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ABSTRACT

This paper presents a comparison between three state observer schemes, including a nonlinear
high-gain observer, a Luenberger observer, and an unknown input observer, in order to detect
and isolate leaks in the propellant feeding system of a reusable launcher. The results show that
the high-gain observer had the best overall performance. On the other hand, due to decoupling
strategies, the bank of unknown input observers generates a more robust fault signature matrix.
Monte Carlo experiments under realistic measurement noise assumptions are included to compare
the proposed approaches.

Keywords: Normal canonical form, Sequential Probability Ratio Test, Fault Signature Matrix, Monte Carlo
simulations

Nomenclature
𝑞 = pipe mass flow [kg s−1]
𝑃𝑖𝑛, 𝑃 = inlet and outlet pressures [Pa]
𝑓𝑟 = Darcy friction factor
𝜌 = propellant density [kg/m3]
𝑆,𝑉 = pipe cross-sectional area [m2] and volume [m3]
𝐷,𝐿 = diameter and length [m]
𝑇𝑖𝑛, 𝑇 = fluid inlet and outlet temperatures [K]
𝛼 = sound speed in the fluid [m s−1]
𝜏 = pipe roughness [m]
𝑅𝑒 = Reynolds number
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1 Introduction
The next generation of European launchers is being designed with a multi-engine propulsion clus-

ter [1], which should offer more reliability and availability compared to a single-engine launcher. In
theory, even if a failure occurs in one engine, the mission can be completed thanks to the remaining
healthy engines [2]. In order to complete the mission in a degraded scenario, every fault must be detected
and isolated using a Fault Detection and Isolation (FDI) logic as the core part of a Health Monitoring
System (HMS).

The development of a HMS for a rocket engine started in the 1970s with the analysis of some important
operational parameters with fixed red line values [3]. More elaborated methods for fault detection and
isolation were tested in the Space Shuttle Main Engine (SSME), as in [4], where data-driven algorithms
such as Autoregressive Moving Average (ARMA) models were tested for fault detection, and in [5]
multimodal learning was used for anomaly detection in rocket engines. However, those methods require
an important amount of recorded data. An overview of different fault detection techniques applied to
rocket engines is presented in [6]. The FDI techniques are usually applied for each engine separately,
considering that they are a perfectly isolated system.

In this paper, a different strategy will be used to detect and isolate faults. Rather than using FDI
methods for each engine, those methods will be applied to the propellant feeding system, which is shared
by all the Liquid-Propellant Rocket Engines (LPREs) of the cluster. FDI techniques that take into account
the multi-engine architecture of the cluster have not yet been investigated in the open literature. Studies
concerning a single-engine cannot be directly extended to a multi-engine cluster due to the interconnection
between engines. The type of fault considered is a leakage in the feeding lines of the launcher. It is related
to leak detection and isolation problem in pipelines, an important research subject mainly applied to gas,
oil, and water transportation industries, for which an overview of supervision techniques is presented
in [7]. A difference that must be highlighted in the propellant feeding system is that some measurements,
such as the feeding line mass flows, are unavailable in launchers due to their specific instrumentation
constraints [8].

In order to detect and isolate the faults using measurements compatible with space applications, state
observer schemes will be used. The FDI performance of three different strategies based on state observers
designs will be compared: a full-state Luenberger observer, a bank of Unknown Input Observer (UIO),
and interconnected High-Gain Observers (HGO). Each design has its own specificity, with Luenberger
being the classical approach to estimate the states of a linear system. The UIO is also based on the
linearized system, but it uses decoupling strategies to minimize the effects of the unknown input on state
estimation. The HGO uses the differential observability property [9] to estimate the states directly from
the nonlinear model. In [10] a comparison study between five nonlinear observers for fault diagnosis
applied to a heat-exchanger has been performed, where the adaptive observer (AO) presented the best
convergence and oscillation properties. However, decoupling strategies taking into account the dynamics
of potential faults were not included, and the resulting FDI performances were not evaluated.

The main contributions of this paper are: first, a comparison study of three different families of state
observers for FDI in the feeding lines of a reusable launcher under realistic measurement assumptions.
Second, a mapping that transforms the model of the feeding lines into the canonical normal form is
derived, so as to design a HGO. Third, the FDI in a reusable launcher, taking into account the multi-
engine architecture of the propulsion cluster, has yet to be investigated in the open literature. The paper is
organized as follows. The propellant feeding line model is presented in Section 2 and the adaptation of the
three candidate observer designs are detailed in Section 3. The fault detection and localization strategy
is presented in Section 4. Finally, Sections 5 and 6 present the simulation results and conclusions.
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2 Oxidizer feeding lines modeling
The multi-engine cluster configuration considered is composed of three identical LPREs. The

launcher has two propellants: a fuel and an oxidizer. A simplified scheme of the multi-engine propulsion
cluster considering only the oxidizer feeding system is illustrated in Fig. 1. The oxidizer feeding line is
the pipe network connecting the oxidizer tank with the rocket engines. For a launcher with three engines,
the structure with a single manifold seems to be the optimal option in terms of mass and pressure drop
values [11], with one main line splitting into secondary lines each connected to one engine.
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Fig. 1 Simplified scheme of the oxidizer feeding system.

The engines must generate the adequate thrust in order to follow the planned trajectory. The thrust
reference can be directly converted into mass flow references if the engine’s efficiency is known. To build
a model that simulates the behavior of the feeding line in a realistic scenario, the outlet mass flow of each
secondary line is taken as known inputs of the system. This outlet mass flow must be equal to the mass
flow required by the rocket engine to generate the expected thrust. The fluid’s temperature and pressure
at the output of the tank are also considered as inputs of the feeding lines.

A generic pipe model (Fig. 2) has two components: one segment and one cavity model. The
momentum balance equation governs the segment model, and the cavity model is governed by the mass
balance and energy balance equations. These three equations represent a pipe with a fixed volume of
fluid. The fluid dynamics equations used in this section were obtained from [12] and the thermodynamic
equation was based on the reference textbook [13]. The model was configured with thermophysical
properties of LOX obtained in the NIST Chemistry WebBook [14].
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Fig. 2 Pipe model

One rigid pipe, considering the effects of the fluid inertia, dynamic compressibility, perfect thermal
insulation, and neglecting the fluid thermal expansion, can be described by the following equations.

Momentum balance

¤𝑞 =
𝑆

𝐿

(
𝑃𝑖𝑛 − 𝑃 − 𝑓𝑟𝐿

2𝜌𝑆2𝐷
𝑞2
)
(1)

Mass balance

¤𝑃 =
𝛼2

𝑉
(𝑞 − 𝑞𝑜𝑢𝑡) (2)

Energy Balance

¤𝑇 =
1
𝜌𝑉

(𝑇 − 𝑇𝑖𝑛)𝑞 (3)

The Darcy friction factor 𝑓𝑟 is calculated using the Haarland equation, which is valid for fully-
developed turbulent flows.

1√︁
𝑓𝑟

= −1.8𝑙𝑜𝑔10

[( 𝜏

3.7𝐷

)1.11
+ 6.9
𝑅𝑒

]
(4)

During the nominal operation of the rocket engine, the mass flow through pipes follows a turbulent
regime. The simulation considers the oxidizer feeding line (liquid oxygen – LOX, in this case). The
pipeline network for the oxidizer feeding line with four pipes is shown in Fig. 3.
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Equations (1), (2), and (3) will be repeated for each one, resulting in 12 equations. Equation (2) must
be adapted for the main line, since it has three outlet mass flows instead of one

¤𝑃𝑚 =
𝛼2
𝑚

𝑉𝑚
(𝑞𝑚 − 𝑞𝑠1 − 𝑞𝑠2 − 𝑞𝑠3) (5)

where subscripts .𝑠1, .𝑠2, .𝑠3, and .𝑚 respectively denote the secondary lines 1, 2, 3 and the main line.

Main line
𝑇𝑖𝑛

𝑃𝑖𝑛

Sec. line 1

Sec. line 2

Sec. line 3
𝑞𝑜3

𝑞𝑜2

𝑞𝑜1

𝑓𝑚

𝑓𝑠3

𝑓𝑠1

𝑓𝑠2

Fig. 3 Oxidizer feeding line

Each equation represents the dynamics of one state of the oxidizer feeding line. The state vector 𝑥,
the input vector 𝑢, and the output vector 𝑦 are composed of the following variables:

𝑥 = [𝑃𝑠1, 𝑇𝑠1, 𝑞𝑠1, 𝑃𝑠2, 𝑇𝑠2, 𝑞𝑠2, 𝑃𝑠3, 𝑇𝑠3, 𝑞𝑠3, 𝑃𝑚, 𝑇𝑚, 𝑞𝑚]𝑇

𝑢 = [𝑃𝑖𝑛, 𝑇𝑖𝑛, 𝑞𝑜1, 𝑞𝑜2, 𝑞𝑜3]𝑇

𝑦 = [𝑃𝑠1, 𝑇𝑠1, 𝑃𝑠2, 𝑇𝑠2, 𝑃𝑠3, 𝑇𝑠3, 𝑃𝑚, 𝑇𝑚]𝑇
(6)

The system has five known inputs: the outlet mass flow of each secondary line {𝑞𝑜1,𝑞𝑜2,𝑞𝑜3}, and
the inlet pressure and temperature in the main pipe 𝑃𝑖𝑛, 𝑇𝑖𝑛. The measurement vector 𝑦 in (6) contains the
outlet pressure and temperature of each pipe. The mass flows 𝑞 are not measured, which is a challenge
for estimation and control purposes.

Four faults were implemented: the first three are an external LOX leakage 𝑓𝑠𝑖 on each secondary
line, where the subscript 𝑖 ∈ [1, 3] indicates in which secondary line the fault occurred. The fourth is a
LOX leakage in the main line 𝑓𝑚. The fault vector can be written as 𝑓 = [ 𝑓𝑠1 𝑓𝑠2 𝑓𝑠3 𝑓𝑚]𝑇 . The fault 𝑓 and
the inputs 𝑢 are illustrated in Fig. 3. The faults can be simultaneous and no specific assumption on their
time behavior is required. As in [15], these leakage faults are injected as an additive output to the mass
balance equation given in (2). For the secondary line 1, for example, Eq. (2) is rewritten as:

¤𝑃𝑠1 =
𝛼2
𝑠1
𝑉𝑠1

(𝑞𝑠1 − 𝑞𝑜1 − 𝑓𝑠1) (7)

The effect of the leakage in the main line 𝑓𝑚 affects the mass balance equation of the main line
expressed in Eq. (5):

¤𝑃𝑚 =
𝛼2
𝑚

𝑉𝑚
(𝑞𝑚 − 𝑞𝑠1 − 𝑞𝑠2 − 𝑞𝑠3 − 𝑓𝑚) (8)

3 Observer design
Three observer schemes have been studied to estimate the states of the system for FDI purposes:

• Luenberger: one observer that estimates the full 𝑥 ∈ R12 vector;
• UIO: a bank of four UIOs, each observer estimates the full 𝑥 ∈ R12 vector;
• HGO: four sub-observers, each one estimates a subset of three states of 𝑥 that represents the

dynamic of one pipe. The combination of the sub-observers is the estimation of 𝑥 ∈ R12.
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The full-rank observers (Luenberger and UIOs) can be directly calculated using the linear approx-
imation of the feeding lines around an operating point. The HGO requires the nonlinear system to be
written in the canonical triangular form, which is not possible for any MIMO system. The problem can
be simplified by separating the feeding lines into pipes. The pipe model can be expressed in the triangular
form, and an HGO can be calculated.

3.1 System linearization
It has been chosen to perform a linearization of the nonlinear system presented in Section 2, so as to

implement the linear observers. The system was linearized at a trimmed operating point using Simulink®.
The operating point chosen for linearization should be consistent with the nominal state of a multi-engine
cluster with three 1000kN class engines. The linear time-invariant system with faults obtained is given
by {

¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐸 𝑓 , 𝑦 = 𝐶𝑥 (9)

where 𝑥 ∈ R12 is the state vector 𝑢 ∈ R5 is the input vector, 𝑦 ∈ R8 is the output vector, and 𝑓 ∈ R4 is the
fault vector; 𝐴, 𝐵, 𝐶, and 𝐸 are dynamic, input, output, and fault distribution matrices with appropriate
dimensions, their structure is presented in the Appendix. The linear system is stable with oscillations,
with 8 complex and 4 real poles.

The observability of (9) gives information about which sensors are necessary to implement the
proposed approach. The system require at least six different pressure and temperature measurements for
(𝐴,𝐶) to be observable. So, the measurement vector presented in (6) is enough to estimate the entire
state vector.

3.2 Luenberger observer
The Luenberger observer is a classical approach to estimate the states of a linear system, initially

defined in [16]. Neglecting the fault term 𝐸 𝑓 , the Luenberger observer for the system (9) is given by

¤̂𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐿 (𝑦 − 𝐶𝑥) (10)

where the dynamics of the estimation error 𝑒 = 𝑥 − 𝑥 is characterized by (𝐴 − 𝐿𝐶). A direct way to
calculate the gain 𝐿 is to use the pole placement method to place the eigenvalues of the error dynamics
in the stable left-half plane. The Luenberger observer can be directly applied on the linear system (9)
because the pair (𝐴,𝐶) is observable. The poles of the error dynamics 𝜆𝐿 (see Appendix) were chosen
in a Kalman-like way [17]. First, a Kalman filter is calculated considering prior knowledge about the
measurement and process noise. Then, the Kalman gain, obtained after filter convergence is used to
calculate the optimal poles of the observer.

3.3 Unknown input observer
If some prior knowledge is available on the dynamics of unknown inputs, UIOs can be employed to

perform state estimation with minimal influence of the unknown input [18]. This can then be applied for
fault detection and localization, by considering a given fault as an unknown input to which a UIO will be
insensitive. Simultaneous fault detection and localization can then be achieved by using a a bank of UIOs
where each filter is sensitive to only one predefined fault. A bank of UIOs was successfully used in [19]
for water leak detection and localization in a pipe. However, the proposed method requires mass flow
measurements, which are not available for the system under study. The UIO equation for the system (9)
is given by {

¤𝑧 = 𝐹𝑧 + 𝑇𝐵𝑢 + (𝐾1 + 𝐾2)𝑦, 𝑥 = 𝑧 + 𝐻𝑦 (11)
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where the matrices 𝐹, 𝑇 , 𝐾1, 𝐾2, and 𝐻 must satisfy the following set of equations{
0 = (𝐻𝐶 − 𝐼)𝐸, 𝑇 = 𝐼 − 𝐻𝐶
𝐹 = 𝐴 − 𝐻𝐶𝐴 − 𝐾1𝐶, 𝐾2 = 𝐹𝐻

(12)

All the necessary conditions and the procedure to calculate the observer matrices detailed in [18]
turned out to be applicable. A bank of four UIOs was thus implemented for fault detection and localization
purposes. The first three observers take respectively into account the faults 𝑓𝑠1, 𝑓𝑠2 and 𝑓𝑠3 as unknown
inputs and the fourth one considers the fault 𝑓𝑚. The four observers provide an estimate of the full-state
vector (6). The state representation of the systems used to implement the bank of UIOs is given by

{
¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑠𝑖 𝑓𝑠𝑖
𝑦 = 𝐶𝑥

{
¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝑚 𝑓𝑚
𝑦 = 𝐶𝑥

(13)

where 𝐸𝑠𝑖 is the 𝑖-th column of the 𝐸 matrix defined in (9) and 𝐸𝑚 is the fourth column of the 𝐸 matrix.

The observer dynamics is defined by (𝑇𝐴−𝐾1𝐶). The observer gain 𝐾1 can be calculated using the
pole placement method. The poles of error dynamics of the UIO designed for (13) are 𝜆𝑠𝑖 and 𝜆𝑚 (see
Appendix), respectively. The poles were selected in the same way as the Luenberger observer. The only
difference is the process noise covariance matrix that was adapted to the measurement characteristics.

3.4 High gain observer
The feeding lines have been separated into four sub-systems so as to calculate a map that transforms

it into the normal canonical form. The proposed scheme was inspired by [20], where HGOs were used in
cascade to detect and isolate leaks in subterranean pipelines of liquefied gas. However, input and output
mass flows were considered to be known, and the system in question had only pipes connected in series.

The first step is to find a map 𝑇 (𝑥) to transform (1)(2)(3) into the normal form, with 𝑥 =[
𝑥1 𝑥2 𝑥3

]𝑇
=

[
𝑞 𝑃 𝑇

]𝑇
. The system can be simplified if the thermophysical properties of the LOX

(𝛼 and 𝜌), and the friction factor 𝑓𝑟 are considered constant. This simplification can be made because the
pressure and temperature do not undergo major changes. Taking 𝑢 =

[
𝑢1 𝑢2 𝑢3

]𝑇
=

[
𝑃𝑖𝑛 𝑞𝑜𝑢𝑡 𝑇𝑖𝑛

]𝑇
,

the equations of one rigid pipe can be rewritten as:

¤𝑥1 = 𝐾1𝑢1 − 𝐾1𝑥2 − 𝐾2𝑥
2
1

¤𝑥2 = 𝐾3(𝑥1 − 𝑢2) ¤𝑥3 = 𝐾4𝑥1(𝑥3 − 𝑢3), 𝑦 =

{
𝑥2, 𝑥3

}
(14)

with

𝐾1 =
𝑆

𝐿
𝐾2 =

𝑓𝑟

2𝜌𝑆𝐷
𝐾3 =

𝛼2

𝑉
𝐾4 =

1
𝜌𝑉

(15)

The system (14) has no relative degree. A dynamic extension must be done in order to define one and
calculate 𝑇 (𝑥). Two new states 𝜁2 and 𝜁3 are introduced, with ¤𝜁2 = 𝑢2, ¤𝜁3 = 𝑢3. The augmented system
has three inputs 𝑣 =

[
𝑣1 𝑣2 𝑣3

]
=

[
𝑢1 ¤𝜁2 ¤𝜁3

]
and is defined as

¤𝑥1 = 𝐾1𝑢1 − 𝐾1𝑥2 − 𝐾2𝑥
2
1

¤𝑥2 = 𝐾3(𝑥1 − 𝜁2) ¤𝑥3 = 𝐾4𝑥1(𝑥3 − 𝜁3) ¤𝜁2 = 𝑢2 ¤𝜁3 = 𝑢3 (16)

The system (16) has a vector relative degree 𝑟𝑚 =

{
𝑟1, 𝑟2

}
=

{
2, 2

}
. A change of coordinates 𝑧 = 𝑇 (𝑥)

can be calculated using the procedure of coordinate transformations for multi-input multi-output (MIMO)
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systems presented in [21]. The new system of coordinates is given explicitly by

𝑧1 = 𝑥2 𝑧2 = 𝐾3𝑥1 − 𝐾3𝜁2 𝑧3 = 𝑥3 𝑧4 = 𝐾4𝑥3𝑥1 − 𝐾4𝑥1𝜁3 (17)

The sum of relative degrees 𝑟1 + 𝑟2 is 4 and the system (16) has 5 states. One function 𝜙5 must be
defined to qualify (17) and 𝜙5 as an admissible coordinate transformations of 𝑥. We defined 𝜂 = 𝜙5 = 𝑥1.
Applying the coordinate transformations (17) and 𝜂, the system can be written in the 𝑧 coordinates as

¤𝑧1 = 𝑧2, ¤𝑧3 = 𝑧4, ¤𝜂 = −𝐾2𝜂
2 + 𝐾1𝑣1 − 𝐾1𝑧1

¤𝑧2 = 𝐾1𝐾3𝑣1 − 𝐾3𝑣2 − 𝐾3

(
𝐾2𝜂

2 + 𝑘1𝑧1

)
¤𝑧4 = 𝐾4𝜂

(
𝐾4𝑧3𝜂 +

𝐾4𝜂𝑧2 − 𝐾3𝜂

𝐾3

)
−
(
𝐾2𝜂

2 + 𝐾1𝑧1

) (
𝐾4𝑧3 + 𝐾4

𝑧2 − 𝐾3𝜂

𝐾3

)
+

𝐾1𝑣1

(
𝐾4𝑧3 + 𝐾4

𝑧2 − 𝐾3𝜂

𝐾3
− 𝐾4𝑣3𝜂

) (18)

The system (18) is said to be in the normal form. The new system in 𝑧 coordinates can be rewritten as

¤𝑧 = 𝐴ℎ𝑧 + 𝐵ℎ 𝑓 (𝑧, 𝜂, 𝑣) ¤𝜂 = 𝑔 (𝑧, 𝜂, 𝑣) , 𝑦 = 𝐶ℎ𝑧, (19)

where the matrices 𝐴ℎ, 𝐵ℎ and 𝐶ℎ and the functions 𝑓 and 𝑔 are given by

𝐴ℎ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


𝐵ℎ =

[
0 1 0 0
0 0 0 1

]𝑇
𝐶ℎ =

[
1 0 0 0
0 0 1 0

] 𝑓 (𝑧, 𝜂, 𝑣) =
{
¤𝑧2, ¤𝑧4

}𝑇
𝑔 (𝑧, 𝜂, 𝑣) = ¤𝜂 (20)

The system (19) can be used to implement the HGO presented in [22], which is defined by

¤̂𝑧 = 𝐴ℎ𝑧 + 𝐵ℎ 𝑓 (𝑧, 𝜂, 𝑣) + 𝐻ℎ (𝑦 − 𝐶𝑧) (21)

The observer gain 𝐻ℎ was chosen as

𝐻ℎ =

[
𝑎1
𝜖

𝑎2
𝜖2 0 0

0 0 𝑎3
𝜖

𝑎4
𝜖2

]𝑇
(22)

where 𝑎𝑖 (𝑖 = 1, . . . , 4) and 𝜖 ≪ 1 are positive constants. Four observers (21) have been implemented:
HGO𝑚, HGO𝑠1, HGO𝑠2, and HGO𝑠3 respectively for the main and secondary lines 1, 2 and 3. All the
observers have the same gain 𝐻ℎ, with 𝑎1 = 𝑎3 = 1, 𝑎2 = 𝑎4 = 0.1 and 𝜖 = 0.001. The only difference
between the observers are the constants 𝐾1, 𝐾2, 𝐾3, and 𝐾4 that are functions of geometrical parameters
of each pipe.

From (6), the only known mass flows are [𝑞𝑜1, 𝑞𝑜2, 𝑞𝑜3]. In order to implement the high gain observer
for the main pipe, the sum of the estimation of the input mass flow of each secondary line (𝑞𝑠1+𝑞𝑠2+𝑞𝑠3)
is used as input. This scheme with four sub-observers uses the measurement value of 𝑃𝑚 and 𝑇𝑚 as inputs
of the secondary line observers. In the schemes with full-state observers (Luenberger and UIO), 𝑃𝑚 and
𝑇𝑚 are internal states of the system.
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4 Residual generation and evaluation
The residuals are usually the difference between the estimated output 𝑦̂ and the actual output 𝑦 of the

system. From (6), the measurement vector is composed of eight outputs. So we will have eight different
residuals.

𝑟𝑖 = 𝑦𝑖 − 𝑦̂𝑖 (23)

with 𝑖 ∈ [1, 8]. Fault detection is possible due to the sensitivity of the residuals to the faults. If each fault
affects a different subset of residuals, i.e., each fault has a different signature, the faults can be isolated
using a fault signature matrix.

First, the propagation of the faults into the states of the system is defined as follows. A leakage in one
pipe will change the dynamics of the outlet pressure. From (7) for example, we can write 𝑃𝑠1(𝑥, 𝑓𝑠1) to
explicit the influence of fault 𝑓𝑠1 on 𝑃𝑠1. The outlet pressure is connected with the mass flow equation (1),
so 𝑞𝑠1(𝑥, 𝑓𝑠1), and the mass flow influences the outlet temperature 𝑇𝑠1(𝑥, 𝑓𝑠1) from (3). The same effect
is extended to 𝑃𝑠2(𝑥, 𝑓𝑠2), and 𝑃𝑠3(𝑥, 𝑓𝑠3). The dynamics of the main line pressure (5) is affected by
the sum of outlet mass flows on each line, in other words, the entire fault vector 𝑓 influences the outlet
pressure of the main line 𝑃𝑚 (𝑥, 𝑓 ).

4.1 Residuals generated by the Luenberger observer
The first eight residuals (23) generated by the Luenberger observer can be expressed from the

estimation error between the LTI system (9) and the Luenberger observer (10)

¤𝑒𝐿 = (𝐴 − 𝐿𝐶)𝑒𝐿 + 𝐸 𝑓 𝑟𝐿 = 𝐶𝑒𝐿 . (24)

The residual goes asymptotically to 0 if 𝑓 is a null vector. To analyze the sensitivity of 𝑟𝐿,𝑖 the fault-
residual transfer matrix can be calculated so as to quantify the impacts of 𝑓 on the residuals 𝑟𝐿,𝑖.

𝐺 𝑓 (𝑠) = 𝐶 [𝑠𝐼 − (𝐴 − 𝐿𝐶)]−1𝐸. (25)

The calculus of𝐺 𝑓 shows that every pressure residual from 𝑟𝐿,𝑖 is sensitive to all the leak faults of 𝑓 .
However, the magnitude of the sensitivity varies according to the fault and the residual. For example, the
step response of 𝑟𝐿,1 (residual of 𝑃𝑠1) to 𝑓𝑠1 has a peak value 44 and 146 times bigger than 𝑓𝑠2 and 𝑓𝑚
respectively. The other pressure residuals are also much more affected by the faults that occur in the same
subsystem. In addition, the fault vector 𝑓 does not have any influence on the residuals of the temperature
measurements.

4.2 Residuals generated by the bank of UIOs
Is it proven [18] that the estimation error 𝑒𝑈𝐼𝑂 of the UIO (11) for the (linearized) LTI system (3.3)

is governed by
¤𝑒𝑈𝐼𝑂 = 𝐹𝑒𝑈𝐼𝑂 (26)

if conditions (12) are met, then the estimation error 𝑒𝑈𝐼𝑂 approaches zero asymptotically.

From the bank of four UIOs, UIO 𝑓 𝑚 is used to denote the observer for the system in (13). This
observer is not sensitive to 𝑓𝑚 but is subject to the other three faults. The residuals calculated with the
estimates provided by UIO 𝑓 𝑚 are defined as

¤𝑒 𝑓 𝑚 = 𝐹𝑚𝑒 𝑓 𝑚 + 𝐸𝑠 𝑓𝑠 𝑟 𝑓 𝑚 = 𝐶𝑒 𝑓 𝑚 (27)

where 𝑟 𝑓 𝑚 is the linear approximation of the residuals (23), 𝐸𝑠 is the first three columns of 𝐸 , and
𝑓𝑠 = [ 𝑓𝑠1 𝑓𝑠2 𝑓𝑠3]𝑇 . The fault vector 𝑓𝑠 is needed to compute 𝑟 𝑓 𝑚 because from (27), the only fault that
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does not influence UIO 𝑓 𝑚 is 𝑓𝑚. The fault-residual transfer matrix can be calculated as

𝐺 𝑓 𝑚 (𝑠) = 𝐶 [𝑠𝐼 − 𝐹]−1𝐸𝑠 . (28)

The structure of 𝐺 𝑓 𝑚 shows that all residuals, including the temperature, are sensitive to the faults
𝑓𝑠 with different magnitudes. In this case, the peak value of the step response of the residual 𝑟 𝑓 𝑚,1
(𝑃𝑠1 residual) to 𝑓𝑠1 is 153 times bigger than 𝑓𝑠2 or 𝑓𝑠3. For the temperature residuals, the difference is
less important, with the residual of 𝑇𝑠1 being 7 times more affected than the residual of 𝑇𝑠2 when 𝑓𝑠1 is
injected. To give an order of magnitude, an abrupt leak of 𝑓𝑠1 = 1kg s−1 will lead to a peak value of the
residuals 𝑟 𝑓 𝑚,1 = 0.7bar, and 𝑟 𝑓 𝑚,2 = 0.06K. The remaining UIOs of the bank have similar behavior of
UIO 𝑓 𝑚. The only difference is the fault that will not affect the state estimation.

4.3 Residuals generated by the HGO
In the nonlinear case, the fault-residual transfer matrix cannot be calculated. The impact of the

faults on the estimations should be analyzed for each residual. The estimate 𝑃̂𝑠1 of the pressure 𝑃𝑠1 from
HGO𝑠1 using equation (21) can be written as (in original coordinates)

¤̂𝑃𝑠1 = 𝑧2,𝑠1 +
𝑎1
𝜖
[𝑃𝑠1(𝑥, 𝑓𝑠1) − 𝑃̂𝑠1]

¤̂𝑧2,𝑠1 = 𝐾1,𝑠1𝐾3,𝑠1𝑃𝑚 (𝑥, 𝑓 ) − 𝐾3,𝑠1 ¤𝑞𝑜1 − 𝐾3,𝑠1(𝐾2,𝑠1𝑞
2
𝑠1 + 𝐾1,𝑠1𝑃̂𝑠1) +

𝑎2

𝜖2 [𝑃𝑠1(𝑥, 𝑓𝑠1) − 𝑃̂𝑠1]
(29)

From (29) the estimation of 𝑃𝑠1 is directly affected by 𝑓𝑠1 due to the output 𝑃𝑠1(𝑥, 𝑓𝑠1), and also by
the entire fault vector 𝑓 due to the input pressure 𝑃𝑚 (𝑥, 𝑓 ). The HGO does not have any information
about the faults or its dynamics, therefore the residual 𝑟𝐻𝐺𝑂,1 will be sensitive to the fault vector 𝑓 . The
subscript .𝐻𝐺𝑂 is used to denote the residual generated by the high-gain observer scheme. The same
procedure can be used to show that each residual 𝑟𝐻𝐺𝑂,𝑖 with 𝑖 ∈ [1, 8] is, in theory, sensitive to the entire
fault vector 𝑓 .

4.4 Differential mass flow residuals
Three additional residuals, calculated from fluid dynamics constraints (as in [23]), are introduced

using the estimates of the mass flows

𝑟9 = 𝑞𝑠1 − 𝑞𝑠2 𝑟10 = 𝑞𝑠2 − 𝑞𝑠3 𝑟11 = 𝑞𝑚 − (𝑞𝑠1 + 𝑞𝑠2 + 𝑞𝑠3). (30)

The additional residuals are sensitive to some predefined faults. When 𝑟9, and 𝑟10 are calculated,
the influence of 𝑃𝑚 (𝑥, 𝑓 ) is canceled out and the residuals are sensitive only to the faults that directly
affect the pressure in the line. The residual 𝑟11 is sensitive to all faults because the effect of 𝑃𝑚 (𝑥, 𝑓 )
propagates. The additional residuals sensitivity is summarized in a simplified fault signature matrix
presented in Table 1, which is valid for the three observer schemes. It shows that each fault has a different
signature and can thus be isolated using this set of residuals.

Table 1 Simplified fault signature matrix

Fault condition 𝑟9 𝑟10 𝑟11

𝑓𝑠1 1 0 1
𝑓𝑠2 1 1 1
𝑓𝑠3 0 1 1
𝑓𝑚 0 0 1
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4.5 Residual evaluation
The residual evaluation has been carried out by detecting a change in variance 𝜎2

𝑖
for a given residual

𝑟𝑖 by applying the Wald’s Sequential Probability Ratio Test (SPRT). The analysis of the variance was
chosen due to the high-frequency oscillatory nature of the system, with complex poles 𝑝 (See Appendix).
Classical ratio tests are usually based on a fixed horizon with a predefined number of samples. The
precision of the ratio test increases with the number of samples. On the other hand, the SPRT observation
horizon is variable. If a decision cannot be taken for a given risk, the decision is reported and another
sample is required. With a smaller observation horizon, a fault can be detected faster.

The equation of the SPRT for detecting a change of variance is presented in [24]. For a given residual
𝑟 with a nominal variance 𝜎2

0 , two hypotheses are considered: the variance of 𝑟 is nominal (𝐻0) or 𝑟 has
a variance 𝜎2

1 > 𝜎
2
0 (𝐻1). The decision equation at the 𝑘𝑡ℎ observation is written as:

ln 𝐴 + 𝑘
2 ln 𝜎1

𝜎0

2

1
2

(
1
𝜎2

0
− 1
𝜎2

1

) <
𝐻0

𝑘∑︁
𝑖=1

(𝑟𝑖 − 𝜇0)2 <
𝐻1

ln 𝐵 + 𝑘
2 ln 𝜎1

𝜎0

2

1
2

(
1
𝜎2

0
− 1
𝜎2

1

) (31)

where 𝑘 is the number of observations, 𝜇0 is the nominal mean. The parameter 𝜎1 can be adjusted
according to the magnitude of the noise increment that is going to be detected. For instance, to detect a
noise increment of 1.83𝜎0, the value of 𝜎1 must be 𝜎1 = 5𝜎0 [24].

The constants 𝐴 and 𝐵 are decision thresholds. Those constants can be adjusted according to the
target detection and false alarm rates. They also have a direct influence on the number of samples that is
used to decide between the hypothesis. Taking 𝜎1 = 5𝜎0, if a given fault 𝑓 increases the noise variance
𝜎2
𝑓
= 4𝜎2

0 . A fault is detected when

4𝑘𝜎2
𝑓 >

ln 𝐵 + 𝑘
2 ln 𝜎1

𝜎0

2

1
2

(
1
𝜎2

0
− 1
𝜎2

1

) 𝑘 >
50 ln 𝐵

96 − 25 ln 25 (32)

Considering a sensor with a measurement frequency of 1000Hz, taking ln 𝐵 = 57, the fault 𝑓 would
need at last 𝑘 = 185 measurements, or 0.185s to be detected. This detection delay remains reasonable
and allows the choice of big value of 𝐵, decreasing the false alarm rate. The probability of non detection
can be equated to the false alarm rate by taking 𝐴 =

1
𝐵

.

A practical implementation of (31) consists in reseting the decision equation (set 𝑘 = 0) every time
that it converges to one hypothesis. In addition, to avoid an important false alarm rate, a minimum
number of samples (𝑘 > 50) is required to take a decision.

5 Simulation results
To compare the performance of the FDI observer schemes, the nonlinear model of the oxidizer

feeding lines and the observers were implemented in Simulink®. Monte Carlo experiments were applied
to analyse the proposed FDI schemes with 300 simulations for each fault, totalizing 1200 simulations.
The FDI system is activated after 7 seconds, when the residuals are in steady state. If a fault is detected
between the activation of the FDI system and before the injection of the fault, it is considered as a false
alarm. The time and the magnitude of faults were uniformly randomly generated within a predefined
interval reported in Table 2.
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Table 2 Intervals for random simulation inputs

𝑓𝑠𝑖, 𝑖 ∈ [1, 3] 𝑓𝑚

Injection time (s) [10, 11]
Magnitude (% of the nominal mass flow) [0.009, 0.21] [0.03, 0.15]

The pressure and temperature measurement noise are considered to be Gaussian, and have a standard
deviation of 𝜎𝑃 = 0.02 bar and 𝜎𝑇 = 0.02 K respectively. A different seed is used to generate the
measurement noise for each simulation.

The main results of the Monte Carlo experiments are presented in Table 3. Only one observer
(UIO 𝑓 𝑚) from the bank of UIOs is listed for better readability. In theory, this observer should not be
affected by the fault 𝑓𝑚, and its detection rate for 𝑓𝑚 should be near zero. The fault localization is made
using the fault signature matrix.

The range of possible fault magnitudes simulated was precisely selected to test the sensitivity of
the FDI system. In other words, the fault magnitudes are small. In theory, as discussed in Sec. 4, the
residuals 𝑟𝑖, 𝑖 ∈ [1, 8] are sensitive to the entire fault vector 𝑓 . However, due to the small fault magnitude
combined with measurement and process noise, the residuals 𝑟𝑖, 𝑖 ∈ [1, 8] are unaffected by the simulated
faults. Only the subset of residuals 𝑟9, 𝑟10, and 𝑟11 were sensitive and therefore used for fault detection.
A fault is detected if any residual crosses the threshold. The fault signature matrix from Table. 1 is used
for fault localization.

Table 3 Fault detection and localization results

Faults Detection rate Mean detection
delay

Mislocalization
rate

Overall FDI
performance False alarm rate

𝑓𝑠1,
𝑓𝑠3

HGO:
Luen.:
UIO 𝑓 𝑚:

91.33%
96.33%
86.33%

0.07s
0.08s
0.1s

0%
0%

10.42%

91.33%
96.67%
77.33%

0%
0.33%
16.67%

𝑓𝑠2

HGO:
Luen.:
UIO 𝑓 𝑚:

92.67%
97.33%
83.67%

0.07s
0.08s
0.1s

1.43%
14.72%
20.31%

91.33%
83.00%
66.67%

𝑓𝑚

HGO:
Luen.:
UIO 𝑓 𝑚:

94.33%
61.00%
10.00%

0.08s
0.17s
0.74s

0%
0%
-

94.67%
61.33%

-

The detection rate varies according to the fault magnitude interval. Fig. 4 shows the detection limit
for 𝑓𝑠2 and 𝑓𝑚 for each observer scheme. Those faults were arranged in ascending order according to
their magnitude. It can be seen that after a given minimum magnitude value, all faults are detected. This
minimum magnitude value varies according to the observer scheme and is consistent with the detection
rates presented in Table 3, with the schemes that presented a better detection rate having a smaller
minimum fault magnitude value. The faults 𝑓𝑠1 and 𝑓𝑠3 presented exactly the same values due to the
symmetry of the oxidizer feeding lines.

The HGO presented the best overall performance with high detection and low mislocalization rates.
The Luenberger observer had the best detection rate for the faults that affected the secondary lines. The
UIO 𝑓 𝑚 presented a good decoupling from fault 𝑓𝑚, being affected by only 10% of those faults. In addition,
UIO 𝑓 𝑚 also presented the highest false alarm rate, indicating that the residual evaluation technique must
be readapted to this observer. The mean detection delay is small and similar between the three observers
schemes.

11Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



0 5 10 15 20 25 30 35 40 45
1

2

3

4

5
·10−2 HGO

Not detected
Detected
Min detected
Max not detected

0 5 10 15 20 25 30 35 40 45
0

2

4

6
·10−2

Fa
ul

t
m

ag
.

(%
)

Luenberger

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

Simulation

UIOfm

(a) 𝑓𝑠2

0 10 20 30 40 50 60

3

3.5

4

·10−2 HGO

Not detected
Detected
Min detected
Max not detected

0 20 40 60 80 100 120 140

4

5

6
·10−2

Simulation

Fa
ul

t
m

ag
.

(%
)

Luenberger

(b) 𝑓𝑚

Fig. 4 Detection limits

6 Conclusions
This paper has presented a comparison between three different observer schemes to detect and

localize faults in the oxidizer feeding line of a reusable launcher. The model of such propellant feeding
lines for a three-engine cluster has been derived from thermodynamics and fluid dynamics equations.
Four generic fault cases were studied: a leak in the main line and three leaks localized in each secondary
line. The linear observers were calculated based on a linear approximation of the system around a steady-
state operating point. A diffeomorphism was calculated to recast the nonlinear model into the normal
form and succesfully design a High-Gain Observer. Monte Carlo simulations indicate that the HGO
presents the best overall performance for detecting and localizing the faults. The Luenberger observer is
a simpler alternative with good detection rates. The approach with UIOs did not present a good overall
performance. On the other hand, the insensitivity of the UIOs to predefined faults allows them to detect
and isolate even simultaneous faults. This suggests that the design feasibility of Unknown input HGO
should be addressed in future work.

The three FDI observer schemes were implemented without mass flow measurements, which are
hard to measure in embedded space applications. This shows that the leak location can be identified
using only temperature and pressure sensors. Perspectives of this work will incorporate the dynamics of
other cluster components, such as tanks and engines, to evaluate different model-based FDI approaches
against a larger panel of failures, and find the most effective health monitoring strategy to supervise the
propulsion cluster.
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Appendix

𝐴=



0 0 𝐴1×3 0 0 0 0 0 0 0 0 0
0 −𝐴2×2 0 0 0 0 0 0 0 0 𝐴2×2 0

−𝐴3×1 0 −𝐴3×3 0 0 0 0 0 0 𝐴3×1 −𝐴3×11 0
0 0 0 0 0 𝐴1×3 0 0 0 0 0 0
0 0 0 0 −𝐴2×2 0 0 0 0 0 𝐴2×2 0
0 0 0 −𝐴3×1 0 −𝐴3×3 0 0 0 𝐴3×1 −𝐴3×11 0
0 0 0 0 0 0 0 0 𝐴1×3 0 0 0
0 0 0 0 0 0 0 −𝐴2×2 0 0 𝐴2×2 0
0 0 0 0 0 0 −𝐴3×1 0 −𝐴3×3 𝐴3×1 −𝐴3×11 0
0 0 −𝐴9×2 0 0 −𝐴9×2 0 0 −𝐴9×2 0 0 𝐴9×2
0 0 0 0 0 0 0 0 0 0 −𝐴11×11 0
0 0 0 0 0 0 0 0 0 −𝐴12×10 0 −𝐴12×12


(33)

𝐵=



0 0 −𝐴1×3 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −𝐴1×3 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −𝐴1×3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 𝐴11×11 0 0 0

𝐴12×10 −𝐴3×3 0 0 0


𝐸=



−𝐴1×3 0 0 0
0 0 0 0
0 0 0 0
0 −𝐴1×3 0 0
0 0 0 0
0 0 0 0
0 0 −𝐴1×3 0
0 0 0 0
0 0 0 0
0 0 0 −𝐴9×2
0 0 0 0
0 0 0 0


(34)

𝑝={−0.25±164.7,−0.34±782,−0.34±672.3,−0.34±672.3,−4.75,−4.75,−4.75,−1.58} (35)

𝜆𝑚={−104.9±772.9,−174.9±219.5,−131.6±659.3,−131.6±659.3,−4.7,−4.7,−4.5} 𝜆𝑠𝑖={𝜆𝑚,−10} (36)

𝜆𝐿={−33.73±781.1,−69.17±175.9,41.62±671,−41.62±671,−4.7,−4.7,−4.7,−1.6} (37)
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