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ABSTRACT

Autonomous soaring constitutes an appealing academic sample problem for investigating machine

learning methods within the scope of aerospace guidance, navigation, and control. The stochas-
tic nature of small-scale meteorological phenomena renders the task of localizing and exploiting
thermal updrafts suited for applying a reinforcement learning approach. Within this work, we
present a training setup for learning an integrated control strategy for autonomous localization
and exploitation of thermal updrafts. In particular, we propose a deep artificial neural network
featuring a Long Short-Term Memory to represent the policy. Instead of just implementing a static
control law, the recurrent structure facilitates observability and enables mapping the hard-to-
model dynamics of thermal updrafts. The end-to-end type control policy integrates an estimator
for updraft localization, including a latent state-transition model. We show in simulation, that
the trained agent autonomously localizes and exploits stochastic, non-stationary thermal updrafts.
The unaltered reinforcement learning setup can be deployed to further improve the control policy
through real-world interactions.

Keywords: CEAS EuroGNC; Autonomous Soaring; Intelligent Systems; Artificial Intelligence, Reinforcement
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1 Introduction

By exploiting atmospheric energy, soaring aircraft can cover large distances without consuming
fossil fuel or even electric power. While large transport aircraft have long been taking advantage of strong
upper winds, especially unpiloted aircraft can profit from reducing their energy demand by exploiting
thermal updrafts in the lower atmosphere. The majority of these aerial vehicles use electric propulsion
systems. Thus, range and endurance are limited. Consequently, a significant amount of work has gone
into developing guidance and control strategies to exploit thermal updrafts in the last decades [1-4].

To automatically exploit a thermal, one has to locate an updraft first. We classify previously pub-
lished approaches for the problem of mapping thermal updrafts into model-free methods and methods
that employ a thermal updraft observation model. While model-free methods allow for thoroughly map-
ping thermals as complex meteorologic objects, incorporating a priori knowledge on the general shape
of thermals is advantageous for fast localization. We largely borrow the following survey from our pre-
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vious work on updraft estimation [5]: “A method to map a single, but arbitrarily shaped thermal cell was
presented in [6]. Therein, the problem of estimating the shape of a thermal cell is cast to the problem of
estimating coefficients of B-Splines, which piecewise describe the structure of the flow field. A Kalman
filter is proposed to recurrently solve the resultant linear estimation problem. Researchers of the same
facility had presented a model-free, grid-based approach to thermal mapping already previously, using
a set of Kalman filters to estimate the vertical wind speed in each cell individually [7, 8]. Amongst a
comprehensive set of algorithms for autonomous soaring aircraft, a refined occupancy grid approach to
thermal mapping was presented, implemented, and flight-tested by that group, more recently [9, 10]. An-
other interesting approach to model-free wind field estimation for autonomous soaring flight is presented
in [11]. Instead of using a grid-based representation, the authors propose the method of Gaussian pro-
cess (GP) regression to generate a continuous map of the wind field from local observations. Although
not being based on a distinctive updraft model, physical properties such as spatio-temporal smoothness
and expected drift can be accounted for by tailoring the structure of the covariance function, which cor-
relates individual measurements taken. Given their model-free nature, all the approaches mentioned so
far are capable of mapping an updraft flow field of unknown shape. On the downside, model-free ap-
proaches are inherently less efficient when fast localization of the core of a thermal cell is key.

In [12], the basic centroid method from [2] was enhanced by estimating the parameters of a circular
bell curve thermal updraft observation model, applying a least-squares evolutionary-search method. The
approach was impressively validated by placing third in a remote-controlled (RC) glider aircraft competi-
tion, outperforming all but the most experienced RC pilots. Two coupled extended Kalman filters (EKF)
are used by [13] to produce a thermal location estimate. Simulation results indicate that a single thermal
is located fairly quickly, enabling a guidance system to exploit the updraft. A similar way of character-
izing a single thermal cell is presented in [14]. Therein, the authors propose to augment the local updraft
velocity observation by an induced roll moment measurement in order to improve the observability of
the estimated thermal updraft parameters. With the performance assessed by a comprehensive analysis
of simulation results, the approach is finally validated by actual flight test results. Another EKF-based
solution to the problem of estimating the characteristics of a single thermal is presented in [15].”

Lastly, the authors of the paper at hand themselves proposed a particle-filter-based updraft estima-
tor [5, 16]. Given its non-parametric nature, this approach offers the unique ability to localize several
idealized thermals at once. However, the complex shape and the chaotic dynamics of real thermals
are hard to model. Therefore, applying model-based approaches that estimate parameters of a simple
observation model is, to some extent, performance-limiting in a real-world scenario.

What if we could learn the shape and the dynamics of thermal updrafts directly based on interactions
with the environment? Supervised learning of a sophisticated updraft model is not an option, as ground
truth data are hardly available. Reinforcement learning (RL), in contrast, does not require a ground truth
but only a measure for what the designer deems a favorable outcome. The authors themselves recently
proposed and flight-test-validated a reinforcement learning approach to thermal updraft exploitation [17].
That approach, however, features a dedicated updraft estimator to localize thermals. The estimated
thermal updraft positions are then fed to an RL control policy. A multi-agent reinforcement learning
approach for the task of multiple gliders cooperatively exploiting an arbitrary number of thermals is
presented in [18]. Still, the information on the positions of the updrafts is fed to the reinforcement
learning agents. Also within the authors’ previous work, a trained policy for longitudinal control was
presented, which integrates detection and exploitation thermals [19]. A basic reinforcement learning
approach to integrated localization and exploitation of thermal updrafts by controlling the aircraft bank
angle was presented by [20]. The ability of a reinforcement learning agent to maximize the gain in height
by thermal updraft exploitation solely based on the “glider’s pooled experiences, collected over several
days in the field” was impressively demonstrated by the same team [21].

The approach proposed herein addresses a similar problem. Instead of applying tabular Q-Learning
with a coarse discretization of both the state-space and the action-space, we propose a stochastic pol-

The reproduction and distribution with attribution of the entire paper or of individual

Except where otherwise noted, content of this paper is licensed under . . . . . .
p . L R pap . 2 pages, in electronic or printed form, including some materials under non-CC-BY 4.0
[ a Creative Commons Attribution 4.0 International License. . . . .
licenses is hereby granted by the respective copyright owners.



icy gradient ascent algorithm to learn a continuous control policy. Furthermore, this paper reasons the
superiority of a recurrent policy architecture for integrated updraft localization and exploitation. Apply-
ing a deep artificial neural network (ANN) featuring a Long Short-Term Memory (LSTM), the policy
representation facilitates updraft localization through improved observability. Moreover, the recurrent
structure also enables mapping the hard-to-model dynamics of thermal updrafts. The proposed guidance
for updraft exploitation results from end-to-end type learning without the need for a separate updraft
estimator or any preprocessing of the measured variables indeed.

The structure of the paper is as follows: In section 2, we set up the task of thermal updraft ex-
ploitation as a reinforcement learning problem. The recurrent policy structure proposed is described in
section 3 on page 5. Furthermore, we outline the basic principles of model-free reinforcement learning
and policy gradient ascent. In section 4 on page 8, we describe the specific training setup. Simulation
results showcase how the integrated control policy allows the trained agent to localize and exploit ther-
mal updrafts. Lastly, we draw some conclusions regarding feasibility and future extensions in section 5
on page 10.

2 Problem Statement

Thermal updrafts caused by atmospheric convection are the prime source of free energy available for
harvesting at altitudes below the free convective layer. Thus, autonomous soaring for unmanned aircraft
is mostly about localizing and exploiting thermal updrafts. Missions that require a fixed-wing aircraft
to fly for a long time at a relatively low altitude, such as search and rescue or surveillance applications,
particularly profit from thermal updraft exploitation.

2.1 Integrated Updraft Localization and Exploitation

As stated in the introduction section 1, most previously published approaches to autonomous ther-
mal updraft exploitation feature a classical filter for estimating the center position of a simplified thermal
updraft observation model. The outcome of such an estimator is then fed to a classical guidance and
control scheme, which lets the aircraft circle the assumed center of the thermal cell. Being small-scale
meteorological objects of complex shape, real thermal updrafts, unfortunately, can hardly be compre-
hensively mapped by simplified models of both the general shape and the updraft dynamics. Instead of
estimating parameters of a questionable updraft model, we propose a machine learning approach. As
valid ground truth data are not available, trying to simply substitute a classical updraft estimator through
supervised learning would contradict the basic idea of not applying any questionable belief on the shape
and the dynamics of real thermals. Reinforcement learning, in contrast, is right about learning directly
from interactions with the environment without the need for any a priori expert knowledge. Still, a no-
tion of what is a good or a bad outcome of the trained mapping is necessary (cf. section 3 on page 5).
Whereas we can hardly judge the outcome of an updraft estimator, we can easily judge the change in the
energy state (i.e., height and velocity) of the glider aircraft given a certain action. Therefore, we propose
learning a more end-to-end type mapping from measurable variables to a bank command, leaving the
representation of thermals to the internal state of the integrated updraft exploitation control policy.

2.2 3-DoF Glider Dynamics in the Presence of Wind

Despite the reinforcement learning approach proposed in section 3 on page 5 is classified as being
model-free, realistically, an environment simulation is always necessary to solve flight control problems
by reinforcement learning as crashing a real aircraft in the early training phase is not an option. Within
our previous work, we contributed by presenting the unsimplified three degrees of freedom (3-DoF)
equations of motion describing the dynamics of a glider aircraft in the presence of an arbitrary wind
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field [17]. Assuming a flat, non-rotating Earth, the basic equations of motion are given by:

p=vg (D)
1

vk = — (fa+15) (2)
m

All variables in Eq. (1) and Eq. (2) are denoted with respect to a local Earth-fixed, north-east-down (NED)
frame of reference. The flight-mechanical state x consists of the position p of the aircraft with mass m
and the track velocity vk:

< — EP 3)

EVK
Assuming zero sideslip, the control vector u consists of the angle of attack o and the air-relative bank
angle u:
u=J[a, )’ 4)
Whereas the gravitational force in Eq. (2) simply reads f; = [0, 0, mg]T, the reader is referred to the
aforementioned paper [17] for a sound description of how the aerodynamic force f4 (X, u, vy ) in NED-
coordinates results from state variables, control variables, and an arbitrary wind vector vy .

2.3 Markov Decision Process

For applying reinforcement learning to integrated updraft localization and exploitation, we need to
formally frame the problem in terms of a Markov decision process (MDP). An MDP is defined by a
tuple (., <7, P(-), R(-), 7). For the task at hand, the components of that defining tuple are as follows:

* State-Space .7
The Markovian system state s consists of the flight-mechanical state as given in Eq. (3) and the
wind velocity at the position of the aircraft:

S =1{p, vk, vw} )

We assume a fully observable state in the remainder of this paper.
* Action-Space <7
The action a is given by commanding a bank angle u:

of ={pu} (6)

subject to the control constraint: —30° < u < 30°. Within the scope of this paper, we set the angle
of attack to a fixed value of 6° with reference to the zero-lift angle of attack o, —o.

* State-Transition-Probability P(-):
The probability of action a taken in state s leading to the subsequent state s’ combines the (deter-
ministic) 3-DoF glider dynamics x = f(x, u) (cf. section 2.2 on the preceding page) subject to the
stochastic occurrence of thermal updrafts.

* Reward-Function R(-):
Solving an MDP is about finding a policy 7 — a stochastic control law in terms of classical control —
that maximizes the expectation of the cumulative future reward. Consequently, the reward function
represents the objective. The objective of integrated updraft localization and exploitation is to
maximize the energy harvested from the environment!. We propose to use the integrated output
signal of a total energy compensated vertical speed indicator as a reward signal [22]. The energy-
equivalent climb rate ¢ takes both changes in height 4 and a changing airspeed Vj into account:

Note that localizing an updraft is only a means but not the objective of the integrated approach proposed.
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* Discount-Factor ¥:
The factor y discounts future reward. Whereas a small value makes the agent act greedily, a
value close to one lets the agent act foresighted. Only for the sake of stable convergence of the
reinforcement learning approach, we apply a slight discount of ¥ = 0.99.

3 Reinforcement Learning Approach

3.1 Model-Free Policy-Based Reinforcement Learning

Reinforcement learning is one of the three main domains of machine learning. In contrast to super-
vised learning, an agent does not learn the correct behavior from a large data set of examples but through
direct interaction with the environment. At time instance f;, the agent observes the system state s; and
selects an action ay, according to a policy 7y (als) subject to parameters 0. After the interaction, the
agents receives a reward scalar ry, | (according to Eq. (7), herein) [23]. Figure 1 illustrates the closed-
loop model-free reinforcement learning principle. The term “model-free” refers to the fact that the agent
does not know the state transition model P(-) of the environment and does not seek to explicitly learn it.
Instead, the agent directly learns a behavior strategy that maximizes the agent’s expectation of the dis-
counted, cumulative future reward. This strategy is represented by a stochastic policy 7y, which specifies
the probability for taking an action a given a system state s:

mg(als)=P(ac o|se.Y) (8)

Agent

A
<

Sk Tk+1 ay

C V¢
C L
DN—= %):
Environment: x = f(x, u) s.t. stochastic atmosphere

Fig.1 Closed-loop reinforcement learning principle.

Policy gradient approaches try to directly learn optimal values for 8 by maximizing the expectation
of the discounted, cumulative future reward over an episode of length 7. Finding the optimal policy
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turns into a stochastic optimization problem:

T
maxiemize {J(G) =Ey (Z }/(rk) } s.t. (&, o, P(), R(-), 1) 9)
k=1

The most common approach to solving this type of optimization problem is basic gradient ascent:
0'=0+AVeJ(0) (10)

It maximizes the objective function J(6) by taking small steps in the direction of the gradient VJ(6).
The learning rate A is a hyper-parameter for controlling the step size. Applying gradient ascent to
a model-free approach needs some modifications as the objective function depends on the unknown
transition probability P(-). Estimating the gradient of the objective function with respect to the policy
parameterization VgJ(0) from a trajectory .7 of sampled interactions avoids the explicit evaluation of

P(-):

T
VoJ(0) =E7x, (Z Yre- Vologp(7 | 9)) (11)

k=1

! T—1
~ ]VZ <G(7) Y Vologmg (ay | Sk)> (12)
7

k=0

Therein, G(.7°) denotes the sampled return of a trajectory. The so-called score function gradient esti-
mator (Eq. 12) results from the policy gradient theorem [23] and renders the core element of the RE-
INFORCE algorithm [24]. It approximates the expectation in Eq. 11 by evaluating a batch of sampled
trajectories and yields an unbiased estimator for the gradient of the cost function.

3.2 Proximal Policy Optimization

Simple learning approaches like gradient ascent can achieve good results when applied to simple
problems but suffer from poor convergence properties when facing complex problems. One major draw-
back is the constant step size. Trust Region Policy Optimization (TRPO) [25] introduces a constraint into
the optimization problem and maximizes a surrogate objective function with so that the Kullback-Leibler
divergence between two policies g and 7y is bounded. This leads to monotonic policy improvement
with adaptive step size. For a formal derivation of the algorithm, we refer to the original publication [25].
Proximal Policy Optimization (PPO) [26] is a modification of TRPO, wherein the constraint optimization
problem is approximated with an unconstrained problem by clipping the surrogate objective function:

Tlo Tlg

Therein, the estimated advantage A; accounts for how much the policy has improved, while the clipping
value € is a tunable hyper-parameter. Due to its convincing results in many benchmark problems and the
simple implementation, PPO has become a standard policy optimization algorithm for complex control
tasks. Again we refer to the original publication for a formal derivation [26].

3.3 Control Policy Representation

For the problem of estimating the position of an idealized thermal from a scalar measurement, ob-
servability can only be achieved by a sequence of measurements [17]. More generally speaking: From
a single measurement y; € R" not more than n parameters of a (steady-state) system are observable at
a time. However, only a limited number of sensors is realistically applicable for small fixed-wing air-
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Fig. 2 Recurrent policy architecture for integrated updraft localization and exploitation.

craft. Therefore, mapping a thermal of complex shape requires evaluating a sequence of measurements.
Consequently, a policy architecture requires an internal state to allow for the emulation of an updraft
estimator. Moreover, if we want to keep track of the evolution of a thermal updraft, a classical unbiased
estimator requires not only an observation model but also a process model. To be capable of mapping
the dynamics of the real system, however, the artificial neural network that implements the updraft esti-
mator needs to be a dynamic system itself. We propose a deep artificial neural network featuring a Long
Short-Term Memory as depicted in Fig. 2 to represent the control policy for updraft exploitation. Given
its feedback connections, the LSTM enhances observability and allows for mapping the system dynam-
ics of a thermal updraft. Note that thermal updraft estimates, however, are only internally encoded by
the ANN. The integrated control policy directly maps from aircraft position p and the energy-equivalent
climb rate ¢ to a bank angle command li.,g. Note that the input variables to the end-to-end type con-
trol policy can directly be obtained from sensor measurements without the need for any preprocessing.
Instead, the input is encoded by a fully connected hidden layer consisting of 32 neurons with tanh (-)
activation functions. Downstream the first hidden layer, the hidden state vector of the LSTM is of di-
mension 32. The output of the LSTM is finally decoded to output the expected value for the aircraft bank
angle, normalized to +30°.

3.4 Training Setup

The training environment for the end-to-end type updraft exploiter is set up as an extension of the
Gym library [27]. Its core is the 3-DoF glider dynamics as described in section 2.2 and the thermal
updraft model presented in [28]. For each episode during training, the velocity of the horizontal wind
is drawn from a half-normal distribution with scale parameter ¢ = 1m/s. The wind direction is drawn
from a uniform distribution. Forty individual thermals are randomly scattered within a radius of 2km.
The simulated thermals drift at half the speed of the horizontal wind. During training, the actions of the
agent are drawn from a Gaussian distribution to ensure exploration in the policy parameter space. The
parameters associated to the environment simulation are listed in Table 1 on page 13.

Both the ANN policy representation (cf. Fig. 2) and the reinforcement learning algorithm of Prox-
imal Policy Optimization are implemented using the PyTorch library [29]. The most relevant reinforce-
ment learning (hyper-)parameters applied for training the end-to-end type control policy for integrated
updraft localization and exploitation are listed in Table 2 on page 13. To foster transparency and allow
other researchers and practitioners to potentially adopt and build upon our approach, the source code of
our reinforcement learning framework including the environment simulation is made publicly available
on GitHub?.

’https://github.com/ifrunistuttgart/RL_Integrated-Updraft-Exploitation
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Fig. 3 Evolution of average returns during training.

4 Training Results

We trained the updraft exploiter over 4e3 policy iterations. As training is a random process, Fig. 3
shows the results of four independent training runs with identically set up experiments subject to different
random seeds. The return reflects the altitude gained during an episode. An episode ends when the glider
touches the ground or 30 minutes of flight time have elapsed. The stochastic environment can cause high
fluctuations in subsequent roll-outs. Therefore, the returns displayed are averaged over ten subsequent
iterations. All four training runs show a volatile but increasing evolution of the average return.

Training run #3 results in the policy with the highest final average return. All results presented
in the following are subject to the policy resulting from that experiment after 4e3 iterations. Unlike
during training, the actions are not drawn from Gaussians. Instead, the direct outcome of the policy net
is applied. The results discussed in the subsequent sections provide an insight into the trained agent s
behavior.

4.1 Localization and Exploitation of Stationary Thermal Updrafts

Figure 4 on the next page shows glider position trajectories of multiple episodes with randomly
sampled, stationary updraft distributions. All samples show the agent performing some exploratory
soaring until an updraft is reached. Inside the updraft, the agent is circling until the end of the episode
to maximize the altitude gain. In all six episodes displayed, a final return of approximately 800 meters
is reached. The concentric circling of an updraft is made possible by the recurrent architecture of the
policy, encoding the estimated center position of the updraft in its internal state.

Within the appendix, we showcase the inferior behavior of a similarly trained agent, the policy
representation of whom does not feature an LSTM but an additional feed-forward layer, instead. Given
the sparse input of aircraft position and energy-equivalent climb rate, only the recurrent architecture
ensures observability in the first place.
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Fig.4 Position trajectories for randomly sampled initial conditions and updraft distributions subject to the
proposed control policy featuring an LSTM: The trained agent is capable of centering stationary thermals.
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4.2 Localization and Exploitation of Drifting Thermal Updrafts

In a real-world scenario, thermal updrafts drift according to horizontal winds. Figure 5 on the
following page shows glider position trajectories of multiple episodes with randomly sampled, non-
stationary updraft distributions. Not only does the glider face horizontal winds, but the thermals drift
away with the wind. In the samples depicted in Fig. 5, arrows indicate the respective horizontal wind
speed and wind direction. Just as for the stationary updraft examples depicted in Fig. 4, all samples show
the agent staying within the center of a localized updraft until the end of the respective episode. The
trained agent not featuring a recurrent policy architecture is not even capable of centering a stationary
thermal updraft (cf. Fig. 7 on page 12). The agent subject to the policy featuring an LSTM, in contrast,
keeps track of non-stationary thermals, even. A dynamical system itself, the architecture allows learning
to encode the updraft dynamics. The agent subject to the recurrent policy architecture proposed integrates
an estimator for updraft localization, including a latent updraft state-transition model.

5 Conclusion

A reinforcement learning approach to the problem of autonomous thermal updraft localization and
exploitation has been presented. An integrated control policy featuring a Long Short-Term Memory has
been proposed to control the bank angle of the aircraft such that as much free energy as possible is
harvested. The optimization is solely based on interactions with the (simulated, for now) environment.
Simulation results have showcased the ability of the soaring agent to autonomously localize and exploit
thermal updrafts in a stochastic environment. We both reasoned and demonstrated that for learning to
map directly measurable variables to the control variable, a policy featuring a recurrent structure results
in superior behavior of an agent trained on integrated updraft localization and exploitation.

Naturally, the authors aim at demonstrating the feasibility and performance of the approach proposed
through flight-test demonstrations. As we showed before, low-cost off-the-shelf embedded hardware
can evaluate a recurrent artificial neural network control policy [17, 30]. By reapplying the unaltered
reinforcement learning setup for samples taken through real-world interactions, the approach enables
adapting to the complex shape and dynamics of real-world thermal updrafts.

10 The reproduction and distribution with attribution of the entire paper or of individual

(:) Except where otherwise noted, content of this paper is licensed under . . . . . .
a Creative Commons Attribution 4.0 International License pages, in electronic or printed form, including some materials under non-CC-BY 4.0
BY X X . . . .
licenses is hereby granted by the respective copyright owners.



1200
@ 800 @
2 400 2
= g 71000 = . 71000
-1000 500 -1000 500
-500 0 North (m) -500 0 North (m)
East (m) East (m)
(a) Sample #1; Return: 829.1 m (b) Sample #2; Return: 829.4 m
A o
7 | 7
1200 1200 [
z 800 6 800
Q400 2 400
= ] 1000 T — 7 1000
-1000 500 -1000 500
-500 0 North (m) -500 0 North (m)
East (m) East (m)
(c) Sample #3; Return: 828.6 m (d) Sample #4; Return: 827.5 m
an “n
i K | i K
1200 - ] 1200 i 3
@ 800 &% d/@.l% ) @ 800
R 2 o0
T . ] 1000 = B ) 1000
-1000 500 -1000 500
-500 0 North (m) -500 0 North (m)
East (m) East (m)

(e) Sample #5; Return: 829.6 m (f) Sample #6; Return: 807.8 m

Fig. 5 Position trajectories for randomly sampled initial conditions and updraft distributions resulting
from a control policy featuring an LSTM: The trained agent is capable of tracking and exploiting drifting

thermals.
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Appendix

Benchmark: Feed-Forward Control Policy

For comparison, we provide an insight into the behavior of an equally trained soaring agent subject
to a control policy that does not feature an internal state but only consists of feed-forward layers. Fig-
ure 6 depicts the architecture of the feed-forward deep artificial neural network applied. For the Markov
property to hold, we augmented input by the aircraft velocity vector vg. Two exemplary resultant posi-
tion trajectories, subject to the same conditions as those in Fig. 4 on page 9, are shown in Fig. 7 . The
feed-forward control policy lacks an internal state. The agent is not capable of localizing the center of
an updraft. As outlined in [5], the updraft center position is not observable based on a single snapshot of
the variables input to the ANN. The glider starts to circle, once it has hit an updraft. However, it loses
track of the (steady-state!) thermal in both samples depicted. Consequently, the return achieved is much
lower and more dependent on the stochastic updraft distribution as for the samples depicted in Fig. 4 on
page 9 subject to the agent whose policy features a recurrent structure. Moreover, a soaring agent not
featuring a recurrent structure will never be capable of learning the dynamics of an updraft, no matter
what variables are input to the policy.

output: Uemd

input: p, vk, é

Fig. 6 Benchmark feed-forward policy architecture.

1200 | 1200

g 800 | g 800 i c‘

Q400 2 400 i,

= , 1000 = , 1000

-1000 ’ . % -1000 < . 500
-500 0 North (m) -500 0 North (m)
East (m) East (m)
(a) Sample #1; Return: 484.5 m (b) Sample #2; Return: 683.2 m

Fig. 7 Position trajectories for randomly sampled initial conditions and updraft distributions subject to a
feed-forward control policy: The trained agent is NOT capable of centering stationary thermals.
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Parameter Listing

The complete parametrization of the environment simulation is listed in Table 1. The most relevant
parameters for the reinforcement learning setup are listed in Table 2.

Table 1 Environment parameters

(a) Basic physical parameters

Parameter Identifier Unit  Value
Gravitational accel. g m/22 9810
Air density p kg/m3  1.225

(b) Glider parameters

Parameter Identifier Unit  Value
Aircraft mass m kg 5.000
Wing area S m? 0.790
Aspect ratio A - 23.60
Oswald factor e - 0.900
Zero-lift drag coeffi- Cpg - 0.015
cient

(c) Updraft simulation

Parameter Identifier Unit  Value
Conv. scale w* nys 2.061
Conv. layer Zi m 1496

Table 2 Reinforcement learning (hyper-)parameters

Parameter Value
Batch size 4096
Sequence length 256

Learning rate, actor le—5
Learning rate, critic le—4
Discount factor 0.99

PPO clipping value 0.2
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