the prediction model applying the active sampling technique obtains
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more information near the boundary, thereby improving the overall prediction performance of the model.
According to this analysis, it can be stated that active sampling increases accuracy while efficiently us-
ing data. Finally, the proposed method is expected to be one of the alternatives for the Monte Carlo
simulation in capture region analysis.
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Fig. 4 True and estimated capture regions

Figure 4 shows the true and estimated capture regions. Figure 4a) shows the actual three dimensional
capture region. Figures 4b), 4c), and 4d) show the capture region estimated by each trained predictive
model. Figures 4b), and 4c) are the results of the estimated capture region when the model is trained
using 1,100 and 3,300 data without active sampling, respectively (Cases 1 and 2). Figure 4d) shows the
results of the estimated capture region with active sampling (Case 3). Comparing Figs. 4b), 4c), and 4d)
with the Fig. 4a), it can be seen that the capture region in Fig. 4d) is much more similar to the actual
capture region.

5 Conclusion
The methodology of estimating the capture region of missiles was proposed by combining Gaussian

process classification and active sampling. It was shown that combining Gaussian process classification
with active sampling is a more effective than using Gaussian process classification alone. In general,
the capture region depends not only the initial configurations but also on various factors such as flight
altitude or speed. In addition, the success of interception can be probabilistic due to aerodynamic uncer-
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tainties and disturbances even under the same initial configuration. Future works includes expanding the
proposed method considering stochastic factors in a more realistic 3-dimensional engagement scnarios.
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