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ABSTRACT

This paper develops an intelligent optimal stabilization control approach that can be applied to
general flight control systems. The self-learning controller is developed based on dual heuristic
programming (DHP) in cooperation with the event-triggered scheme to save computational load.
Besides, the control inputs can be handled by the combination of an integral cost function and a
bounding actor network. A simulation study is carried out based on a nonlinear aerospace system
to demonstrate the applicability of the constructed approach. The results show that the proposed
event-triggered DHP control approach can maintain comparable performance with the time-based
approach and meanwhile substantially decrease the amount of computation. The source code can
be found at https://github.com/sunbojason/Event-triggered-DHP.
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1 Introduction
As the epidemic eventually comes to an end, the world is supposed to be booming again and the

aerospace industry will not be an exception [1, 2]. With the rapid development of technology and the
pursuit of sustainable lifestyle, aerospace systems have become more complex for higher efficiency and
environmental friendliness [3], which has given birth to a variety of promising projects such as Flying-V
[4] and Smart-X [5]. Nevertheless, due to structural limitations, aerospace systems often suffer from the
underactuation, which means that the system states are driven by fewer control inputs. This phenomenon
turns to be more serious as flexibility and morphing capabilities are sought-after, which largely increases
the system dimensionality [3, 5]. To deal with this issue, the trade-off between system states and control
inputs is required, in which optimal control plays a significant role.

Optimal control strives to optimize the control policy by maximizing/minimizing a given perfor-
mance function that captures desired objectives [6] and has always been one of the most mainstream
control methods in aerospace systems [7]. Traditionally, the system is firstly linearized and LQR con-
trol is adopted by solving the Riccati equation [7]. However, this linear approach cannot handle more
complicated limitations such as input saturation, and the linear model can result in the loss of details in
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the system dynamics, which will degrade the control performance. When dealing with nonlinear opti-
mal control problems, solving the Hamilton-Jacobi-Bellman (HJB) equation is usually involved [8, 9].
However, until now there is no effective approach to obtain the analytical solution of the HJB equation
for general nonlinear systems [6]. Therefore, effective ways to acquire numerical solutions of general
HJB equations are demanded.

In recent decades, the surge of Reinforcement Learning (RL) has brought another perspective on the
traditional optimal control field. As a bio-inspired approach, RL can optimize the control policy in an
online manner by interacting with the environment just like human’s learning process [10]. Combined
with approximation functions such as Artificial Neural Networks (ANNs), RL has become a powerful
tool in solving sequential decision making and optimal control problems in various aerospace systems
[11–14]. One branch of RL is Adaptive Dynamic Programming (ADP), which provides a promising tool
for numerically solving general HJB equations by the general policy iteration [6, 10]. For the Discrete-
Time (DT) implementation, ADP is often called Adaptive Critic Design (ACD) because an actor network
and a critic network are constructed to approximate policy improvement and policy evaluation to handle
the "bootstrap" property, respectively [6, 10, 11]. Among common ACD structures, Dual Heuristic
Programming (DHP) has obtained much attention and been successfully applied to aerospace control
[14]. One of the significant merits of DHP is that, instead of approximating the performance function,
its critic network approximates the performance derivative, which can reduce the error introduced by
the derivation backward through the critic network and therefore enable faster convergence and higher
precision [14, 15].

Nevertheless, a drawback of conventional ACD methods is, to achieve satisfactory accuracy, mul-
tiple iterations are carried out, which increases the computational load. To tackle this issue, the event-
triggered scheme is introduced. Originating from the networked control, it aims at decreasing the com-
munication’s cost, in that the control policy is not updated until a certain condition is satisfied [16, 17].
The event-triggered scheme has successfully been verified in aerospace systems, such as cooperative
localization [18] and spacecraft attitude control [19]. Recently, some event-triggered DHP methods have
been developed for controller design [15, 20], but their applications have not been spread to aerospace
systems. Furthermore, input saturation is normally encountered in flight control due to structural limita-
tions. The classic approach to deal with it is merely introducing a non-quadratic cost function from which
a bounded control input can be derived. This method works well in continuous time control [21, 22] but
is not adequate for DT systems [20] because the control signal is actually generated by the actor network.
Inspired by the work of [8, 16, 23], this paper develops a bounding layer in the actor network, which can
provide an absolute constraint guarantee. Overall, the main contributions of this paper are summarized
as follows:

1) To the best of our knowledge, it is the first time that an event-triggered DHP control approach is
applied to aerospace systems.

2) Control input constraints are taken into consideration and coped with by adopting both the non-
quadratic cost function and the bounding layer.

3) The developed approach is verified through numerical simulations on a linear and a nonlinear
aerospace system.

The remainder of this paper is structured as follows. Section 2 describes the optimal regulation
problem in the event-triggered scheme. Section 3 introduces the DHP technique for approximately
solving the DTHJB equation by constructing the critic and actor networks. Subsequently, Section 4
verifies the developed event-triggered DHP control approach by applying it to two aerospace systems,
which are linear and nonlinear, respectively. Finally, Section 5 summarizes the paper and proposes
possibilities for future research.
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2 Optimal Event-Triggered Control
This paper aims at developing a general problem-solving framework that can be applied to a wide

range of aerospace systems. Therefore, a general nonlinear DT system is taken into consideration as:

xt+1 = f (xt ,ut), t ∈ N, (1)

where t denotes the time instant, xt ∈ Ω ⊂ Rn is the state vector, and ut ∈ Ωu is the control input vector.
Ωu = {u|u∈Rm, |ui|< ub, i= 1, . . . ,m}, with ub > 0 denoting the constraint on ui. In this paper, the input
constraints are assumed the identical and symmetric for each input element. For different and asymmetric
input constraints, readers can refer to [8] and [16], respectively. Besides, the following assumption holds
for system (1), such that a continuous state feedback control policy ut = µ(xt), µ : Ω → Ωu that can
stabilize it to the equilibrium point exists:

Assumption 1. System (1) is controllable and observable, and f : Rn ×Rm → Rn is a Lipschitz contin-
uous function. With the control input ut , there exists a unique equilibrium point at the origin xt = 0, i.e.,
f (0,0) = 0.

Subsequently, the event-triggered scheme is introduced, where the control input is not updated until
a certain triggering condition is satisfied. By defining a sequence of triggering instants {sk}∞

k=0, where
sk < sk+1, k ∈ N, a gap function can be defined using the event error:

et = xsk − xt ,∀t ∈ [sk,sk+1), (2)

where xt is the current state and xsk is the nearest previous triggering state. Then, the feedback control
policy can be represented as:

ut = µ(xsk) = µ(et + xt). (3)

It is worth mentioning that ut remains constant by involving a Zero-Order Hold (ZOH) until the next
triggering instant sk+1 is reached [17]. Accordingly, system (1) takes the form:

xt+1 = f (xt ,µ(et + xt)). (4)

The new system (4) inherits all properties of the original system (1). With the only origin equilibrium
point, a non-discounted cost can be formulated as:

J(xt) =
∞

∑
l=t

U(xl,µ(xsk)), (5)

where U(xt ,µ(xsk)) is known as the utility function, which is supposed to satisfy U(x,µ) ≥ 0 and
U(0,0) = 0. Therefore, we define U(xt ,µ(xsk)) as follows:

U(xt ,µ(xsk)) = xTt Qxt +Y (µ(xsk)), (6)

where Q ∈ Rn×n is a symmetrical positive definite matrix, and Y (µ(xsk)) is a positive semi-definite
function that satisfies Y (µ(xsk)) ≥ 0. Inspired by the work of [8, 21, 22], Y (µ(xsk))) is designed as an
integrand function:

Y = 2ub

∫
µ(xsk )

0
ϕ
−T(υ/ub)Rdυ , (7)

where ϕ−T(·) stands for (ϕ−1(·))T, and ϕ−1(·) is the inverse function of ϕ(·), which is an element-wise
monotonic odd function and satisfies ϕ(0) = 0 and |ϕ(·)| ≤ 1. Without loss of generality, the hyperbolic
tangent function tanh(·) is adopted as a specific form of ϕ(·) in this paper. R= diag([r1, · · · ,rm])∈Rm×m

is a positive definite weight matrix, where diag(·) reshapes the vector to a diagonal matrix.
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The target of the optimal controller is to minimize the designed cost function (5) based on the state
feedback. According to Bellman’s principle of optimality, the optimal cost function J∗(xt) conforms to
the DTHJB equation [8, 9]:

J∗(xt) = min
µ(xsk )

{U(xt ,µ(xsk))+ J∗(xt+1)}. (8)

Accordingly, the optimal control law µ∗(xsk) at time instant t is presented as:

µ
∗(xsk) = arg min

µ(xsk )
{U(xt ,µ(xsk))+ J∗(xsk+1)}

= ubϕ(D∗(xsk)),
(9)

where D∗(xsk) is described by:

D∗(xsk) =− 1
2ub

R−1 ∂xsk+1

∂ µ(xsk)
λ
∗(xsk+1), (10)

in which λ ∗(xsk+1) = ∂J∗(xsk+1)/∂xt+1 is the optimal costate function. It is noted that ∂xsk+1/∂ µ(xsk)
sometimes may not be directly available, and therefore system identification technique is utilized to
approximate the dynamics and obtain the predicted state x̂t+1 by building an approximation of the plant,
such as the model network [20] and the incremental model [11].

It is also noted that the optimal feedback control law µ∗(xsk) employs the sampled state xsk at the
triggering instant sk, rather than the current state xt . With µ∗(xsk), the optimal DTHJB equation is
provided by:

J∗(xt) =U(xt ,µ
∗(xsk))+ J∗(xt+1). (11)

Obviously, the design of the triggering condition plays a significant role in determining appropriate
triggering instants. Ahead of it, the following assumption is introduced [16]:

Assumption 2. For system (4), there exists a positive constant C ∈ (0,0.5) such that the following
equation holds:

|| f (xt ,µ(et + xt))|| ≤C||xt ||+C||et ||, (12)

where ||et || ≤ ||xt ||.

Based on Assumption 2, a well-proved triggering condition in the literature [16] can therefore be
introduced.

Theorem 1. If Assumption 2 holds, the triggering condition can be defined as follows:

||et ||> eThr =C
1− (2C)t−sk

1−2C
||xsk ||, (13)

with which, the event-triggered system (4) is input-to-state stable and is asymptotically stable.

Proof. Readers can refer to [16] for detailed proof and thus the complete proof is omitted here.

It is worth noticing that the threshold value eThr is not unique because it changes as the triggered
state xsk and the designed triggering constant C vary, and the triggering constant C is usually chosen
experimentally.

So far a general optimal event-triggered control scheme has been constructed, where an explicit
triggering condition that can guarantee the system stability is provided to determine triggering instants.
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Nevertheless, the optimal control problem has not been solved yet. The DTHJB equation (8) cannot be
solved analytically in the generally nonlinear cases, and therefore the DHP algorithm with the aid of
ANNs is introduced to obtain the numerical solution in the next section.

3 DHP Implementation with ANNs
In this section, an actor-critic scheme is designed with the facilitation of ANNs to iteratively ap-

proximate the solution of DTHJB. The structural diagram of DHP is illustrated in Fig. 1 [14], where
a model network provides the state transition information in case of unknown dynamics. Specifically,
the critic network approximates the derivative of the cost function that is denoted by λ (xt), which is
the main character of the DHP technique. With the critic network, a near optimal control command
is generated by substituting parameters into Eq. (9), which then is approximated by the actor network
for controlling the real system. Both critic and actor networks are constructed with the full-connected
feed-forward architecture, where a tanh(·) function is adopted as the activation function for all hidden
neurons. The whole control architecture incorporating the event-triggered scheme is introduced at the
end of this section.

Critic
Network

DER

Critic
Network

Model
Network

Via Eq. (14) 

Actor
Network

Signal Line 
Back-propagation Path 
Weight Transmission 

Fig. 1 The DHP technique with an aided model network.

3.1 The Critic Network
The architecture of the critic network is depicted in Fig. 2, in which the output of the critic network

λ̂ (ŵc,xsk) is the approximation of the real λ (xsk), where xsk is the input of the critic network and ŵc is
the weight of the critic network, which is the estimation of the ideal weight wc.

Substituting λ̂ (ŵc,xsk) into Eqs. (9) and (10) can yield a near optimal control input as follows:

µ(xsk) = ubϕ(− 1
2ub

R−1 ∂ x̂sk+1

∂ µ(xsk)
λ̂ (x̂sk+1)). (14)

However, µ(xsk) cannot directly be used for real system control, because of the so-called "bootstrap"
property [8, 10]. Consequently, an actor network is introduced subsequently to generate an approxima-
tion of µ(xsk), that is denoted by µ̂(xsk), and ∂ x̂sk+1/∂ µ(xsk) is also replaced by ∂ x̂sk+1/∂ µ̂(xsk).
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Input layer Hidden layer Hidden layer Output layer

Fig. 2 The structure of the actor network, where ŵc1, ŵc2 and ŵc3 are the weight matrices to be updated.
It is assumed that there are 4 system states and the number of neurons in both hidden layers is 10. The
presented structure is denoted by 4-10-10-4.

The loss function of the critic network is formulated based on the time-differential error as follows:

Ec,sk =
1
2

eTc,sk
ec,sk , (15)

ec,sk =
∂ [Ĵ(xsk)−U(xsk , µ̂(xsk))− Ĵ(x̂sk+1)]

∂xsk

, (16)

where Ĵ(xsk) denotes the approximation of the real cost function J(xsk). According to the chain rule,
Eq. (16) can be expanded as:

ec,sk = λ̂ (xsk)−2Qxsk −
∂ µ̂(xsk)

∂xsk

∂Y (µ̂(xsk))

∂ µ̂(xsk)
−DER · λ̂ (x̂sk+1), (17)

DER =
∂ x̂sk+1

∂xsk

+
∂ µ̂(xsk)

∂xsk

∂ x̂sk+1

∂ µ̂(xsk)
, (18)

where ∂ µ̂(xsk)/∂xsk is computed through the actor network that will be introduced in the next subsec-
tion, while ∂ x̂sk+1/∂xsk and ∂ x̂sk+1/∂ µ̂(xsk) are computed through the approximated model (or directly
utilized if the system dynamics is known). As in [16], the partial derivative of µ̂(xsk) with respect to
xsk , i.e., ∂ µ̂(xsk)/∂xsk , is taken into account in this paper, which theoretically outperforms [15, 20] in
completeness and precision for this item being neglected in these papers.

Accordingly, the partial derivative of the critic loss Ec,sk with respect to the critic weight ŵc, i.e.,
∂Ec,sk/∂ ŵc, can be computed. Then, the critic weight ŵc is updated by minimizing the critic loss Ec,sk

through the gradient-decent algorithm with a learning rate ηc > 0.

3.2 The Actor Network
The actor network has two significant functions, namely generating a control input used for the

closed loop and constructing a direct differentiable mapping from the state to the control input. In-
spired by [16, 23], considering the input constraints, a bounding layer is involved to provide an abso-
lute limitation, in which the aforementioned function ϕ(·) is adopted as the activation function. Fig. 3
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demonstrates the architecture of the actor network, and the output of the actor network is represented by
µ̂(ŵa,xsk ,ϕ,ub), where the actor weight ŵa is the estimation of the ideal weight wa and xsk is the network
input.

Input layer Hidden layer Hidden layer Output layerBounding layer

Fig. 3 The structure of the actor network, where ŵa1, ŵa2 and ŵa3 are the weight matrices to be updated.
It is assumed that there are 4 system states and 3 control inputs, and the number of neurons in both hidden
layers is 10. The presented structure is denoted by 4-10-10-3.

The output of the actor network µ̂(ŵa,xsk ,ϕ) should be as close to the target control µ(xsk) that is
defined in Eq. (14) as possible. Therefore the loss function to be minimized for the actor network can be
presented by:

Ea,sk =
1
2
[µ̂(xsk)−µ(xsk)]

T[µ̂(xsk)−µ(xsk)]. (19)

Similarly, with a learning rate ηa > 0, the actor weight ŵa can be adjusted by the gradient-decent algo-
rithm.

From the above analysis, it can be found that the updates of both networks rely on each other. To
attain satisfying performance, multiple iterations are carried out at one time step and both networks are
simultaneously updated once in an iterations. To implement this, the concept of "epoch" is thus intro-
duced for policy iteration [10, 16]. In each epoch, the weight gradients of the critic and actor networks
are computed based on the current system state xsk , and their weights are updated simultaneously after
the computation. Then, the next epoch starts. Only the updated weights will be transmitted to the next
epoch whereas the system state and the control input are kept unchanged. When a predesigned preci-
sion threshold is satisfied or the maximum epoch number is reached (this paper only considers the latter
condition), the iteration stops, and the control input at the final epoch is used for updating the ZOH value.

The iteration improves the precision but increases the computational burden. Nevertheless, in the
event-triggered scheme, only when a triggering instant is reached, will the DHP algorithm be activated
and the control input be updated. Otherwise, the controller is not updated, which therefore can save
computational load. In summary, the simple diagram of the event-triggered scheme incorporating the
DHP technique is depicted in Fig. 4.

4 Simulation Study
In this section, a simulation study is carried out to illustrate the feasibility of the developed event-

triggered DHP approach and compare its performance with the time-based approach that updates the
control policy at each time instant. All simulations are conducted with Pytorch, an open source machine
learning library for python [24]. The source code can be found at https://github.com/sunbojason/
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Fig. 4 Simple diagram of the event-triggered DHP control approach (adapted from [16]).

Event-triggered-DHP. The simulation is conducted in an online manner, which means that the control
policy improves as it is applied to the real system [16].

Remark 1. For a totally online learning, due to the random initialization of ANNs, the simulation results
can differ at each run. This phenomenon can be mitigated or tackled by combining the offline training
or involving a stable updating criterion [25].

A second order nonlinear model of a launch vehicle [14, 26] is taken into account, which consists of
the longitudinal force and moment equations, with angle of attack α , pitch rate q and elevator actuator δe
as system states, and the deflection command δ c

e as the control input, i.e., x = [x1,x2,x3]
T = [α,q,δe]

T

and u = δ c
e . In a valid flight envelope of α ∈ (−10◦,10◦) and Ma ∈ (1.8,2.6), at an altitude of ap-

proximately 6000 meters, the nonlinear model of the launch vehicle around a steady wings-level flight
condition can be formulated as:

α̇ = q+
q̄S

mVT
Cz(α,q,Ma,δe)

q̇ =
q̄Sdl

Iyy
Cm(α,q,Ma,δe)

δ̇e =
δ c

e −δe

τe
,

(20)

where q̄, S, m, VT , dl , Iyy are dynamic pressure, reference area, mass, speed, reference length and pitching
moment of inertia respectively; Ma is Mach number; Cz and Cm are the aerodynamic force and moment
coefficients, respectively; τe is the time constant of the system. In this paper, we set Ma = 2.0 and
τe = 0.1 s, and set the sampling frequency is set to be 1 kHz, by which the system is discretized using
Euler method [26]. It is assumed that the system is noisy on the state measurements, modeled as zero-
mean white noises with standard derivation of 1.8× 10−3 deg, 3.0× 10−2 deg/s and 4 × 10−2 deg,
respectively [11].

Since the nonlinear dynamics cannot directly provide the derivative information, a model network
is first of all trained offline to approximate the system dynamics. The model network is built with the
structure of 4-10-10-3, with the current system state and control input as the network input and the
predicted state as the network output [11]. The model network is trained using 2000 different data
samples for 1000 epochs with a learning rate ηm = 0.01 and tested on another 500 samples. The data
is collected by providing random states and control inputs within the feasible flight envelope to the
nonlinear model. The identification errors of the model network on the testing set are illustrated in Fig. 5,
where the mean sum of squares of the identification errors is below 1.0×10−3 which demonstrates the
high accuracy of approximation. After training, the model network is kept unchanged for controller
design.
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The actor and critic networks are constructed as 3-15-15-1 and 3-15-15-3, respectively. Their
weights are randomly initialized within [−0.05,0.05] and updated 10 epochs at each time instant with
ηa = ηc = 0.001 using the conventional stochastic gradient descent (SGD) method, because online con-
trol SGD can achieve safer behavior than Adam [27] that is utilized to update the model network. To
satisfy the persistent excitation (PE) condition [11, 15] an exploration noise ue is introduced, which is
a composition of decaying sinusoidal functions. It is noted that ue is added on the target control µ(xsk)
instead of the real control command µ̂(xsk) considering the saturation. The parameters in the utility func-
tion are selected as Q = diag([5,2,0]) and R = 2. Through setting C = 0.1, we can accordingly obtain
the triggering threshold eThr as:

eThr = 0.1
1−0.2t−sk

1−0.2
||xsk ||. (21)

By initializing the system state as x0 = [10 deg,0,0]T and setting ub = 15 deg, we carry out the
online control simulation to verify the performance of the developed event-triggered DHP algorithm.
The state and control command trajectories of the event-triggered approach and the time-based approach
are displayed in Figs. 6 and 7. Comparing the event-triggered and time-based approaches, it can be
observed that, for both approaches the system state eventually converges to to a small vicinity of the
equilibrium point without obvious differences in accuracy and converge rate. Although the original
control command outputted by event-triggered DHP is stepwise, the real elevator deflection is adequately
smooth for the wing surface control after the signal going through the actuator. As depicted in Fig. 8,
after a learning procedure where the ANN weight is updated online, the Frobenius norm [28] of weight
matrices eventually converge to constant values for both networks, which demonstrates the convergence
of the control policy.
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Fig. 5 The mean sum of squares of the identifi-
cation errors using the model network.
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Fig. 6 Launch vehicle longitudinal states.

Furthermore, the triggering threshold trajectory is displayed in Fig. 9, which presents a trend to
zero along with the event error. The inter-execution time is depicted in Fig. 10. One thousand samples
are utilized by the time-based controller, whereas the proposed event-triggered approach only requires
420 samples. Therefore, the event-triggered method reduces the control updates in the learning process
up to 58.0%, and thus improves the resource utilization. The simulation results collectively verify the
feasibility and the effectiveness of the developed event-triggered DHP control approach.

5 Conclusion
In this paper, an intelligent optimal control algorithm called event-triggered dual heuristic program-

ming (DHP) has been developed. Through the event-triggered scheme, the number of times the actor
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and critic are updated can be largely reduced. Besides, the input constraints are coped with by the com-
bination of an integral performance function and a bounding layer of the actor network. For illustrative
verification, the proposed event-triggered DHP approach is applied to an online stabilization problem
of a nonlinear second-order aerospace system. Compared with the time-based DHP approach, the ex-
perimental results indicate that the nonlinear system can successfully be stabilized with comparable
performance. Furthermore, compared to the conventional time-based approach, the developed event-
triggered approach can not only significantly reduce the computational burden up to 58%, but also save
the communication’s load between the controller and the system. Theses results collectively demonstrate
the advantage of the proposed approach.

Nevertheless, the developed control scheme can be further improved before realistic applications.
First of all, this paper concentrates on the stabilization problem while in numerous situations tracking
control is required. Secondly, in this paper when the system dynamics are unknown, an offline trained
model network is involved, which demands for collecting offline data. Therefore, the combination with
online identification technique such as the incremental model for stronger adaptiveness is highly recom-
mended for the next step.
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