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ABSTRACT

This article proposes a straightforward methodology applied to the design of a nonlinear attitude
autopilot for a 155 mm spin-stabilized projectile equipped with a roll-decoupled course-correction
fuze. The primary purpose of the autopilot is to control the projectile pitch and yaw angles during
the terminal phase of its trajectory in order to handle impact angles arrival. The nonlinear at-
titude flight dynamics model is first summarized along with all necessary subsystem models such
as aerodynamic moments, control allocation and actuators. The Incremental Nonlinear Dynamic
Inversion (INDI) was used to successfully linearize the roll and lateral dynamics. Linear robust
H∞ controllers were subsequently designed in an inner/outer loop configuration to ensure proper
reference angle tracking of the projectile dynamics. Practical implementation constraints such as
finite computational sampling time and potential on-board delays were integrated into the design
process via a standard Modified Continuous Design technique and the impact of low sampling fre-
quency on INDI decoupling capacity was investigated. Full trajectory nonlinear simulation results
show a successful implementation of the INDI control laws in terms of tracking performance and
axis decoupling.

Keywords: dual-spin projectiles, Incremental Nonlinear Dynamic Inversion, autopilot design, flight dynamics

1 Introduction
Standard spin-stabilized 155 mm projectiles, widely used in artillery, suffer from a relatively high

dispersion around a target due to uncertainties on firing conditions or wind disturbances. This results
to several ammunition launches in order to successfully engage the objective. Multiple firings though
imply a higher cost for the operation and potentially increased collateral damages as well as a higher
risk for the military personnel since the mission time increases. To deal with this lack of precision, a
low cost and innovative solution is to equip existing unguided projectiles with a decoupled guidance
fuze which embeds up to four aerodynamic control surfaces, sensors, actuators and GNC software. The
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guided projectile is hence expected to potentially reach metric precision around the target.
Many flight control laws designed for spin-stabilized projectiles that can be found in the literature

employ gain-scheduling techniques based on the local linearization of the projectile dynamics around a
given number of flight points [1–4]. This approach gives satisfactory results while allowing for the use of
well-known robust control theory tools. However, due to its nature gain-scheduling has two main draw-
backs: first, it can be time-consuming since the control engineer most often needs local linear models of
the studied dynamics computed about a significant number of operating points for the autopilot design
to be successful. Secondly, the obtained nonlinear controller resulting from the interpolation of linear
controllers can only guarantee performance and stability of the closed-loop system in the vicinity of the
aforementioned flight points [5].

This fact motivates the need for a more generic methodology dedicated to fast design using nonlin-
ear flight control techniques such as sliding mode control [6], backstepping [7, 8], or Nonlinear Dynamic
Inversion (NDI)[9–12] and its sensor-based incremental form (INDI) [13–16]. The latter technique re-
quires the tuning of only a single linear controller to cover the whole flight envelope and promises good
performance and robustness against model mismatch. More precisely, the INDI technique is supposed
to be more robust than classical NDI since by basing its inversion on the actual sensors, actuator data
and acceleration estimation, it is less dependent on the model parameters [14] especially if these sub-
systems are sufficiently accurate. Another advantage of inversion-based nonlinear techniques, is that by
dynamically inverting the plant, the system acts like a chain of integrators for all flight envelope which
is subsequently quite easy to control by a single linear controller.

In the case of a spin-stabilized projectile there is an important amount of coupling between the lateral
axes due to the projectile spin, as well as increased uncertainty on the various aerodynamic coefficients.
INDI is supposed to offer a perfect decoupling between axes, however results presented in this paper
show the degrading effect of a low sampling frequency on INDI inversion. That’s why, multivariable
linear controllers in the outer loop configuration are a relevant solution to deal with INDI imperfect de-
coupling. To this end, a mixed-sensitivity layout [17] and multi-objective design tools were employed in
a systematic manner to handle the various time and frequency control constraints.

In this article a practical and straightforward nonlinear autopilot design methodology is proposed
and applied to the design of a terminal phase angle autopilot which is challenging and unconventional
for spin-stabilized projectiles but relevant in operational scenarios where full control of pitch and yaw
angles is needed. This paper is organized as follows: Section 2 presents the projectile attitude nonlinear
model, Section 3 is dedicated to flight control design where the methodology applied to the design of
a terminal phase nonlinear autopilot is discussed and every design step is detailed. The last part shows
nonlinear full trajectory simulations according to two proposed scenarios.

2 Nonlinear Attitude Flight Dynamics Model
The studied spin-stabilized guided projectile is illustrated by Fig. 1. The projectile has two roll-

decoupled parts: the main body called the aft part which rotates at a high spin rate, stabilizing the
projectile and the fuze part, controlling the projectile trajectory using two pairs of canards associated with
necessary hardware and GNC softwares. This section presents and summarizes the nonlinear attitude
flight dynamics model followed by the external moments expressions and the actuators model.

Fig. 1 Decoupled Fuze Guided Projectile
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2.1 Frames and Coordinate Systems
The equations of motion are expressed in mostly two coordinate systems which are linked to the

parts of the projectile: ]B1 for the aft part and ]B2 for the fuze part. More precisely a ]B
′
1 coordinate

system related to a non-rolling frame B′1 is used, it undergoes the same movements as the aft part except
for the roll motion which is fixed. The coordinate system ]B

′
1 is preferred because the roll angle of the aft

part and its derivatives are always zero, this coordinate system is therefore more adapted to high spinning
bodies compared to a classical rolling frame which needs a small integration step resulting in longer and
less accurate simulations.

2.2 Attitude Dynamics
The attitude dynamic equations describe the main body and the fuze rotation around their respective

centers of gravity. The aft part attitude dynamics is given by [18]:

[
ĨB1,2
B

]B′1
[

dωB1E

dt

]B′1
+
[
Ω

B′1E
]B′1
[
ĨB1,2
B

]B′1
[ωB1E ]B

′
1 = [mB1]

B′1 (1)

where
[
ĨB1,2
B

]B′1
is the effective moment of inertia (MoI) of the projectile aft part,

[
ωB1E]B′1 is the angular

velocity vector of the aft part,
[
ΩB′1E

]B′1
the skew-symmetric matrix of the non-rolling frame with respect

to the earth and [mB1]
B′1 = [L1 M N]> is the moment vector applied on the aft part of the projectile.

The MoI
[
ĨB1,2
B

]B′1
is diagonal due to the projectile tetragonal symmetry and is computed using clustered

body theory [18]:[
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with
[
IB12
B
]B′1 the projectile total MoI,

[
IB1
B1

]B′1
the MoI related to the aft part and

[
IB2
B2

]B2
the MoI related

to the fuze part. B1, B2 are respectively the center of mass of the aft and fuze part and B is the projectile
real center of mass. A transformation matrix [T ]B2B′1 is used, which depends of fuze roll angle . Finally,
[SB1B]

B′1 and [SB2B]
B′1 are the skew-symmetric matrix of the displacement vectors sB1B = [xB1B 0 0]>

and sB2B = [xB2B 0 0]>.

[
IB2
B2
{1,1}

]B2

[
dpB2E

2
dt

]B2

= [mB2{1,1}]
B2 (3)

The full attitude dynamics equations are obtained by computing the four rotation degrees of freedom
made of the body roll, pitch and yaw motions plus the roll motion of the fuze part of the projectile given
by Eq. (3), with [mB2]

B2 = [L2 M N]> the moment vector applied on the fuze part of the projectile.
From the tensor expression of Eq. (1) and Eq. (3) the following matrix equation is obtained.

ṗ2

ṗ1

q̇
ṙ

=


I−1
x2

0 0 0
0 Ĩ−1

x1
0 0

0 0 Ĩt
−1 0

0 0 0 Ĩt
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0 0 r −q
0 −r 0 −r tanθ

0 q r tanθ 0
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q
r
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N
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2.3 External Moments
The external moments applied on the projectile are composed of aerodynamic and mechanical ac-

tions. In addition to the drag and lift (P), the projectile is subjected to the Magnus effect (M) due to its
high spin rate, and damping forces caused by air friction (D). Moreover, the fuze creates a control force
and a moment (C) in function of canards deflection [δp δq δr]

>. More precisely, [δp δq δr]
>

are the roll, pitch and yaw control signals given by the autopilot. Section 2.4 gives a more detailed
explanation about the relation between autopilot commands and each real canards deflection.[

m1,2
B

]B1′,2
=
[
mP

B
]B1′,2 +

[
mM

B
]B1′,2 +

[
mD

B
]B1′,2 +

[
mC

B

]B1′,2
(5)
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where α,β are the angle of attack and the angle of sideslip respectively, obtained from the body velocity
vector with respect to the air

[
vA

B
]B′1 , S is the reference area of the projectile, d the caliber and q̄ is the

dynamic pressure defined as 1
2ρV 2 with ρ(h) the altitude-dependent air density and V the airspeed. The

moment aerodynamic coefficients Cmα
,Cnpα

,Clp ,Cmq ,Clδ ,Cmδ
are obtained using computational fluid

dynamics simulation and wind tunnel tests. Experimental data are then interpolated as a function of the
total angle of attack α ′ and the Mach number M = V

a(h) where a is the speed of sound which is dependent

of the altitude. An additional moment of friction
[
mF

B
]B1′2 can be added to the sum of moments as friction

exist between the fuze and the aft part of the projectile, it increases the spin rate of the fuze and reduce
the spin rate of the main body. The constants Ks, and Kv are the coefficient of static and viscous friction
respectively and CA is the axial force aerodynamic coefficient.

[
mF

B
]B1′2 = q̄SdCAsgn(p1− p2)(Ks +Kv) |p1− p2|


1
−1
0
0

 (7)

2.4 Control Allocation and Actuator Model
The course correction fuze is composed by four aerodynamics control surfaces called canards, cre-

ating forces and moments on the projectile, allowing the control of the fuze roll and the projectile lateral
motion by aerodynamic actions. A relation is made by the control allocation matrix [T ]V R between the
the virtual commands [δv] = [δp δq δr]

> given by the autopilot and the real commands intended for
each canards servo motors [δr] = [δ1 δ2 δ3 δ4]

>. Virtual commands are expressed in ]B
′
1 coordinate

system whereas the real commands are expressed in ]B2 coordinate system. The full relation is obtained
with Eq. (8) :

[δv]
B′1 =

[
T
]B2B′1 [T ]VR [δr]

B2 (8)

[T ]VR =

−1/4 1/4 1/4 −1/4
1/2 0 1/2 0
0 1/2 0 1/2

 (9)
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As INDI is sensitive to actuators speed and accuracy, implementing an INDI control law with a non
perfect actuator model is relevant for evaluating performance of the autopilot in more realistic conditions.
To this end, while sensors are supposed to be perfect, each canard is modeled by a second order transfer
function, with ωδ = 375 rad/s and ξδ = 0.707 :

Gδ (s) =
ω2

δ

s2 +2ξδ ωδ +ω2
δ

(10)

3 Flight Control Design
This section is dedicated to flight control design with discrete-time INDI for the control of the lateral

angles of the projectile. First of all, after a general introduction on INDI, the relevance of INDI imple-
mentation on spin-stabilized projectiles is discussed, then the nonlinear design methodology proposed
is explained. The independent control of pitch and yaw angles is achieved through several steps: the
stabilization of the fuze roll angle, the projectile lateral channels rate decoupling and the control of pitch
and yaw angles. In the remaining part of this article, a focus is given on lateral channels decoupling and
pitch and yaw angles control since these two aspects are the core of the control problem and the main
novelty of this paper. Therefore, the roll autopilot design is not detailed.

3.1 Incremental Nonlinear Dynamic Inversion
The dynamics of a spin-stabilized projectiles is strongly nonlinear and coupled so nonlinear inver-

sion based techniques like NDI and INDI which presents good decoupling capacities are a legitimate
approach to face the concerned control problem. Inversion-based autopilots are structured in an in-
ner/outer loop configuration as presented in Fig. 2. While the inner loop inverts and linearizes the plant
dynamics which then act ideally like a chain of integrators, the outer loop sets the desired closed-loop
behavior with an external linear controller. NDI has a lot of successfully application in the aeronautics
community [9–11] and is more easy and straightforward to design than "divide and conquer" techniques
like gain-scheduling. However, its main drawback is its lack of robustness due to its high dependency
to model accuracy. Actually, parametric uncertainties can strongly degrade NDI performance because
nonlinearities are no longer canceled. This high dependency on good model knowledge can be an is-
sue as the model of the presented dual-spin projectile is subject to some significant uncertainties for the
aerodynamic coefficients.

Initially known as simplified NDI [19] then modified NDI [20], Incremental Nonlinear Dynamic
Inversion is a reformulation of NDI based on time-scale separation between state dynamics and actuator
dynamics (this assumption was discussed by [13]). INDI is known to be much less dependent on the
model than NDI, more robust to parametric uncertainties and provides with a simpler control law. More
precisely, only parameters related to control effectiveness are needed to compute the control signal. The
lack of information concerning the rest of the model is compensated by the use of actuators position
measurement and state derivative which for the last one, can either be measured or estimated by differ-
entiation.

Finally, as INDI theory is based on time-scale separation between actuators and state dynamics
the actuators need to be sufficiently fast. Accurate sensors are also necessary to provide reliable data
for INDI inner loop computation. In the end, INDI was chosen for the design because of its quasi-
independency of model knowledge and its simple and more generic implementation, more suitable for
the design methodology proposed. INDI fundamentals equations in discrete time are recalled in the
Appendix.
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Fig. 2 INDI digital autopilot architecture

3.2 Design Methodology
The methodology used for the discrete-time nonlinear autopilot design is detailed in the following

subsections, even if in this paper, INDI was used, the proposed approach can be adapted to other inversion
based control laws. This methodology is intended to be straightforward and dedicated to generic and fast
design of nonlinear autopilot.

3.2.1 Study of the Analytical Expression of the INDI Command
The first step of the design methodology is to compute the analytical expression of INDI command

according to Eq. (11) applied to the studied dynamics. The inverse of control effectiveness matrix G
is defined and its invertibility is verified for all flight envelope. A sampling period T = 1

300 is used
for digital implementation, which is half of the sensors sampling period. This ensure the autopilot has
always the last measurements available for INDI computation.

u[k+1] = u[k]+G−1
(

v[k]− x[k]−x[k−1]
T

)
(11)

3.2.2 Discrete-Time Inverted Model Identification
Once the expression of the control signal u[k+1] is expressed analytically, a nonlinear model of the

studied dynamics for a single flight point is implemented in Simulink. The objective is to verify that the
studied dynamics act like a chain of integrators with INDI inner loop and evaluate the effect of sampling
frequency on the inversion. This leads to the identification of an equivalent continuous-time inverted
model with sampling period dependency which catches the dynamics of INDI inner loop. The obtained
linear model is used in the design model for the tuning of the external controller.

3.2.3 External Controller Design and Discretization
The performance of the autopilot depends to a large extent on the tuning of the external controller.

Thanks to dynamic inversion, the system to be controlled is reduced to a chain of integrators. Even if a
digital controller is desired, it is more convenient to tune the external controller in continuous time. To
this end, standard Modified Continuous Design [21] is used. This technique consists of improving the
continuous design by adding into the design model Zero Order Hold and computational delay transfer
functions using Padé approximants, in this manner implementation constraints are taken into account re-
sulting in a digital controller with better performance [21]. The gains are tuned following classical linear
H∞ robust control theory as the inverted dynamics model used for the tuning is linear, weighting filters
values used for each design are available in appendix. The synthesized controller is then discretized
using Tustin’s bilinear transform (12). A performance comparison between unmodified and modified
continuous design for a 100 Hz discretized controller is available in appendix.

z = esT ≈ 1+ sT/2
1− sT/2

(12)
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3.2.4 Nonlinear Autopilot Validation
The last step is the validation of the autopilot. First, frequency results of the synthesized controller

are assessed in accordance to design requirements, in a second step, the external controller is tested with
the INDI inner loop in a single flight point nonlinear model to verify performance in terms of tracking
and decoupling. Finally the autopilot is implemented and validated for all trajectory in the full nonlinear
parameter-varying simulator.

3.3 Roll Autopilot Design
As explained at the beginning of Section 3, the methodology proposed was first applied to the design

of a roll autopilot used for the stabilization of the fuze roll angle. More precisely, the projectile aft part
has a spin rate of 300 Hz which stabilize the body and due to this spin rate and the friction between the
fuze and the main body the fuze spin rate increases resulting in a fast rotating fuze. The fuze roll angle
needs to be stabilized to provide with a stable environment for the projectile lateral control. Fig. 3 shows
a nonlinear simulation of the successful stabilization of the fuze roll angle. It should be noticed that the
fuze spin rate is first reduced by putting all canards into saturation before launching the autopilot.

3.4 Lateral Channels Decoupling
In this part, the methodology presented is Section 3.2 is applied to the control and decoupling of the

lateral rate dynamics. The fuze roll angle is considered already stabilized at φ2 = 0 deg.

3.4.1 Lateral Channels INDI Equations

The dynamic equations for the lateral channels are obtained from Eq. (4) and Eq. (6).
[
δq δr

]> are
the control signal which will ensure the input/output linearization.q̇ =

Ĩx1
Ĩt

p1r− r2 tanθ + M
Ĩt

ṙ =
Ĩx1
Ĩt

p1q−qr tanθ + N
Ĩt

(13)

Because of the symmetry of the projectile around the roll axis, the control effectiveness G matrix
is diagonal as δq and δr are both multiplied by

(
qSd
Ĩt

)
Cmδ

and can be easily identified. With Cmδ
and

q,S,and d always strictly positive, G is invertible for all flight envelope leading to the discrete-time INDI
control signal equation for lateral channels (15) derived from Eq. (11).

G =

[ dq̇
dδq

dq̇
dδr

dṙ
dδq

dṙ
dδr

]
=

(qSd
Ĩt

)
Cmδ

0

0
(

qSd
Ĩt

)
Cmδ

 (14)

Fig. 3 INDI roll autopilot step response in nonlinear simulation
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[
δq[k+1]
δr[k+1]

]
=

[
δq[k]
δr[k]

]
+

 Ĩt
qSdCm

δ

0

0 Ĩt
qSdCm

δ

[vq[k]− q[k]−q[k−1]
T

vr[k]− r[k]−r[k−1]
T

]
(15)

3.4.2 Discrete-Time Inverted Model
Dynamic equations (13) are implemented in a one flight point nonlinear model to first, verify the

linearization of lateral channel dynamics by Eq. (15) and then identify the real INDI inner loop transfer
function that will be used for the tuning of the external controller. Under ideal conditions (continuous
time, no delays or measurement bias), INDI inner loop offers perfect decoupling between pitch and yaw
channel: [

q
r

]
=

[
1
s 0
0 1

s

][
qc

rc

]
(16)

However with a finite sampling time, the anti diagonal terms are no longer zero and tend to be
more important as sampling time increases which reveals the degrading effect of sampling frequency
on INDI performance. Considering this phenomena, an estimation of the influence of sampling time on
INDI decoupling capacity was conducted by evaluating the gains of the anti-diagonal terms compared
to diagonal terms in Eq. (32). Frequencies from 100Hz to 2000Hz were studied with a 1Hz resolution
resulting in Fig. 4. With a typical sampling frequency of 300 Hz, remaining coupling is not negligible
and needs to be taken into account for the design. In order to fully decouple the lateral dynamics a full-
order multivariable H∞ controller was used. An analytical expression of the inverted model can not be
easily identified, that’s why a numerical estimation was used provided by Matlab/Simulink linearization
tools subsequently converted in continuous time for the external controller tuning.

3.4.3 Full Order H∞ Controller Tuning
The tuning of the controller in the made in continuous time using first and third order Pade approx-

imant for ZOH and computational delay respectively in the design model.

GZOH(s) =
1− sT/6
1+ sT/3

(17a)

Gd(s) =
1

1+ sT +(sT )2/2+(sT )3/6
(17b)

Fig. 4 Influence of the sampling frequency on INDI decoupling capacity for lateral channels
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Fig. 5 Mixed-sensitivity design layout for lateral channels decoupling

Figure 9 shows the design layout employed, with K(s) the tuned controller and G(s) the lateral
dynamics inverted model identified in Section 3.4.2. The actuators dynamics is not included in the
design model as its effect on INDI is already taken into account in the numerical estimation of the
inverted model. To guarantee good reference tracking with satisfactory disturbance rejection a mixed-
sensitivity S/KS approach was used [17]. WS(s) and WKS(s) are the weighting filters used to shape in the
frequency domain the transfer functions of the system according to the design specifications. WS(s) and
WKS(s) were chosen according to Eq. (18) [17] as:

W (s) =

 s

M
1
k
+ωb

s+ωb.A
1
k

k

(18)

with k the order of the filter, M and A are the high and low frequency gains of the filter respectively and
ωb the bandwidth. Design specifications are the same for pitch and yaw rate and, as lateral dynamics are
quasi-symmetrical, the weighting filter matrix chosen for the tuning are all scalars. For good tracking
and disturbance rejection, Ws(s) was chosen large inside the controller bandwidth resulting in S being
attenuated in low frequency. No reference model was used to impose the transient response, however
the sensitivity function bandwidth was limited in order to obtain a 2% settling time of 0.35s and 0%
overshoot. WKS(s) was designed to limit the controller bandwidth and therefore attenuate its activity in
high frequency. In the end, the constraint on sensitivity function was prioritised in the trade-off between
good tracking and reduced controller activity because the output of the controller is fed to INDI inner
loop before reaching actuators which reduce the control signal amplitude. Nonetheless, a second order
high pass filter was used for WKS. In the end, the H∞ optimisation problem which needs to be solved
can be written as follows:

Over the set of all stabilizing controller K minimises γ as:∥∥∥∥∥
[

WS(s)S(s)
WKS(s)KS(s)

]∥∥∥∥∥
∞

< γ (19)

3.4.4 Design Results

Fig. 6 Lateral channels mixed-sensitivity design results
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Fig. 7 Lateral channels INDI autopilot results

Figure 7 shows a performance comparison between two INDI autopilots with the same inner loop
but with different external controllers tuned with the same design specifications. The first one is a
fixed-structured decentralised controller and the other is the proposed tuned full order controller. The
simulation was conducted with a nonlinear model of the projectile lateral dynamics for an arbitrary
flight point where the parameter vector σ = [V h α β p1]

T is constant. The full order controller
presents satisfactory reference tracking and decoupling capacity while the decentralised controller is
subject to overshoot and oscillations.

3.5 Pitch and Yaw Angles Control
For the control of pitch and yaw angles, a unique linear controller is designed and cascaded with the

INDI lateral rate autopilot presented in Section 3.4. No dynamic inversion is needed because the control
of lateral dynamics is already guaranteed for all flight envelope. The controller will compute the desired
rate qc,rc from the desired angles θc,ψc. The structure of the autopilot is shown in Fig. 8.

3.5.1 Controller Tuning
The design model used for the angle controller is made considering two assumptions. First, look-

ing at the performance of the INDI autopilot for lateral channels decoupling, closed-loop lateral rate
dynamics are considered fully decoupled and can be approximated by a first order transfer function:[

q
r

]
=

[
1

τs+1 0
0 1

τs+1

][
qc

rc

]
(20)

with τ = 0.09 corresponding to a ts = 0.35s. The second assumption made for the design is related to
kinematics equations: {

θ̇ = q
ψ̇ = 1

cosθ
r

(21)

Fig. 8 Attitude autopilot architecture
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Fig. 9 Pitch controller design layout

The coupling term present in the ψ̇ equation is canceled online by multiplying rc by cosθ and
therefore, not taken into account in the design model given in Fig. 9. These two assumptions allows us
to reduce the design problem to a SISO system as the θ and ψ dynamics are considered fully decoupled
and symmetrical. Thus, the controller was tuned for the control of θ and was reused for the control of ψ

and a more simple and fixed-structure controller was used for the design. The architecture of the linear
controller K(s) is shown in Fig. 10. It consists of a 5 gains controller with a feedforward, servo and
regulator parts.

Following the same procedure as for Section 3.4.3, a mixed-sensitivity approach was used but with
additional constraints on a second order reference model following. A value of ωr = 5.13 rad/s and
ξr = 0.7797 was chosen, corresponding to an maximal overshoot of 2% and a settling time of 1 sec.

Gr(s) =
ω2

r
s2 +2ξrωr +ω2

r
(22)

A first order low pass weighting filter Wr(s) was used to adjust the constraint on the transfer function
between θc and εr on the frequency domain, since a low model matching error is reachable in low
frequency but cannot be achieved for an infinite bandwidth. A second order low pass filter WS(s) was
used to guarantee disturbance rejection and a first order high pass filter for WKS(s). Limiting the activity
of the controller in high frequency is necessary to avoid fast changing lateral rate q and r. Finally,
additional constraints concerning minimal gain and phase margins evaluated at the plant output were
imposed. Constraints on model matching error, controller bandwidth and output sensitivity are defined
as hard goals for the design and constraints on minimal gain and phase margins are defined as soft goals.
The H∞ problem which needs to be solved is described as follows:

Minimise K subject to: ∥∥Wr(s)Tθc→εr(s,K)

∥∥
∞
≤ 1 (23a)∥∥WSo(s)Tdo→θ(s,K)

∥∥
∞
≤ 1 (23b)∥∥WKS(s)Tθc→qc(s,K)

∥∥
∞
≤ 1 (23c)

GM > 7dB,PM > 35deg (23d)

Fig. 10 Pitch controller design layout
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3.5.2 Design Results

Fig. 11 Pitch controller mixed-sensitivity design results

Fig. 12 Pitch/yaw angles INDI autopilot results

The gains were tuned with MATLAB systune which uses nonsmooth optimization algorithms [22].
Fig. 11 shows the frequency results for the synthesized controller, all design requirements were met ob-
taining a low reference model matching error as well as limitation on control usage and well constrained
sensitivity function in low frequency. An output gain margin of 32.4 dB is obtained with a phase margin
of 53.3 deg corresponding to a delay margin of 0.21 sec. One flight point nonlinear simulation on Fig. 12
confirms the satisfactory design where fully decoupled lateral angles control is achieved.

4 Nonlinear Trajectory Simulations
The last part of this paper is dedicated to full trajectory nonlinear simulation results. Fig. 7 and

Fig. 12 showed the lateral rate decoupling and pitch and yaw control for a one flight point nonlinear
model, full trajectory simulation are now given with control of the projectile angles. Two simulations
are proposed, Fig. 13 shows a top attack scenario where the pitch angle is increased during the last 7
seconds of the trajectory reaching θ = 70 deg at arrival which corresponds to a 40 deg increase compared
to ballistic trajectory. Another use case of the proposed autopilot is illustrated by Fig. 14 where the flight
paths angles γ and χ are used as reference for θ and ψ respectively in order to reduce the aerodynamic
angles α and β resulting in reduced projectile oscillation and increased stability. Even if good reference
tracking is achieved in both simulations, limitations of the proposed autopilot are clearly noticeable, the
control effort is way above the actuators limitations which are set to 10 deg. However this practical
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consideration doesn’t necessarily question the relevance of the methodology and the approach proposed
in this paper. Several possibilities like anti-windup techniques and low-pass filtered reference angles
could be investigated to reduce the amplitude of the control signal and deal with actuators saturation.

Fig. 13 Nonlinear simulation of a top attack scenario

Fig. 14 Nonlinear simulation of a flight path angle autopilot

5 Conclusion
This paper proposes a practical and straightforward design methodology and shows results con-

cerning a novel nonlinear angle autopilot using Incremental Nonlinear Dynamic Inversion applied to
the problem of attitude control for a dual-spin 155 mm guided ammunition. Full order H∞ controller
associated with discrete-time INDI achieved close to perfect decoupling between lateral channels and
permits the control of pitch and yaw angles for all flight envelope with a unique cascaded fixed-structure
linear controller. The sampling frequency impact on INDI inversion was highlighted and was taken into
account during the design. Finally, even if nonlinear simulations demonstrated the relevance of the de-
sign approach, further investigations needs to be conducted concerning analytical proof of the inverted
model and for actuators saturation.
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Appendix
INDI theory :

The continuous-time equations of INDI starts from the general case of a nonlinear system, where ẋ
is the time derivative of the state vector x and u the control signal vector.

ẋ = f (x,u) (24)

By estimating ẋ using a first order Taylor-series approximation, the following expression is obtained:

ẋ≈ f (x0,u0)+
d f (x,u)

dx

∣∣∣
x=x0,u=u0

(x−x0)+
d f (x,u)

du

∣∣∣
x=x0,u=u0

(u−u0) (25)

where x0 and u0 are the last available state and control values. To simplify the notation F∆x and G∆u
are defined according to Eq. (26).

F∆x =
d f (x,u)

dx

∣∣∣
x=x0,u=u0

(x−x0) (26a)

G∆u =
d f (x,u)

du

∣∣∣
x=x0,u=u0

(u−u0) (26b)

Combining Eq. (25) and Eq. (26), the following expression is obtained:

ẋ = ẋ0 +F∆x+G∆u (27)

where G is called the control effectiveness matrix as it is directly related to control input. At this point,
the pseudo control variable v is introduced to impose the behaviour of the dynamics as:

ẋ = v (28)

Actuator dynamics are assumed to vary much faster than the state dynamics ∆x« ∆u so by time scale
separation F∆x can be neglected. With this assumption, all model parameters related to state dynamics
will not be used to computed the control law, reducing drastically the model dependency of the INDI
control signal:

ẋ = ẋ0 +G∆u = v (29)

Equation (29) leads to the incremental command to compute, assuming that G is invertible :

∆u = G−1(v− ẋ0) (30)

by replacing ∆u in Eq. (29) by the expression in Eq. (30), the dynamics act like a simple integrator, in the
general case the linearized dynamics act as a chain of integrator of the same order as the system. From
∆u the command u needs to be computed by adding ∆u to the previous available command.

∆u = u−u0 (31a)
u = ∆u+u0 = u0 +G−1(v− ẋ0) (31b)

A discrete-time implementation of INDI is proposed in Ref. [23] and was used in this article.
Eq. (32-36) detail the discrete-time reformulation. The future state vector is noted xk+1, xk and uk
are the current state and actuator measurement vector respectively, and T is the sampling period.

xk+1 = xk +
∫ tk+1

tk
f (xk,uk),dt

= xk +T f (xk,uk)

(32)
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The future state derivative ẋk+1 can be estimated by using Euler forward method.

xk+1−xk

T
= f (xk,uk)≈ ẋk+1 (33)

The discrete-time equivalent of Eq. (27) is given by :

ẋk+1 ≈ f (xk,uk)+F(xk,uk)(xk+1−xk)+G(xk,uk)(uk+1−uk) (34)

however the future state xk+1 and control value uk+1 are not known at instant k so Eq. (34) is reformulated
to be implementable:

ẋk ≈
x[k]−x[k−1]

T
+G(xk−1,uk−1)(uk−uk−1) = vk−1 (35)

The next command that will linearize the system dynamics can be computed from current and pre-
vious state and current control signal. The pseudo control variable v[k] is determined by the outer loop
linear controller:

u[k+1] = u[k]+G−1
(

v[k]− x[k]−x[k−1]
T

)
(36)

Modified Continuous Design :

Fig. 15 Response of digital controller using modified and unmodified continuous-time design

Lateral channel decoupling mixed-sensitivity design:

WS(s) =

[ s
1.6+8.5

s+8.5.10−4 0

0
s

1.6+8.5
s+8.5.10−4

]
(37)

WKS(s) =


( s√

5.55
+250

s+250.
√

315

)2

0

0
( s√

5.55
+250

s+250.
√

315

)2

 (38)

Pitch and yaw angles controller design:

Wr(s) =
s

0.08 +60
s+60.10−4 (39)
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WS(s) =
s√
2.5

+2.5

s+2.53.
√

10−6
(40)

WKS(s) =
s

0.03 +2.104

s+2.104.3.55
(41)
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