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ABSTRACT
Reliable measurements on key air data parameters such as air speed, angle of attack, and angle

of sideslip are essential for safe flight operations. Unfortunately, due to their direct exposure to
a sometimes hostile environment, air-data sensors are sensitive to faults. In order to maintain
reliable knowledge of the air speed after pitot tube faults, the Double Model Adaptive Estimation
(DMAE) method is combined with an Unscented Kalman Filter (UKF) estimation routine that uses
a kinematic model that incorporates the effects of the turbulence. The approach requires sensor
data from the pitot tube, angle of attack vanes, angle of sideslip vanes, and attitude angles from the
Inertial Navigation System (INS). For the kinematic equation the Inertial Measurement Unit (IMU)
data (Accelerometer / Gyroscope) are used to perform the estimation. The proposed approach is
validated with data generated by a high-fidelity (nonlinear) Citation-550 Simulator. Realistic fault
modes are used in the validation, including combinations of total pressure port and static pressure
port blockages. With this approach, airspeed fault detection is performed and a fault redundant
airspeed is estimated. The Augmented Fault UKF is found to achieve an unbiased state estimation
even in the presence of unknown disturbances.

Nomenclature
𝑉- True airspeed in m/s 𝐴𝑥𝑚 - Measured Acceleration x axis in 𝑚/𝑠2

𝛼- Angle of attack in radians 𝐴𝑦𝑚- Measured Acceleration y axis in 𝑚/𝑠2

𝛽- Angle of side slip in radians 𝐴𝑧𝑚- Measured Acceleration z axis in 𝑚/𝑠2

𝜙- Roll angle in radians 𝑝𝑚- Measured Roll rate in radians/s
𝜃- Pitch angle in radians 𝑞𝑚- Measured Pitch rate in radians/s
𝜓- Yaw angle in radians 𝑟𝑚- Measured Yaw rate in radians/s
𝑞𝑐 : Impact Pressure 𝑅𝑀𝑆𝐸 − represents the Root Mean Square Error.
𝑀 : Mach number 𝑛 − is the number of data points
𝑃 : Static Pressure 𝑦𝑖 − refers to the predicted values
𝑃0 : Static Sea Level Pressure (ISA) 𝑦𝑖 − represents the observed values.
𝛾𝑘 : Innovation
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𝐶 (𝑘) : Covariance of error of output state estimation
𝑎0 : Sonic Speed at Sea Level ISA (661.47 kts | 340.29 m/s )

1 Introduction
The loss of reliable airspeed measurements can be catastrophic for flight safety, especially in scenarios

where the Pitot tube malfunctions. In the article "Preparing for a Safe Return to the Skies", published by
Airbus in June 2020, the increased risk of unreliable airspeed events after parking or storing an aircraft
is demonstrated. 44 out of 55 reported cases of unreliable air speed at take-off are due to an obstruction
of the Pitot tube. Obstructions may be caused by the presence of insects, water, sand, dirt, dust, or other
foreign materials that can enter the Pitot tube if protective covers do not cover the aircraft when it is on the
ground. To overcome this, current aircraft are fitted with multiple Pitot tubes (hardware redundancy). For
particular designs that cannot accommodate hardware redundancy, reliable airspeed remains a problem.
This study proposes the use of an Unscented Kalman Filter (UKF) within the Double Model Adaptive
Estimation approach [12] to estimate the flight envelope protection parameters. These flight envelope
protection parameters are the Euler angles and airspeed, the angle of attack, and the angle of side slip.

Air data system fault detection is an extensively researched topic; the Boeing commercial airplane
group published the Fault Tolerant Air Data and Inertial Reference System (FT-ADIRS) tested on its
777 airliner [14]. To assess the performance of the FT-ADIRS, a unique approach was adopted. The
flight-recorded sensor data were replayed through actual production units, mimicking real-life scenarios.
By randomly introducing faults in a Monte Carlo fashion, the system’s ability to detect and overcome
sensor failures in real time was thoroughly tested. This process demonstrated the robustness of the
system in terms of inertial navigation and air data functions, demonstrating its ability to identify and
survive sensor faults effectively [14]. The FT-ADIRS consists of the Fault Tolerant Air Data and Inertial
Reference Unit (FT-ADIRU), the Secondary Attitude and Air Data Reference Unit (SAARU), and six Air
Data Modules (ADMs). This is considered to be the first commercial version of the sensor fault-tolerant
air-data and inertial system. Since then, many academic studies have come up with methodologies to
tackle this problem; they can be broadly classified as data based methods [4]&[5] model-based methods
[12] [9]&[18] and knowledge based methods [20]&[1].

In Lu et al. in [13] a Multiple-Model Adaptive Estimation (MMAE) technique was proposed; To
improve computational efficiency and implementation simplicity, the Double-Model Adaptive Estimation
(DMAE) was proposed in [12] and applied to flight data with simulated faults in [11]. The principle of
these approaches is that multiple filters are programmed with different fault conditions. By analyzing
the innovation variances of the filter, the fault condition is isolated. The DMAE approach can detect
bias faults using a kinematic model of the aircraft and a selective re-initialization routine. The kinematic
model resolves the issue of model uncertainties, making the approach more robust to such uncertainties.
However, in [11] more realistic faults in the airspeed sensor (Pitot tube), such as sample-and-hold faults
and drift faults, were not considered.

The main contribution of this paper is a fault detection and identification technique together with
a fault redundant airspeed estimator in the presence of external disturbances under realistic pitot sensor
faults. To address the situation when the effects of faults and external disturbances are coupled, two
filters are constructed within the DMAE framework; one sensitive to the sensor noise & biases and the
other filter sensitive to added noise. Finally, the probabilities of the two filters are calculated; the higher
probability indicates the closeness of the estimated data to the state estimation and not necessarily the
measured airspeed; which enables the computation of a fault redundant airspeed.
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Fig. 1 Pitot tube layout [Source:Airbus]

2 Fault Scenario
A Pitot probe points directly into airflow, allowing it to measure the stagnation pressure known as

the total pressure or Pitot pressure; see Fig. 1. When these total pressure data are combined with the
static pressure, the Air Data Inertial Reference Unit (ADIRU) calculates the indicated airspeed and Mach
number.

Table 1 details the fault modes considered in this paper. In case the total pressure port is completely
obstructed, the airspeed indicator receives a relevant static pressure but a constant total pressure. Hence,
the measured airspeed increases during climb and decreases during descent, and this can be simulated
by including ramp faults to the measured airspeed for the fault detection simulation. In case all ports are
blocked, no changes to the airspeed are reported, and this can be simulated by using a sample-and-hold
signal to the measured airspeed. If only the static port is blocked, the measured airspeed decreases during
climb and increases during descent, and this can again be simulated by the ramp fault signal.

3 Literature Review
Analytical redundancy provides two primary methods for determining the airspeed without using

a Pitot probe. The first method utilizes information about the aircraft dynamic model to forecast
airspeed based on control inputs. Although these methods are useful, they are limited to aircraft with
an established and tested model, which may not always be available. This strategy employs dynamic
model-aided navigation, including aerodynamic model parameters, in the navigation filter.

The second method for detecting airspeed without a Pitot probe involves using sensor fusion algo-
rithms with other sensors. These methods have advantages over model-based approaches because they
do not require a dynamic aircraft model. This method uses a kinematic model of the system based on
multiple sensors, combining data from accelerometers, gyroscopes, Pitot probes, AOA/SSA vanes, and
the global navigation satellite system (GNSS).

For the DLR-HAP case, a straightforward and reliable analytical redundancy-based Air Data Sensor
Fault Detection (ADS-FD) method needs to be developed using data from onboard sensors and aircraft
kinematics typically available for most current aircraft. To estimate air data, the proposed approach
uses IMU measurements and onboard navigation system data (NSD), such as ground speed and Euler
(attitude) angle data. This method does not take into account physical air data measurements, compared
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Pitot-Static System Failure Modes

Failure Altimeter Indicator
Effect

Airspeed Indicator
Effect VSI Effect

Total Pressure
port blocked Not affected

Acts as an
altimeter increases
during climb
decreasing during
descent

Not affected

One static source
blocked assuming
two Sources

Inaccurate while
slipping and
skidding

Inaccurate while
slipping and
skidding

Inaccurate while
slipping
and skidding

Both static sources
or single source
blocked

Does not change
with altitude;
if blocked before
take off, indicates
field elevation

Decreases during
climb and
increasing
during descent

Indicates the last
vertical speed
before blockage

All static and
total pressure
sources blocked

Indication
remains constant
regardless
of actual change

Indication
remains constant
regardless
of actual change

Indication
remains constant
regardless of
actual change

Table 1 Fault Scenarios

with the usual air data estimates using redundant ADS. The main benefit of the approach followed by
Lu et al. [12] is its applicability to any aircraft, without considering a specific aircraft model. Focuses
only on sensor dynamics, ignoring system dynamics, and employs the aircraft equations of motion to
create a streamlined mathematical model considering only the aircraft’s own aerodynamic forces (X, Y,
Z) and moments (L, M, N). This approach eliminates model mismatches and reduces tuning complexity.
The state equation is determined by treating airspeed, angle-of-attack, sideslip angle, attitude angles, and
wind velocity as a state vector, with attitude angle estimation being crucial for accurate and reliable air
data estimation.

Numerous strategies for sensor fault detection have been proposed in recent decades. Miljković [15]
reviewed several new Fault Detection and Isolation (FDI) techniques, discussing the latest developments
in detail. Youn et al. [18] introduced an innovative dynamic model-based estimate for a UAV’s attitude,
3-D wind, AOA, and SSA. Their proposed algorithm includes 3-D wind states as random walk processes.
Balzano et al. [1] suggested creating and tuning FD schemes for true airspeed, angle-of-attack, and
angle-of-sideslip sensors using data alone.

Aircraft pitot-static probes are necessary for accurate readings of airspeed and altitude and for safe
flying. Traditionally, measurement integrity is achieved through a voting system and redundant sensor
hardware, which incurs payload and expense penalties. Freeman, Seiler, and Balas [6] explored an
analytical substitute for hardware redundancy using a mathematical model of defective and working
pitot-static probes. They modeled common probe flaws, such as debris, ice, or water obstructions, using
experimental wind tunnel data and physical air data linkages. These models were combined with a
linear model of the NASA GTM (Generic Transport Model) aircraft under one flight state to create
reliable defect detection filters. Johansen et al. [8] estimated the wind velocity, AOA, and SSA using
only kinematic relationships, avoiding the need for aerodynamic models or other aircraft parameters.
This method requires a sensor suite consisting of GNSS, IMU, and a pitot-static tube as a minimum
configuration, assuming slowly varying winds. However, Johansen et al. could not validate the accuracy
of the estimates because of the lack of direct measurements of alpha and beta.
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Hansen and Blanke [7] proposed a diagnostic configuration using the ground speed from an onboard
GPS device and typical UAV sensor values with a straightforward thrust model. They calculated residuals
by obtaining two additional airspeed estimates. Including the ground speed vector allowed for an estimate
for wind speed and direction. Using thrust-speed curves and a nonlinear adaptive observer to estimate
engine thrust, the second airspeed estimate was calculated. They detected faults in airspeed sensors in
UAVs using a statistical variation of the three separate residual signals. The data-driven air data sensor
FDI approach’s main benefits include being model-free and highly robust. Fravolini et al. [4] proposed
a semi-automated data-driven approach for designing and tuning a complete FD scheme for the TAS
sensor of aircraft, which requires high-quality data to effectively evaluate the fault detection algorithm.

Recently, using data from the Global Positioning System (GPS) and the Inertial Measurement Unit
(IMU), Rhudy et al. [16] presented synthetic air data estimates to provide analytic redundant air data.
Some studies, such as those of Cho et al. [3], proposed estimating airflow angle and wind speed using an
integrated Extended Kalman Filter (EKF) and Inertial Navigation System and GPS information. These
methodologies show that air data estimation and ADS fault detection are challenging when physical
air data sensor measurements are not considered. However, they offer solutions to problems faced by
previously installed external air data probes. Nonlinear estimators are preferred over other methods
because the estimation technique significantly impacts the performance of the FDI methodology. Youn
et al. [19] proposed estimating air data using information from flight control and navigation systems,
demonstrating the feasibility of using onboard INS/GPS navigation system data for air data parameter
estimation instead of traditional air data probe-based observations. However, this strategy works better
for specific aircraft with precise dynamic models and is susceptible to environmental perturbations.
Additionally, if system non-linearity increases, the typical EKF performance deteriorates, impeding
estimation accuracy. Some researchers, such as Lu [10], have suggested analytical techniques for
identifying aviation sensor faults based on the EKF, which require intricate computations, potentially
lengthening the computation times, then Lu et al. [11] introduced a double model adaptive estimation
(DMAE) technique that saves computation times.

4 Kinematic Model
The kinematic model presented in Van Eykeren and Chu[17] is based on specific measured forces,

allowing us to avoid calculations involving uncertain aerodynamic parameters. This model remains
valid throughout the entire range of flight conditions, eliminating the need to design a limited parameter
variable (LPV) system. Lu et al. [11] tested the kinematics with unknown external disturbances such as
turbulence. The process model is of the form given in equation 1:

¤𝑥 = 𝑓 (𝑥, 𝑢) + 𝐺 (𝑥)𝑤 (1)

Where
𝑥 =

[
𝑉 𝛼 𝛽 𝜙 𝜃 𝜓

]𝑇
(2)

These are the measured & estimated states, the kinematics are based on the fact that these states are
correlated to acceleration and turn rates. 𝑢 is the input vector given in equation 3 which form the basis
of airspeed computation.

𝑢 =

[
𝐴𝑥𝑚 𝐴𝑦𝑚 𝐴𝑧𝑚 𝑝𝑚 𝑞𝑚 𝑟𝑚

]𝑇
(3)

5Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Accelerations on the 3 axis from the accelerometers and turn rates from the gyroscopes are used in
estimating the states. The nonlinear function 𝑓 is as follows:

𝑓 (𝑥, 𝑢) =

(𝐴𝑥𝑚 − 𝑔𝑠𝜃) 𝑐𝛼𝑐𝛽 +
(
𝐴𝑦𝑚 + 𝑔𝑠𝜙𝑐𝜃

)
𝑠𝛽

+ (𝐴𝑧𝑚 + 𝑔𝑐𝜙𝑐𝜃) 𝑠𝛼𝑐𝛽
[(𝐴𝑧𝑚 + 𝑔𝑐𝜙𝑐𝜃) 𝑐𝛼 − (𝐴𝑥𝑚 − 𝑔𝑠𝜃) 𝑠𝛼] /𝑉𝑐𝛽 + 𝑞𝑚

− (𝑝𝑚𝑐𝛼 + 𝑟𝑚𝑠𝛼) 𝑡𝛽[
(𝑔𝑠𝜃 − 𝐴𝑥𝑚) 𝑐𝛼𝑠𝛽 +

(
𝐴𝑦𝑚 + 𝑔𝑠𝜙𝑐𝜃

)
𝑐𝛽

− (𝐴𝑧𝑚 + 𝑔𝑐𝜙𝑐𝜃) 𝑠𝛼𝑠𝛽] /𝑉 + 𝑝𝑚𝑠𝛼 − 𝑟𝑚𝑐𝛼

𝑝𝑚 + 𝑞𝑚𝑠𝜙𝑡𝜃 + 𝑟𝑚𝑐𝜙𝑡𝜃

𝑞𝑚𝑐𝜙 − 𝑟𝑚𝑠𝜙

𝑞𝑚𝑠𝜙/𝑐𝜃 + 𝑟𝑚𝑐𝜙/𝑐𝜃

In the implementation of this non-linear function, the Euler method of time discretization is used.
Here, 𝑐𝛼 refers to cos(𝛼), 𝑠𝛽 is sin(𝛽) and so on. The IMU input noise distribution matrices 𝐺 (𝑥) are
derived as follows:

𝐺 (𝑥) =



−𝑐𝛼𝑐𝛽 −𝑠𝛽 −𝑠𝛼𝑐𝛽 0 0 0
𝑠𝛼
𝑉𝑐𝛽

0 −𝑐𝛼
𝑉𝑐𝛽

𝑐𝛼𝑡𝛽 −1 𝑠𝛼𝑡𝛽
𝑐𝛼𝑠𝛽

𝑉

−𝑐𝛽
𝑉

𝑠𝛼𝑠𝛽

𝑉
−𝑠𝛼 0 𝑐𝛼

0 0 0 −1 −𝑠𝜙𝑡𝜃 −𝑐𝜙𝑡𝜃
0 0 0 0 −𝑐𝜙 𝑠𝜙

0 0 0 0 −𝑠𝜙
𝑐𝜃

−𝑐𝜙
𝑐𝜃


where 𝑤 =

[
𝑤𝐴𝑥

𝑤𝐴𝑦
𝑤𝐴𝑧

𝑤𝑝 𝑤𝑞 𝑤𝑟

]𝑇
denotes the noise in the inertial measurement unit.

5 Methodology
The Unscented Transform (UT) is well suited for state estimation in the framework of a nonlinear time-

varying aircraft model. The UT calculates statistics of a random variable after a nonlinear transformation.
The UT approximates a Gaussian distribution, which is more straightforward than approximating an
arbitrary nonlinear function. The Extended Kalman Filter (EKF) approximates a nonlinear function
using linearization. However, this can be insufficient when models have significant non-linearities
over short time periods. The work of Caveney[2] illustrates that the combination of UT and numerical
integration can provide significantly more accurate stochastic predictions of the future state of a nonlinear
system at lower computational cost than similar Kalman-like routines.

To address the issue that sensor noise, biases and fault conditions cannot be differentiated from each
other, this paper proposes a two-UKF filter approach where one filter assumes additive noise, from here
refered to as the "Augmented Fault Filter (AF)" and the other filter assumes non-additive noise with a
noise distribution matrix G(x) refered to as the "Sensor Noise and Bias Filter (SNBF)". The logic behind
this being that when no fault is detected, the SNBF estimate would be closest to the ground truth, and
when a fault is detected, the AF filter estimate is closest to the ground truth. The AF filter is used to
create a fault redundant estimate of the states. Modal probabilities are used as a fault detection metric.

For aircraft ADS FDD, we still need to formulate the state transition model, measurement model,
fault identification logic, and construct the UKF filters which in our case are of standard design.
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Given below are an extract of the unscented transform methodology that the filter executes for each time
step:

1) Introduction
• The UKF extends the Kalman Filter for accurate estimation in nonlinear systems.
• Sigma-Point Transformation is a key step in the UKF process.

2) Sigma-Point Selection
• Deterministic approach (Unscented Transform) for sigma point selection.
• Sigma points chosen symmetrically around the mean.
• The number of sigma points depends on the state-space dimension.

3) Augmentation
• Augment state vector and covariance matrix for additional process/measurement noise.
• Augment the additional state - estimated fault state.

4) Propagation Through Nonlinear Functions
• Apply process model function 𝑓 (𝑥, 𝑢) to sigma points to predict new state points.
• For each sigma point 𝑖, compute the predicted state 𝑥 (𝑖)

𝑘 |𝑘−1.
5) Estimation of Mean and Covariance

• Compute weighted mean and covariance of predicted sigma points.
• Weighted mean:

𝑥𝑘 |𝑘−1 =

2𝑛∑︁
𝑖=0

𝑊
(0)
𝑚 · 𝑥 (𝑖)

𝑘 |𝑘−1

• Weighted covariance:

𝑃̄𝑘 |𝑘−1 =

2𝑛∑︁
𝑖=0

𝑊
(0)
𝑐 · (𝑥 (𝑖)

𝑘 |𝑘−1 − 𝑥𝑘 |𝑘−1) (𝑥 (𝑖)𝑘 |𝑘−1 − 𝑥𝑘 |𝑘−1)𝑇 +𝑄𝑘

6) Predict Measurements
• Use predicted state to compute predicted measurements through function h().

7) Update Weights(Wc & Wm) and Cross-Covariance
• Compute weights for transformed sigma points.
• Compute the cross-covariance matrix between the original state and the predicted state.
• Update state estimate and covariance using standard Kalman Filter equations.
• Incorporate actual measurements for better estimation.

8) Advantages of UKF
• Accurate estimation in nonlinear systems.
• Captures nonlinear relationships between state and measurements.

9) Conclusions
• Sigma-Point Transformation is a vital step in the UKF algorithm.
• Enables more accurate state estimation in nonlinear scenarios.

5.1 State Transition UKF Model Architecture ( ¤𝑥)
𝑓𝑉 is the Augmented airspeed fault state, the state vector of the AF filter is 𝑥𝑎 𝑓 and the SNBF is

𝑥𝑆𝑁𝐵𝐹

𝑥𝑎 𝑓 =

[
𝑉 𝛼 𝛽 𝜙 𝜃 𝜓 𝑓𝑉

]𝑇
𝑥𝑆𝑁𝐵𝐹 =

[
𝑉 𝛼 𝛽 𝜙 𝜃 𝜓

]𝑇
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By augmenting 𝑓𝑉 in the state transition model as an additional zero mean state, the Unscented
Kalman filter estimates the fault in the first state, that is, the true airspeed state 𝑉 . Similarly, this can be
scaled to estimate all six states fault.

5.2 Measurement Function UKF Architecture (y)
Care is taken so that the AF and SNBF filters use the same measurement history vector 𝑦𝑘 given in

equation 6 and input vector 𝑢𝑘 as defined in equation 3. The mapping to the estimated state parameters
and the measurement vectors differ according to 𝑦𝑘 = 𝐻 ∗ 𝑋 . The mapping of 𝑓𝑣 as an additive fault and
programming the AF filter with additive noise enables the filter to estimate the fault.

𝑦𝑘 =

[
𝑉𝑚 𝛼𝑚 𝛽𝑚 𝜙𝑚 𝜃𝑚 𝜓𝑚

]𝑇
(6)

The measurement model for augmented fault filter is 𝑌𝑎 𝑓

𝑌𝑎 𝑓 =



𝑉𝑚

𝛼𝑚

𝛽𝑚

𝜙𝑚

𝜃𝑚

𝜓𝑚


=



1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


×



𝑉

𝛼

𝛽

𝜙

𝜃

𝜓

𝑓𝑣


(7)

The measurement model for sensor noise and bias filter is 𝑌𝑆𝑁𝐵𝐹

𝑌𝑆𝑁𝐵𝐹 =



𝑉𝑚

𝛼𝑚

𝛽𝑚

𝜙𝑚

𝜃𝑚

𝜓𝑚


=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


×



𝑉

𝛼

𝛽

𝜙

𝜃

𝜓


(8)

5.3 Fault Introduction/Identification
To simulate the airspeed fault scenario where the total pressure port and static pressure port are

blocked, faults are introduced in the dynamic pressure and static pressure calculations. The reason
for choosing this approach is because static pressure can be extracted from the equivalent airspeed
measurement, and dynamic pressure can be extracted from the true airspeed measurement. The altitude
information is required to interpret the temperature using the Committee on Extension to the Standard
Atmosphere (COESA) Atmosphere Model. The temperature information is used to calculate the speed
of sound, which in turn is required to calculate the Mach number:

𝑀 =

√︄
5
[(𝑞𝑐

𝑃
+ 1

)2/7
− 1

]
𝐸𝐴𝑆 = 𝑎0𝑀

√︂
𝑃

𝑃0
(9)

The ramp, step, pulses, and sample & hold faults are introduced into the time signal in the simulation, and
the filter receives only the faulty airspeed measurement as described in Table 1. The faults are identified
by comparing both filter innovation 𝛾𝑘 and output state estimation error covariance 𝐶𝑘 (AF & SNBF) as
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in [12]. The faults are estimated by adding an additional state (i.e. 𝑓𝑉 ) to the augmented fault filter. The
output error covariance matrices of both the filters are given in equation 10, 𝐶𝐴𝐹 & 𝐶𝑆𝑁𝐵𝐹 are:

C𝑆𝑁𝐵𝐹 =



𝐶𝑉,𝑉 𝐶𝑉,𝛼 𝐶𝑉,𝛽 𝐶𝑉,𝜙 𝐶𝑉,𝜃 𝐶𝑉,𝜓

𝐶𝛼,𝑉 𝐶𝛼,𝛼 𝐶𝛼,𝛽 𝐶𝛼,𝜙 𝐶𝛼,𝜃 𝐶𝛼,𝜓

𝐶𝛽,𝑉 𝐶𝛽,𝛼 𝐶𝛽,𝛽 𝐶𝛽,𝜙 𝐶𝛽,𝜃 𝐶𝛽,𝜓

𝐶𝜙,𝑉 𝐶𝜙,𝛼 𝐶𝜙,𝛽 𝐶𝜙,𝜙 𝐶𝜙,𝜃 𝐶𝜙,𝜓

𝐶𝜃,𝑉 𝐶𝜃,𝛼 𝐶𝜃,𝛽 𝐶𝜃,𝜙 𝐶𝜃,𝜃 𝐶𝜃,𝜓

𝐶𝜓,𝑉 𝐶𝜓,𝛼 𝐶𝜓,𝛽 𝐶𝜓,𝜙 𝐶𝜓,𝜃 𝐶𝜓,𝜓


𝐶𝐴𝐹 =



𝐶𝑉,𝑉 𝐶𝑉,𝛼 𝐶𝑉,𝛽 𝐶𝑉,𝜙 𝐶𝑉,𝜃 𝐶𝑉,𝜓 𝐶𝑉, 𝑓𝑉

𝐶𝛼,𝑉 𝐶𝛼,𝛼 𝐶𝛼,𝛽 𝐶𝛼,𝜙 𝐶𝛼,𝜃 𝐶𝛼,𝜓 𝐶𝛼, 𝑓𝑉

𝐶𝛽,𝑉 𝐶𝛽,𝛼 𝐶𝛽,𝛽 𝐶𝛽,𝜙 𝐶𝛽,𝜃 𝐶𝛽,𝜓 𝐶𝛽, 𝑓𝑉

𝐶𝜙,𝑉 𝐶𝜙,𝛼 𝐶𝜙,𝛽 𝐶𝜙,𝜙 𝐶𝜙,𝜃 𝐶𝜙,𝜓 𝐶𝜙, 𝑓𝑉

𝐶𝜃,𝑉 𝐶𝜃,𝛼 𝐶𝜃,𝛽 𝐶𝜃,𝜙 𝐶𝜃,𝜃 𝐶𝜃,𝜓 𝐶𝜃, 𝑓𝑉

𝐶𝜓,𝑉 𝐶𝜓,𝛼 𝐶𝜓,𝛽 𝐶𝜓,𝜙 𝐶𝜓,𝜃 𝐶𝜓,𝜓 𝐶𝜓, 𝑓𝑉

𝐶 𝑓𝑉 ,𝑉 𝐶 𝑓𝑉 ,𝛼 𝐶 𝑓𝑉 ,𝛽 𝐶 𝑓𝑉 ,𝜙 𝐶 𝑓𝑉 ,𝜃 𝐶 𝑓𝑉 ,𝜓 𝐶 𝑓𝑉 , 𝑓𝑉


(10)

Innovation 𝛾𝑘 is defined as the difference between the measurement data and the estimated data. 𝑓𝑦𝑘
given in equation 11 is the probability density function in Gaussian form given by:

𝑓𝑦(𝑘) =𝛽(𝑘) exp
{
−𝛾𝑇 (𝑘)𝐶−1(𝑘)𝛾(𝑘)/2

}
(11)

𝛽(𝑘) = 1
(2𝜋)𝑚/2 |𝐶 (𝑘) |1/2 (12)

With the probability density function, the probability of the two filters are computed and denoted as
𝑝𝑖 (𝑘), 𝑖 = 1, 2.

1 - Augmented fault filter & 2 - Sensor noise and bias filter.

These probabilities are calculated at every time step k. As the fault occurs, innovation increases for
the augmented fault filter, while the sensor noise & bias filter will follow the measurement signal, leading
to low innovation. This difference in innovation can signify that a fault has occurred. The probabilities
are computed as follows:

𝑝𝑖 (𝑘) =
𝑓𝑦𝑘 𝑖𝑝𝑖 (𝑘 − 1)∑2

𝑖=1 𝑓𝑦𝑘 𝑖𝑝𝑖 (𝑘 − 1)
(13)

Using (13), the probability of the AF filter is 1 when the data have the highest correlation with a
fault being present, while the probability of the SNBF filter is 0. In contrast, when no fault is detected,
the probability of the SNBF filter is 1 and the AF filter is 0.

The redundant fault airspeed is obtained by following this probability distribution to select between
the AF and SNBF filter estimates. In cases where the probability calculation fails, another redundant
fault detection metric is used. This metric is based on the estimated fault when the filter is initialized. In
this case, we take the 50 time step and 100 time step estimated fault values, then average this value and
by considering a 40% margin the detection limit of the fault detection routine is set. When the AF filter
estimates a fault greater than this detection limit, a fault is assumed to have occurred.

Based on the fault scenario that occurs in the Pitot tube and on the signal characteristics of those
faults, the test scenarios are set according to Table 2.

Figure 2 represents the characteristics of the sample-and-hold fault. Sample and hold faults are
particularly challenging to identify, as the fault effect may be relatively small for constant and slowly
changing ADS measurements, and thus may stay ’hidden’ for longer periods before becoming noticeable.
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Fig. 2 Sample and hold signal for fault introduction

Table 2 Test cases for simulation

Test Data Fault vector
Test Scenario

Pitot tube

(Simulation Data) Ramp
Partially

blocked ports

Pulse generator
Fluttering
particles

in the ports
Cessna Citation
550 Simulation

Step Simple Fault

Sample and hold
Fully blocked

ports

6 Results
In this section, the ADS FDD system is tested on data from a high-fidelity Cessna Citation 550

simulation. Figure 3 details the simulation setup, the simulation is divided into 4 sections: 1) Measured
Flight Data Block - This block has the Pitot tube sensor emulation and fault introduction procedure.
2) Augmented fault filter - UKF with augmented fault state and the state transition function & the
measurement function. 3) Sensor Noise and Bias Filter block UKF with nonadditive noise. 4) Fault
estimation, prediction, and correction block - the probability calculation, and fault indicator. The 4th
block will estimate the redundant airspeed from the fault.

Data from a 600-second run with the Cessna Citation 550 model are presented in Figure 10. As
can be seen in Figure 6 the true air speed is constant at 90 m/s to 100 seconds during which the aircraft
is flying level 10. At 100 seconds, an aileron pulse input causes the aircraft to transition into the spiral
mode; at 200 seconds the elevator pulse input causes the aircraft to lose altitude; at 300 seconds a rudder
pulse input causes the spiral mode to tighten. These inputs cause a sharp spike in the IMU measurements
(Acceleration/turn rates); how the algorithm performs during these spikes in the input will be key in
validating the functioning of the ADS FDD. The UKF relies on these input accelerations and turn rates
to estimate the measurement states. The total flight time is 600 seconds, which is significantly longer
than normally presented in the literature (see e.g. [10] and [12]). Our FDD algorithm is also tested with
band-limited white noise added to the measurement vector, and the filter does not have a priori knowledge
of the statistics of this noise. Table 3 gives the summary of the results without measurement noise.
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Fig. 3 ADS FDD and redundant airspeed estimation simulink implementation

Fig. 4 Inertial Measurement unit data - U Fig. 5 Flight path angles

Fig. 6 True airspeed, angle of attack, angle of
sideslip and mach number

Fig. 7 Control surfaces excitation

Cessna Citation Simulator data - 100 sec. Flight Data with aileron pulse input, 200 sec. elevator
pulse input and 300 s. rudder pulse input.
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6.1 Results of the FDD algorithm without noise
This subsection evaluates the performance of the FDD algorithm in an ideal scenario without

measurement noise. As seen in Table 3 four test cases with faults induced by the sample and hold, step,
ramp, and pulse generator are examined. The efficacy of the algorithm is depicted through:

1) Probability of Correct Filter Selection: Indicating the algorithm’s ability to select the appropriate
filter in a noise-free environment.

2) Fault Estimation by an AF Filter: Assessing the fault estimation capabilities of the AF filter
without interference from measurement noise.

3) Corrected air speed: Demonstrating the algorithm’s success in correcting airspeed under fault
conditions.

4) Airspeed Comparison with Ground Truth: Ensure the reliability of the corrected airspeed in the
absence of noise.

Figure 8 presents the results with pulse generator faults representing fluttering particles in the pitot
tube. Another motivation to test this kind of fault is to test whether the algorithm can detect simple faults
(step faults) during maneuvers. The probability plots and correct fault estimation show that the FDD is
working as intended.

a) b)

c) d)

Fig. 8 ADS FDD performance to simulation with pulse generator fault. a) The airspeed comparison plot
presents the airspeed data generated by both filters (SNBF & AF filter), alongside the fault-introduced
airspeed and the ground truth airspeed. b) The plot represents the fault estimated by Augmented fault filter
vs fault introduced in the system. c) Represents the probability of the both the filters. d) Corrected Airspeed
generated by augmented fault filter vs ground speed.
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Figure 9 shows the test plots with a simple step fault introduced at 100 seconds. It can be seen from
the probability graph that the sensor noise and bias filter probability is higher when the filter detects
no fault. When the filter detects the fault, the augmented fault filter has a higher probability. These
probabilities change at 100 seconds; this is an indicator that there is no noise present in the system.
Clearly, the FDD system can identify the fault in this noise-free situation. The estimated fault by the
augmented fault filter has a magnitude of approximately 2 m/s at 100 s, which correctly corresponds to
the step fault inserted into the measurement signal.

a) b)

c) d)

Fig. 9 ADS FDD performance to simulation with simple step fault. a) The airspeed comparison plot
presents the airspeed data generated by both filters (SNBF & AF filter), alongside the fault-introduced
airspeed and the ground truth airspeed. b) The plot represents the fault estimated by Augmented fault
filter vs. fault introduced in the system. c) Represents the probability of the both the filters. d) Corrected
Airspeed generated by augmented fault filter vs. ground speed.

Fig. 10 Flight path - flight begins at 4000m with true airspeed 90m/s

13Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Figure 10 represents the flight path of the simulated data used to test the fault detection algorithm.

Figure 11 shows the results of a ramp fault with a slope of 𝑚 = 0.0065 which is a very gradual slope
and which is triggered at 30 seconds. This test aims to simulate either the total pressure port-blocked
scenario or the static pressure-blocked scenario. From Table 1 it is seen that when a single static port
or all static ports are blocked, the airspeed indicator acts by decreasing during the climb and increasing
during decent. It is seen from Figure 10 that the flight is descending and that a ramp fault introduction
simulates the static port-block scenario. From table 1 it is seen that in the total pressure port blocked
scenario the airspeed indicator acts as an altimeter, increasing during the climb and decreasing during the
descent. This can be simulated by a negative slope to the measurement signal, as it is similar to the ramp
fault signal and the figure 11 is convincing enough. An interesting observation is made here; it is seen at
30 s that the estimated fault follows the ramp, but the probability calculation indicates a fault only at 60 s.
This happens because of the probability calculation dependency on the innovation and covariance of the
filter, the innovation takes time to grow in a ramp fault scenario, especially when the ramp slope is small.

a) b)

c) d)

Fig. 11 ADS FDD performance to simulation with ramp fault to represent either total pressure port or
static pressure port blocked. a) The airspeed comparison plot presents the airspeed data generated by both
filters (SNBF & AF filter), alongside the fault-introduced airspeed and the ground truth airspeed. b) The
plot represents the fault estimated by Augmented fault filter vs. fault introduced in the system. c) Represents
the probability of both filters. d) Corrected Airspeed generated by augmented fault filter vs. ground speed.
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Table 3 Results without measurement noise

Fault Scenario Figure Interpretation Summary

Sample and Hold
Both ports blocked

12

Probability
Calculation
suffers from
high Innovation

Due to probability
calculations failure
The corrected airspeed
has spikes

Ramp Fault -
Either Static
or Total Pressure
port blocked

11

The FDD filter
take extra 30
sec to identify
the fault

The FDD filter
perfectly Identifies
Fault with some delay

Simple Step 9
The fault is
accurately
predicted

The FDD filter
perfectly Identifies
Fault

Pulse generator 8
The fault is
accurately
predicted

The FDD filter
perfectly Identifies
Fault

Table 4 Results with measurement noise

Fault Scenario Figure Interpretation Summary

Sample and Hold
Both ports blocked

17

Probability
Calculation
suffers from
measurement noise

Due to probability
calculations failure
The corrected airspeed
has spikes

Ramp Fault -
Either Static
or Total Pressure
port blocked

16

The FDD filter
take extra 30
sec to identify
the fault

The FDD filter
perfectly Identifies
Fault with some delay

Simple Step 15
The fault is
accurately
predicted

The FDD filter
perfectly Identifies
Fault

Pulse generator 14
The fault is
accurately
predicted

The FDD filter
perfectly Identifies
Fault

Figure 12 are the test plots with a sample and a hold fault introduced every 50 seconds and active
for 50 seconds; these times are selected because it was noticed that if the fault is introduced at the start
of simulation then the filter does not initialize correctly. From Table 1 it is seen that when both ports
are blocked, the airspeed indicator remains constant despite the actual change in velocity even during
maneuvers. The sample-and-hold faults simulate exactly this scenario as can be seen in figure 2.

a) b)

c) d)

Fig. 12 ADS FDD performance to simulation with sample-and-hold fault to represent all ports blocked
scenario. a) The airspeed comparison plot presents the airspeed data generated by both filters (SNBF & AF
filter), alongside the fault-introduced airspeed and the ground truth airspeed. b) The plot represents the
fault estimated by Augmented fault filter vs. fault introduced in the system. c) Represents the probability of
the both filters. d) Corrected Airspeed generated by augmented fault filter vs. ground speed.
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6.2 Results of the FDD algorithm with measurement noise
Testing FDD algorithms with measurement noise is essential to assess their effectiveness under

real-world conditions. In this case, the FDD algorithm is evaluated by introducing band-limited white
noise into the measurement signal (see Figure 13) that is a priori unknown to the filters.

Fig. 13 Measurement noise impact on estimation

It can be seen from the figure 13 that for the augmented fault filter, the uncertainty in the measurement
signal affects the estimation of the AF filter while it does not affect the sensor noise and bias filter. This
is purely due to the fact that the fault estimated by the augmented fault filter is added as an additional
state in the measurement function. Table 4 gives the summary of the results with measurement noise.

This subsection presents the robustness of the Fault Detection and Diagnosis (FDD) algorithm under
the presence of measurement noise. Four test cases are discussed as seen in Table 4, each simulating
faults through sample and hold, step, ramp, and pulse generator. The results are illustrated through four
plots for each test case:

1) Probability of Correct Filter Selection: Showcasing the effectiveness of the Sensor Noise and
Bias Filter (SNBF) and the Augmented Fault Filter (AF) algorithm in distinguishing the most
appropriate filter.

2) Fault Estimation by AF Filter: Demonstrating the precision of the AF filter in estimating the fault.
3) Corrected Airspeed: Highlighting the capability of the proposed algorithm to generate a corrected

airspeed despite the simulated faults.
4) Airspeed Comparison with Ground Truth: Validating the accuracy of the corrected airspeed

against the actual airspeed data.
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Figure 14 shows the results of the pulse fault injected into the noisy measurement. The estimated fault
and the redundant airspeed are correlated as shown in Figure 8 with the measurement noise clearly visible
on the estimated fault. Probability-based fault detection works despite having innovation uncertainty due
to measurement noise provided the aircraft flies level. However, when the aircraft flies a high-amplitude
maneuver the probability calculation fails due to a wide gap in the innovation between AF filter and
SNBF filter. Despite probability calculation failure, a simple fault detection metric is used to obtain the
redundant airspeed, and the airspeed remains valid throughout the simulation.

a) b)

c) d)

Fig. 14 ADS FDD performance to simulation with pulse generator fault - Measurement Noise. a) The
airspeed comparison plot presents the airspeed data generated by both filters (SNBF & AF filter), alongside
the fault-introduced airspeed and the ground truth airspeed. b) The plot represents the fault estimated by
Augmented fault filter vs. fault introduced in the system. c) Represents the probability of the both filters. d)
Corrected Airspeed generated by augmented fault filter vs. ground speed.
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Figure 15 shows the simulation results for a step fault with measurement noise. When comparing
the estimated fault between the figures with and without measurement noise (Figure 9), the effect of
noise is observed in the estimated fault, since from 450 seconds the estimated trend of the fault seems
to vary. The probability calculation suffers as observed before in Figure 14 the probability calculation
seems stable until maneuvers are executed. However, it can be observed that many false alarms are raised,
and the probability does not change when the fault is introduced. It is observed that when the filter is
initiated the probability of the 𝑃𝑆𝑁𝐵𝐹 filter is 1 and 𝑃𝐴𝐹 is 0, but due to the uncertainty in the innovation
of the AF filter, the combined probability shows that the AF filter has higher probability for the rest of
the simulation. A clean probability change can be seen when a fault is introduced in 9 but not when
measurement noise is introduced. The redundant airspeed estimation remains consistent with the ground
truth.

a) b)

c) d)

Fig. 15 ADS FDD performance to simulation with simple step fault - - Measurement Noise. a) The airspeed
comparison plot presents the airspeed data generated by both filters (SNBF & AF filter), alongside the
fault-introduced airspeed and the ground truth airspeed. b) The plot represents the fault estimated by
Augmented fault filter vs. fault introduced in the system. c) Represents the probability of both filters. d)
Corrected Airspeed generated by augmented fault filter vs. ground speed.
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Figure 16 shows the simulation response graph to a ramp fault with slope 𝑚 = 0.0065 and measure-
ment noise, and the estimated fault follows the ground truth with minimal variance as can be seen from
the fault estimated plot. Indeed, the probability are also in the expected trend. First, initializing with
𝑃𝑆𝑁𝐵𝐹 being the highest and then when the fault is introduced, 𝑃𝐴𝐹 is higher. Since these flight data
have simulated measurement noise, the probability does not show the trend seen in the results without
measurement noise, as seen in Figure 11.

a) b)

c) d)

Fig. 16 ADS FDD performance to simulation with ramp fault to represent either total pressure port or
static pressure port blocked - Measurement Noise. a) The airspeed comparison plot presents the airspeed
data generated by both filters (SNBF & AF filter), alongside the fault-introduced airspeed and the ground
truth airspeed. b) The plot represents the fault estimated by Augmented fault filter vs. fault introduced in
the system. c) Represents the probability of both filters. d) Corrected Airspeed generated by augmented
fault filter vs. ground speed.
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Figure 17 shows the FDD response to a sample-and-hold fault; from the estimated fault, the effects
of noise cannot be clearly observed as the faults are correlated with the trend of airspeed when the faults
are introduced. Since the variation in air speed is larger, variations in the estimated faults cannot be seen.
The probability calculation for both types of fault fails for the reason stated above, but the redundant
airspeed is consistent with ground truth.

a) b)

c) d)

Fig. 17 ADS FDD performance to simulation with sample-and-hold fault to represent all ports blocked
scenario - Measurement Noise. a) The airspeed comparison plot presents the airspeed data generated by
both filters (SNBF & AF filter), alongside the fault-introduced airspeed and the ground truth airspeed. b)
The plot represents the fault estimated by Augmented fault filter vs. fault introduced in the system. c)
Represents the probability of the both filters. d) Corrected Airspeed generated by augmented fault filter vs.
ground speed.

7 Conclusion
In this paper, the detection and correction of reliable airspeed measurements due to various ob-

structions of the Pitot tube is studied. To improve airspeed estimation, an airspeed Fault Detection &
Diagnosis (FDD) and redundant estimation routine based on the Double Model Adaptive Estimation
(DMAE) principle is implemented and validated on simulation data. The filter performance is found to
be not affected by the type of fault or the magnitude of the faults, but measurement noise affects the filter
performance.

For the simulation with measurement noise, the probability calculations are not accurate because
of uncertainty in measurement noise and also because innovation has great disparity. When probability
calculations fail, the augmented fault (AF) filter states estimates are programmed to be assigned to the
fault redundant airspeed. Therefore, we have the fault-augmented airspeed state at each time step. It
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should be noted that probability calibrations fail in the case of noisy measurement signals when the
vehicle is executing high-intensity maneuvers.

From the performance of the filter (Output Error Covariance and Root Mean Square Error ), it can
be seen that in the case with measurement signal noise, the estimation degrades after 400 seconds, but
the filters performance stabilizes if run for a significant amount of time.

Refinement of probability calculations to work when measurement noise is introduced is a key area
of future research.

Appendix
The covariance matrices of the SNBF filter is given in equation 14 and AF filters is given in equation

15 are constructed as follows:

𝐶𝑆𝑁𝐵𝐹 =



10𝑒−10 𝐶𝑉,𝛼 𝐶𝑉,𝛽 𝐶𝑉,𝜙 𝐶𝑉,𝜃 𝐶𝑉,𝜓

𝐶𝛼,𝑉 10𝑒−6 𝐶𝛼,𝛽 𝐶𝛼,𝜙 𝐶𝛼,𝜃 𝐶𝛼,𝜓

𝐶𝛽,𝑉 𝐶𝛽,𝛼 10𝑒−6 𝐶𝛽,𝜙 𝐶𝛽,𝜃 𝐶𝛽,𝜓

𝐶𝜙,𝑉 𝐶𝜙,𝛼 𝐶𝜙,𝛽 3𝑒−6 𝐶𝜙,𝜃 𝐶𝜙,𝜓

𝐶𝜃,𝑉 𝐶𝜃,𝛼 𝐶𝜃,𝛽 𝐶𝜃,𝜙 3𝑒−6 𝐶𝜃,𝜓

𝐶𝜓,𝑉 𝐶𝜓,𝛼 𝐶𝜓,𝛽 𝐶𝜓,𝜙 𝐶𝜓,𝜃 3𝑒−6


(14)

𝐶𝐴𝐹 =



10𝑒−10 𝐶𝑉,𝛼 𝐶𝑉,𝛽 𝐶𝑉,𝜙 𝐶𝑉,𝜃 𝐶𝑉,𝜓 𝐶𝑉, 𝑓𝑉

𝐶𝛼,𝑉 10𝑒−6 𝐶𝛼,𝛽 𝐶𝛼,𝜙 𝐶𝛼,𝜃 𝐶𝛼,𝜓 𝐶𝛼, 𝑓𝑉

𝐶𝛽,𝑉 𝐶𝛽,𝛼 10𝑒−6 𝐶𝛽,𝜙 𝐶𝛽,𝜃 𝐶𝛽,𝜓 𝐶𝛽, 𝑓𝑉

𝐶𝜙,𝑉 𝐶𝜙,𝛼 𝐶𝜙,𝛽 3𝑒−6 𝐶𝜙,𝜃 𝐶𝜙,𝜓 𝐶𝜙, 𝑓𝑉

𝐶𝜃,𝑉 𝐶𝜃,𝛼 𝐶𝜃,𝛽 𝐶𝜃,𝜙 3𝑒−6 𝐶𝜃,𝜓 𝐶𝜃, 𝑓𝑉

𝐶𝜓,𝑉 𝐶𝜓,𝛼 𝐶𝜓,𝛽 𝐶𝜓,𝜙 𝐶𝜓,𝜃 3𝑒−6 𝐶𝜓, 𝑓𝑉

𝐶 𝑓𝑉 ,𝑉 𝐶 𝑓𝑉 ,𝛼 𝐶 𝑓𝑉 ,𝛽 𝐶 𝑓𝑉 ,𝜙 𝐶 𝑓𝑉 ,𝜃 𝐶 𝑓𝑉 ,𝜓 10𝑒11


(15)
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