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ABSTRACT

The pointing error is used as an important figure of merit since the first phases of the GNC design.
However, its evaluation is not straightforward when it depends on parameters characterized by a
high degree of uncertainty or when the system dynamics are driven by discrete random processes.
A method is proposed to characterise analytically the off-pointing probability of a spin stabilised
S/C subject to random particle impacts, based on the composition of the statistical distributions
associated with the mission parameters. The Probe B2 of the Comet Interceptor mission is used as a
case study. The mission goal is to complete a flyby around an as-yet-undiscovered comet. The probe
is passively spin-stabilized and its ACS design and verification involves the development of a comet
dust flow model to assess the off-pointing of the spin-axis due to multiple impacts of dust particles.
The random variables considered are the number of impacts, the closest-approach distance, the
mass of the impacting particle, as well as the impact position and velocity. Each of them is modeled
with an appropriate distribution, accounting for the mission constraints and the properties of the
probe B2 itself. Then, the probabilities of interest are derived and successfully cross-validated
against the ones obtained from a Monte Carlo simulation campaign. Design decisions can be
carried out quickly iterating between performance evaluation, parameters tuning and requirements
definition, proving the effectiveness of the proposed method as an agile tool for preliminary pointing
error evaluation in scenarios with discrete random processes, such as those involving particle
impacts.
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Nomenclature

𝑁𝑛𝑢𝑚 = numeric density 𝜇 = mean
𝑁𝑐𝑜𝑙 = column density 𝜎 = standard deviation
𝑑 = distance from comet 𝑓𝑋 (𝑥) = probability density function
𝑠 = distance from closest approach 𝐹𝑋 (𝑥) = cumulative density function
𝛼 = in-plane angle 𝐹̄𝑋 (𝑥) = complementary cumulative density function
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𝛽 = out-of-plane angle 𝜒, 𝜏 = scaling coefficients
𝑟⊙ = heliocentric distance ℎ = momentum
𝑚 = mass 𝜃 = off-pointing angle
𝑣 = velocity 𝑢 = upper boundary
𝑐𝑎 = closest approach 𝑙 = lower boundary
𝑟 = radius 𝑇 = torque
𝜆 = mean rate of occurence 𝜔 = angular velocity
𝑛 = particles number 𝐼 = inertia
𝑎, 𝑏 = fitting coefficients 𝐴 = area

1 Introduction
A common need in the first phases of any project is the preliminary performance evaluation and

assessment of engineering budgets through relatively simple and quick analysis, to iterate with the
customer on the requirements and select a baseline for the mission. Concerning the Guidance Navigation
and Control (gnc) field, a pointing budget is generally performed to assess the impact of the different
Pointing Error Source (pes) on the pointing performances of a Spacecraft (s/c). When uncertainties
come into play, a Monte Carlo (mc) campaign is performed where deterministic models are simulated
scattering at each mc shot the error source parameters according to the defined distributions. This
allows characterizing the system performance metrics in terms of probabilities and associated confidence
intervals. This activity is performed in any case during the Verification & Validation (v&v) phase to
confirm the preliminary pointing budget assumptions.

The mc campaigns can become computationally expensive and time-consuming when rare events
occur, such as impacts from debris or dust particles. In fact, in these cases the metrics of interest are
largely influenced by the unlikely occurrences of such events and require a high number of mc shots to
characterize the probability of satisfying the corresponding requirement with sufficient confidence. To
address this issue, new tools emerged in recent years to perform preliminary pointing budgeting while
preserving time and computational resources. In this context, the Pointing Error Engineering Toolbox
(peet) and the associated handbook from European Space Agency (esa), set the standard for the industry
practices [1]. The pointing error budget is carried out by combining additively each pes in a simplified
way, if the central limit theorem applies, or by convolution of the Probability Density Functions (pdfs)
otherwise [2]. Using the latter method, accurate results can be obtained, which can be then successfully
cross-validated against mc simulations [3]. However, these methods can be applied only when the pes
enter the model linearly.

A possible alternative is provided by 𝜇-analysis techniques [4], which allow studying linear systems
affected by parametric and dynamic uncertainties with the goal of assessing the robust stability and the
robust performance margins of the system. However, these methods cannot characterise the probability
of occurrence of the identified worst cases. To bridge this gap, probabilistic 𝜇-analysis has been recently
investigated. In this case, the aim is to find the probabilities related to the stability of the system and to
the worst-case performance, given the uncertainties distribution [5]. Within the gnc domain, classical 𝜇-
analysis has been applied for the preliminary pointing budget assessment within the BIOMASS mission
[6] and for the verification of the pointing performance of Euclid [7], while probabilistic 𝜇-analysis
has been used for assessment of pointing performance regions with probability bounds in presence
of inertia matrix uncertainties [8]. Both the classical and probabilistic schemes exploit the Linear
Fractional Transformation (lft) model of an uncertain Linear Time Invariant (lti) system: the parametric
uncertainties are treated as independent Random Variables (rvs) and separated from the nominal closed-
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loop system with a block diagonal operator. For this reason, they cannot be easily adapted to discrete
stochastic processes such as those in systems subject to momentum transfer due to random impacts.

The problem addressed in this paper is the characterisation of the pointing error probability of a
spin-stabilised s/c traveling through the dust coma of a comet, considering as a study case the Probe B2
of the Comet Interceptor mission by esa. Generally, the approach followed for assessing the pointing
performance of a s/c subject to random particle impacts is to integrate the discrete stochastic nature
of the problem in the simulation framework, as done in [9], where hyper-velocity impacts of debris are
incorporated as discrete random processes in the dynamics equations. The resulting stochastic differential
equations allow to generate distributions for the evolution of the rotational kinetic energy of the body.
For the problem at hand, an extensive mc analysis is performed in [10] to characterize the effect of dust
particle impacts and to evaluate the likelihood of satisfying pointing and angular velocity requirements.

In this sense, our work can be framed as a step forward with respect to [10] and proposes a fully
analytical method to characterise the probability associated with the system performance (e.g. pointing
error) based on the composition of the probability distributions of the pes in non-additive manners. The
results are then compared against the probabilities computed from the mc simulation campaign. A similar
approach has been explored in [11] for the characterization of multiple particle rebounds from rough
wall surfaces, where the proposed pdfs are shown to fit experimental results. Differently, the problem
addressed in this paper is of interest for the Attitude Control System (acs) design of a s/c subject to
particle impacts and, up to the authors’ knowledge, it has never been characterized with a fully analytical
model. The main advantage of our approach is that it can be efficiently used to avoid time-consuming mc
simulations and to carry out design trade-offs in an agile way, allowing a quick iterative process between
requirements definition, parameters tuning and performance evaluation.

The article is structured as follows. In section 2, the problem will be formally defined presenting
the case study and framing each underlying parameter to its distribution. Then, in section 3, the
probabilities related to the selected figure of merit will be obtained and compared to the mc simulation
results. Moreover, examples of how this analytical approach can be used to relax requirements or tune
parameters, avoiding lengthy design iterations, will be highlighted. Finally, in section 4, concluding
remarks and considerations will be delivered.

2 Statistical Characterization

2.1 Problem Statement

Fig. 1 Problem statement

The goal of the Comet Interceptor mission is to travel to an
as-yet to discover comet, release two small probes (b1 and b2)
from the sc-a and complete a flyby. The probe b2, provided
by esa, consists of a passive spin-stabilized platform and will
be considered as a case study. The spin is achieved by means
of a single Reaction Wheel (rw) for a total momentum vector
of 4 Nms initially aligned with the velocity direction. A dust
shield is located facing this direction to cover the probe from the
impact of the dust particles. The shield has an octagonal shape
with an area 𝐴𝑜𝑐𝑡 = 0.41 m2 and a long diagonal 𝑟𝑜𝑢𝑡 = 0.38 m.
As it can be seen in Figure 1, the impact of a dust particle with
mass 𝑚 and distance 𝑟 from the shield center off-sets the angular
momentum vector from its nominal direction aligned with the
encounter velocity vector. Consequently, the spin axis begins a
precession-nutation dynamics around the angular momentum.
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The acs design and verification involves the development of a comet dust flow model to assess the
shift of the angular momentum vector of the s/c and the resulting off-pointing angle 𝜃 of the spin-axis
due to multiple impacts of dust particles. In this context, the following main requirement is considered:

The probe shall maintain a pointing error lower than 20◦ with respect to the velocity direction during
the entire fly-by in 95% of the cases.

The mission parameters are affected by a large degree of uncertainty due to the high variability of
the comet population considered, as well as on the conditions of the fly-by and closest approach. For this
reason, the determination of such probability is not straightforward with classical mc simulations, but it
can be easily accomplished with the method proposed in the following sections.

2.2 Stochastic Modelling
The stochastic parameters considered in this problem are summarized in Table 1. Each of them will

be now framed to the distribution that most gives an accurate representation of its variability. All the
statistical concepts, distributions and formulas that will be used in the following paragraphs are detailed
in Appendix A. When possible, the analytical pdfs will be validated against the histogram obtained from
the mc simulation, where some assumptions are lifted off and more accurate models are employed. The
mc simulation framework can be found in Appendix B for the interested reader.

Name rv Distribution

Impact Mass 𝑀 ∼ L (𝑏 + 1, 𝑙𝑀 , 𝑢𝑀)
Impact Velocity 𝑉 ∼ N𝑇𝑟 (𝜇𝑉 , 𝜎𝑉 , 𝑙𝑉 , 𝑢𝑉 )
Closest Approach 𝐶𝐴 ∼ N𝑇𝑟 (𝜇𝐶𝐴, 𝜎𝐶𝐴, 𝑙𝐶𝐴, 𝑢𝐶𝐴)
Impact Radius 𝑅 ∼ U𝑂𝑐𝑡 (𝑟𝑖𝑛, 𝑟𝑜𝑢𝑡)
Expected Impacts Λ ∼ N−1

𝑇𝑟
(𝜇Λ, 𝜎Λ, 𝑙Λ, 𝑢Λ)

Impacts Number 𝑁 ∼ P (Λ)

Table 1 Stochastic parameters and modeled distributions of the corresponding rv

The trajectory of a flyby with relative encounter velocity 𝑣 is depicted in Figure 2. A flyby plane can
be identified which intersects the comet nucleus and is perpendicular to the velocity vector. In this frame,
the Sun direction is defined by the out-of-plane 𝛽 angle and the in-plane 𝛼 angle. The intersection point
of the velocity with the fly-by plane is called Closest Approach (ca). The distance of the s/c from the
ca will be labelled 𝑠. The distance of the s/c from the comet will be therefore given by 𝑑 =

√
𝑠2 + 𝑐𝑎2,

where 𝑐𝑎 is the distance of ca from the comet nucleus.

Due to Sun activity, the comet nucleus ejects dust particles, which form the coma. The edcm data1

is used to model the coma environment in terms of numeric density field 𝑁𝑛𝑢𝑚 (#/m3) [12]. The data set
provides discrete values of the number of particles per unit volume as function of distance from the comet,
for different bins of particle radius and percentiles. The original bins classification can be mapped to the
limit masses, assuming the particles as perfect spheres with an average bulk density equal to 570 kg/m3

[12]. In this way the classification in Table 2 is obtained.

The edcm data points refer to the nominal trajectories of the sc-A and of the two probes b1 and b2.
The data for the column density 𝑁𝑐𝑜𝑙 (#/m2) is also present, which represents the integration of 𝑁𝑛𝑢𝑚

along the trajectory. The numeric density data of b2 (𝑐𝑎 = 200 km) at different distances from the comet

1Engineering Dust Coma Model (edcm)
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Fig. 2 Flyby geometry. Re-adapted from [13]

B 𝑙𝑀 [kg] 𝑢𝑀 [kg]

1 2.388E-15 7.534E-14
2 7.534E-14 2.388E-12
3 2.388E-12 7.534E-11
4 7.534E-11 2.388E-09
5 2.388E-09 7.534E-08
6 7.534E-08 2.388E-06
7 2.388E-06 7.534E-05
8 7.534E-05 2.388E-03
9 2.388E-03 7.534E-02
10 7.534E-02 2.388E+00
11 2.388E+00 7.534E+01

Table 2 Bins classification

is depicted in Figure 3a, together with the uncertainty ranges resulting from the percentiles. In Figure
3b same data is reported but as function of the particle mass/bin.

(a) As function of distance from the comet (b) As function of bin

Fig. 3 Numeric density data of b2 from edcm

A distinction can be made between high-density small particles and low-density large particles. The
pointing errors generated by particles of mass lower than ≈ 10−8 kg and high numeric density can be
assimilated to attitude jitter, with order of magnitudes similar to the one of sensors and actuators inac-
curacies: under 0.03 ◦ at 99th percentile in the worst case flyby scenario [10]. Considering individually
these impacts in the mc campaign is not necessary, given the computational cost increase that would
be required and the limited impact they have with respect to the pointing requirement, which can be
estimated considering them as a uniform pressure. Therefore, the bins from 1 to 5 will be discarded, in
agreement with the simulations performed in [10].
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On the other hand, large particles with low-density impact the s/c sparsely and transfer an angular
momentum proportional to the distance between the impact point on the s/c surface and the Center of
Gravity (cog). Large particles impacts can produce both a precession and nutation of the spinning axis.
These particles belong to the bins from 6 to 11 and will be the only ones considered in the following
analysis.

2.2.1 Impact Mass
Looking again at Figure 3b, it is possible to notice that the median numeric density is approximately

linear in logarithmic scale with respect to the mass bin. It can thus be represented by the power law in
(1).

𝑁𝑛𝑢𝑚 (𝑚B , 𝑑) = 𝑎(𝑑) 𝑚−𝑏(𝑑)
B (1)

Where 𝑚B is the reference mass of the bin B, and 𝑎(𝑑) and 𝑏(𝑑) are unknown coefficients that can be
determined by least-squares fitting, at each frozen distance.

The probability that an impact mass belongs to a given bin, fixed the distance to the comet, is obtained
by dividing the numeric density at that bin by the global density across all the bins, as shown in (2).

𝑃(𝑚 ∈ B) = 𝑁𝑛𝑢𝑚 (𝑚B , 𝑑)∑11
𝑖=6 𝑁𝑛𝑢𝑚 (𝑚B𝑖

, 𝑑)
(2)

By introducing 𝑀 as the continuous rv that describes the mass 𝑚 of a particle impact, its pdf is derived
through differentiation of (2) with respect to the mass when 𝑚B → 𝑚. The pdf is reported in (3) where
𝑙𝑀 and 𝑢𝑀 are respectively the lower and upper mass boundaries for the range of bins considered.

𝑓𝑀 (𝑚) =
𝑑
𝑑𝑚

(𝑁𝑛𝑢𝑚 (𝑚, 𝑑))∫ 𝑢𝑀

𝑙𝑀

𝑑
𝑑𝑚

(𝑁𝑛𝑢𝑚 (𝑚, 𝑑)) 𝑑𝑚
=

𝑑
𝑑𝑚

(𝑁𝑛𝑢𝑚 (𝑚, 𝑑))
𝑁𝑛𝑢𝑚 (𝑢𝑀 , 𝑑) − 𝑁𝑛𝑢𝑚 (𝑙𝑀 , 𝑑)

(3)

One can now observe from Figure 3b that the relative ratio of the median 𝑁𝑛𝑢𝑚 for different masses,
which is the slope 𝑏 of the line in logarithmic scale, is approximately constant regardless of the distance.
This implies the same relative likelihood of different masses impacting the s/c across the domain of 𝑑.
This consideration allows to drop the dependency of 𝑏 on 𝑑, and consequently of the pdf as well, as
shown in (4).

𝑓𝑀 (𝑚) =
𝑑
𝑑𝑚

(
𝑎(𝑑)𝑚−𝑏 )

𝑎(𝑑)𝑢−𝑏
𝑀

− 𝑎(𝑑)𝑙−𝑏
𝑀

=
−𝑏𝑚−𝑏−1(
𝑢−𝑏
𝑀

− 𝑙−𝑏
𝑀

) (4)

Note that this expression is the same as the power-law pdf in Appendix A (33), when 𝑏 = 𝛼 − 1. The
distribution is evaluated across the mass range and, as depicted in Figure 6a, agrees with the mc results,
other than the cases with large masses, whose low probability makes them difficult to be captured by the
mc sampling.

2.2.2 Impact Velocity
Particles of 1.4 mg ejected from comet 1P/Halley were estimated to be in the velocity range of 22 to 45

m/s [14]. However, to model the impact velocity of the dust particles as seen by the probe, it is convenient
to also study the distribution of the expected encounter velocity. The encounter velocity does not change
the characteristics of the dust environment per se but it influences directly the off-pointing since the same
impact mass will have a stronger momentum effect due to its larger relative speed. Intercept transfer
trajectories to a population of 1700 comets were analyzed in a esa study in 2019 [15]. As outcome, the
expected variability of several fly-by geometry parameters was made available, and is reported in Table
3a. In particular, the distribution of expected encounter velocities is depicted in Figure 4.
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Fig. 4 Expected encounter velocity distribution

Since the range of encounter velocity is several
orders of magnitude larger than the absolute particle
speed, this last is negligible and the impact velocity
will be considered equal to the encounter velocity. To
fit the distribution shown in Figure 4, 𝑉 is modelled as
a Normal Truncated rv with the statistical parameters
reported in Table 3b. Its pdf is compared to the mc
samples in Figure 6b, showing excellent match. Note
that the explicit formulation of 𝑓N𝑇𝑟

can be found in
Appendix A (31).

𝑓𝑉 (𝑣) = 𝑓N𝑇𝑟
(𝑣, 𝜇𝑉 , 𝜎𝑉 , 𝑙𝑉 , 𝑢𝑉 ) (5)

2.2.3 Closest Approach
A Normal Truncated rv is used to describe the distribution of 𝑐𝑎 as well, with statistical parameters

derived from the expected variability, as reported in Table 3b. Note that 5 km has been considered as a
lower limit since it is the minimum comet nucleus radius considered in the edcm.

𝑓𝐶𝐴 (𝑐𝑎) = 𝑓N𝑇𝑟
(𝑐𝑎, 𝜇𝐶𝐴, 𝜎𝐶𝐴, 𝑙𝐶𝐴, 𝑢𝐶𝐴) (6)

The numeric density depends on the distance from the comet and indirectly on the closest approach
distance. Recalling that 𝑑 =

√
𝑠2 + 𝑐𝑎2, an increase in 𝑐𝑎 will result in a lower numeric density for the

same 𝑠. For small variations of 𝑐𝑎 with respect to the reference value 𝑐𝑎, the scaling laws proposed in
[16] can be used to scale the numeric density (7) and the column density (8) respectively.

𝑁𝑛𝑢𝑚 (𝑑)
����
𝑐𝑎

=

(
𝑐𝑎

2

𝑐𝑎2

)
︸ ︷︷ ︸

𝜒

𝑁𝑛𝑢𝑚 (𝑑)
����
𝑐𝑎

𝑁𝑐𝑜𝑙 =

(
𝑐𝑎

𝑐𝑎

)
𝑁𝑐𝑜𝑙

(7)

(8)

However, (7) is accurate only for the numeric density evaluated at ca (i.e. 𝑠 = 0). This can be seen in
Figure 5, where the numeric density data is plotted for the three s/c trajectories in log-log scale and (7)
is used to scale the b2 data at the ca of b1 (500 km) and of sc-a (1000 km). Ideally, the scaled b2 data
(dashed lines) should match the b1 and sc-a data, but large errors are observed.

𝑁𝑛𝑢𝑚 should converge at very large distances from the comet, regardless of 𝑐𝑎. To account for this,
the scaling coefficient in (7) is modified to depend on 𝑑 instead of 𝑐𝑎. In this way the scaling law in (9)
is obtained. Note that 𝜒𝑛𝑒𝑤 matches the previous scaling when 𝑠 = 0 and goes to 1 for 𝑠 → ∞. 𝑁𝑛𝑢𝑚

can be written as function of 𝑠 and 𝑐𝑎 to be easily evaluated at each mc shot (fixed 𝑐𝑎) and along time
(varying 𝑠). The data scaled with the new coefficient (dotted lines) is now in better agreement.

𝑁𝑛𝑢𝑚 (𝑠, 𝑐𝑎) =
(
𝑑2

𝑑2

)
︸︷︷︸
𝜒𝑛𝑒𝑤

𝑁𝑛𝑢𝑚 (𝑠, 𝑐𝑎) =
𝑠2 + 𝑐𝑎

2

𝑠2 + 𝑐𝑎2 𝑁𝑛𝑢𝑚 (𝑠, 𝑐𝑎) (9)
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Fig. 5 Median numeric density (bin 7) along the trajectories of the three s/c and scaling of B2 data to the
closest approach distances of B1 and SC-A using (7) (dashed lines) and using (9) (dotted lines)

2.2.4 Flyby Geometry
The numeric density field is influenced by other parameters related to the geometry of the encounter.

Mainly, these are the 𝛼 and 𝛽 angles, which skew the density distribution, and the heliocentric distance
𝑟⊙, which affects the dust production rate.

Since the dust emission intensity at the comet surface is maximum in the Sun direction, changes in
𝛼 and 𝛽 reduce the numeric density expected at ca and skew the point of maximum depending on the
solar zenith angle. Scaling laws for numeric density are not straightforward to derive analytically. For
what concerns column density, a scaling is proposed in [16]. Within the expected variability for these
parameters, the scaling factor is always close and below the nominal value of 1, obtained for 𝛼 and 𝛽

equal to zero. They will be thus considered constant and equal to zero to be conservative.

Concerning the heliocentric distance, the results remain valid for solar flux variations up to the factor
of 2 [12], which is well inside the variability of the comet population analyzed for the mission [15].
Therefore, also this parameter will be set to the default value of 1 AU.

𝑣 [km/s] 10/70
𝑐𝑎 [km] 400 ± 200(1𝜎)
𝛼 [deg] 0
𝛽 [deg] −45/45
𝑟⊙ [AU] 0.9/1.2

(a) Expected variability range

𝜇 𝜎 𝑙 𝑢

𝑣 [km/s] 50 15 10 70
𝑐𝑎 [km] 400 200 5 1200
𝛼, 𝛽 [deg] = 0
𝑟⊙ [AU] = 1

(b) Statistical parameters used

Table 3 Uncertain fly-by environment parameters

8Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



2.2.5 Impact Radius
The impact radius 𝑟 is modelled as a rv whose distribution assigns uniformly the lever arm value

on the dust shield surface. This distribution is analytically derived in subsubsection A.2.7, considering a
polygonal area of any sides. The probability is maximum in correspondence of the circumference of the
inscribed circle, and minimum at zero and at the circumscribed circle. For an octagon with circumradius
𝑟𝑜𝑢𝑡 and inradius 𝑟𝑖𝑛, the pdf is reported in (10) and plotted in Figure 6d against the norm of the position
vector of each impact in the mc simulation, showing excellent agreement.

𝑓𝑅 (𝑟) =


2𝜋𝑟
𝐴𝑜𝑐𝑡

𝑟 ≤ 𝑟𝑖𝑛

2𝜋𝑟
𝐴𝑜𝑐𝑡

(
1 − 8

𝜋
acos

( 𝑟𝑖𝑛
𝑟

) )
𝑟𝑖𝑛 < 𝑟 ≤ 𝑟𝑜𝑢𝑡

0 𝑟 > 𝑟𝑜𝑢𝑡

(10)

2.2.6 Expected Impacts
The expected impacts 𝜆 are defined as the mean number of particles encountered during any flyby.

Considering the reference flyby case with 𝑐𝑎 = 200 km, the corresponding expected impacts 𝜆 can be
computed from the 50𝑡ℎ percentile of the column density data, summing the values across all the bins
considered and multiplying for the impact surface, as shown in (11). Note that this assumes the area to
be always aligned with the velocity direction.

𝜆 = 𝐴𝑜𝑐𝑡

11∑︁
𝑖=6

𝑁
B𝑖

𝑐𝑜𝑙
(11)

To incorporate the influence of the 𝑐𝑎 variability, a generalized expression is obtained in (12), recalling
the scaling law in (8).

𝜆(𝑐𝑎) = 𝐴𝑜𝑐𝑡

11∑︁
𝑖=6

𝑁
B𝑖

𝑐𝑜𝑙
= 𝐴𝑜𝑐𝑡

11∑︁
𝑖=6

𝑐𝑎

𝑐𝑎
𝑁

B𝑖

𝑐𝑜𝑙
= 𝜆 𝑐𝑎

1
𝑐𝑎

(12)

When deriving Λ, the rv that describes 𝜆, one should take care that this last is dependant on a second
rv, 𝐶𝐴, which follows a Normal Truncated distribution. Given that 𝜆 is equal to a constant multiplied by
the inverse of 𝑐𝑎, the distribution of Λ will follow a Normal Truncated Inverse with statistics parameters
re-scaled by that constant. The pdf is written explicitly in (13) and the resulting distribution is shown in
Figure 6e.

𝑓Λ(𝜆) = 𝑓N−1
𝑇𝑟

(𝜆, 𝜇Λ, 𝜎Λ, 𝑙Λ, 𝑢Λ)

𝜇Λ =
𝜇𝐶𝐴

𝜆 𝑐𝑎
𝜎Λ =

𝜎𝐶𝐴

𝜆 𝑐𝑎
𝑙Λ =

𝑙𝐶𝐴

𝜆 𝑐𝑎
𝑢Λ =

𝑢𝐶𝐴

𝜆 𝑐𝑎

(13)

2.2.7 Impacts Number
Given a fixed mean rate of occurrence 𝜆, a Poisson distribution can be considered for modelling

the number of consequent impacts 𝑁 during the flyby. Since Λ has its own distribution, however, the
distribution of 𝑁 follows a Conditional pdf subjected to Λ = 𝜆.

𝑓𝑁 |𝜆 (𝑛) =
𝜆𝑛𝑒−𝜆

𝑛!
(14)
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To obtain the impacts number distribution that accounts for the entire variability of Λ, one has to compute
the Marginal pdf of 𝑁 , by integrating the Joint pdf over the domain of Λ, as shown in Appendix A.

𝑓𝑁 (𝑛) =
∫ ∞

0
𝑓𝑁Λ(𝑛, 𝜆)𝑑𝜆 =

∫ ∞

0
𝑓𝑁 |𝜆 (𝑛) 𝑓Λ(𝜆)𝑑𝜆 (15)

Where the relation in Appendix A (27) has been exploited. In Figure 6f the integral is compared
against the distribution of the sum of the impacts along the entire flyby for every mc shot. A good match
is observed. The mc results appear to be slightly skewed towards lower number of impacts, possibly
because of the limit of number of impacts per time step imposed in the impact model algorithm, which
increases the probability of having a total number of impacts that is lower than the one expected by the
analytical result.

(a) Impact Mass (b) Impact Velocity

(c) Closest Approach (d) Impact Radius

(e) Expected Impacts (f) Impacts Number

Fig. 6 Analytical pdf of stochastic parameters against distribution of the mc results
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3 Off-Pointing Characterisation

3.1 MC Results
An extensive mc campaign of 1000 shots is performed using the framework presented in Appendix B to

check the consistency of the modelled distributions and for cross-validation of the analytical probabilities,
whose derivation will be outlined in the next section.

The numeric density data used in the mc is the median density (50th percentile) for the bins from
6 to 11. The initial position 𝑠0 is set at 57000 km, which is outside the edcm data domain, in order to
cover the entire comet density field. The sampling time of the simulation is set to 0.025 s and the total
simulation time is 7700 s. At the minimum relative velocity of 10 km/s, this time is enough to reach the
ca and arrive at a final distance of 20 000 km, where the numeric density for each bin is more than 5
orders of magnitude lower than at ca, as it can be seen in Figure 3b.

The 95𝑡ℎ, 90𝑡ℎ, 75𝑡ℎ and 50𝑡ℎ percentile estimation of the pointing error of the spin-axis with
respect to the velocity direction is reported in Figure 7, together with the 90% confidence bands over the
full mc campaign results. The critical phase is just a few km before ca, where even a single high-mass
low-probability impact particle can cause an abrupt change in the s/c momentum and a large off-pointing
angle.

As it can be seen, the requirement is not currently respected in the 95% of the cases but rather on
the 90%. Moreover, a non-linear behavior can be observed when moving towards larger percentiles, with
an off-pointing probability increase occurring way before ca, which captures the occurrence of the rare
events of low-density large particle impacts.

Fig. 7 Percentiles of the pointing error with 90% confidence bands from mc simulation results
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3.2 Probability Derivation
This section aims to replicate analytically the results of the mc campaign by applying probability laws

and combining the distributions of the stochastic parameters driving the process, previously summarized
in Table 1. Before proceeding, some metrics are declared:

• Off-Pointing Defined as the worst-case angle 𝜃 of the body pointing axis with respect to the
velocity direction. For spin-axis stabilized s/c, the worst case off-pointing due to nutation and
precession can be quantified by (16), where ℎ is the momentum of the s/c along the spin axis and
ℎ⊥ is the total change in transverse angular momentum [15].

𝜃 (𝑚, 𝑣, 𝑟) = 2
(
ℎ⊥
ℎ

)
=

2𝑚 𝑣 𝑟

ℎ
(16)

• Critical Radius Defined as the impact radius 𝑟𝑐𝑟 that cause an off-pointing larger than a requirement
𝜃𝑟𝑒𝑞, as per (17).

𝜃 (𝑚, 𝑣, 𝑟𝑐𝑟) > 𝜃𝑟𝑒𝑞 → 𝑟𝑐𝑟
(
𝑚, 𝑣, 𝜃𝑟𝑒𝑞

)
=

1
2
ℎ 𝜃𝑟𝑒𝑞

𝑚 𝑣
(17)

• Critical Impact Defined as the impact caused by a particle whose impact radius is larger than the
critical, for a given mass and velocity.

The focus of the following paragraphs is to find the probability of having critical impacts at any given
requirement 𝜃𝑟𝑒𝑞, i.e. find the probability of an off-pointing larger than 𝜃𝑟𝑒𝑞 considering the variability
of all the stochastic parameters.

3.2.1 Single Critical Impact Probability
The probability of a single critical impact at any 𝑚 and 𝑣 is simply given by the Complementary Cu-

mulative Density Function (ccdf) of 𝑅 evaluated at all the corresponding 𝑟𝑐𝑟 (𝑚, 𝑣, 𝜃). The corresponding
probability for a requirement of 20◦ is shown in Figure 8 as a surface and contour plots.

𝑃

(
𝑀 = 𝑚,𝑉 = 𝑣, 𝑅 > 𝑟𝑐𝑟 (𝑚,𝑣,𝜃 )

)
=

∫ +∞

𝑟𝑐𝑟 (𝑚,𝑣,𝜃 )

𝑓𝑅 (𝑟)𝑑𝑟 = 𝐹̄𝑅 (𝑟𝑐𝑟 (𝑚,𝑣,𝜃 ) ) (18)

To evaluate the overall probability and account for the distributions of 𝑀 and 𝑉 , the Joint pdf must
be integrated as shown in (19): firstly, the lower and upper bounds of the integrals are replaced with the
bounds of the distributions; secondly, since all the three rvs are independent, the joint pdf is expressed
multiplying each pdf; finally, the innermost integral is substituted with (18).

𝑃
(
𝑅 > 𝑟𝑐𝑟 (𝜃)

)
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

𝑟𝑐𝑟 (𝑚,𝑣,𝜃 )

𝑓𝑉𝑀𝑅 (𝑣, 𝑚, 𝑟) 𝑑𝑟 𝑑𝑚 𝑑𝑣 =

=

∫ 𝑢𝑉

𝑙𝑉

𝑓𝑉 (𝑣)
∫ 𝑢𝑀

𝑙𝑀

𝑓𝑀 (𝑚)
∫ 𝑟𝑜𝑢𝑡

𝑟𝑐𝑟 (𝑚,𝑣,𝜃 )

𝑓𝑅 (𝑟) 𝑑𝑟 𝑑𝑚 𝑑𝑣 =

=

∫ 𝑢𝑉

𝑙𝑉

𝑓𝑉 (𝑣)
∫ 𝑢𝑀

𝑙𝑀

𝑓𝑀 (𝑚)𝐹̄𝑅 (𝑟𝑐𝑟 (𝑚,𝑣,𝜃)) 𝑑𝑚 𝑑𝑣 (19)

The procedure is iterated for every value of 𝜃𝑟𝑒𝑞, obtaining the plot in Figure 9. These analytical
results are compared against the mc probabilities, obtained by checking at each impact if the impact
radius is higher than the critical one at that impact mass and velocity. A good match is observed between
analytical and mc results.

12Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



(a) Surface (b) Contour

Fig. 8 Single impact probability of 20◦ off-pointing for any mass and velocity

Fig. 9 Single critical impact probability for different requirements

3.2.2 Multiple Critical Impact Probability
To assess the probability of violating the pointing requirement during the entire fly-by, the probability

of having at least one critical impact out of 𝑛 impacts must be computed.

The probability of an event occurring at least once is 1 minus the probability of the event never
occurring. Since 𝑃(𝑅𝑖 > 𝑟𝑐𝑟 (𝜃 ) ) is the same regardless of 𝑖 = 1, . . . , 𝑛, the probability of at least one
critical impact out of 𝑛 is given by (20).
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𝑃
𝑛
𝑜𝑛𝑒

(
𝑅 > 𝑟𝑐𝑟 (𝜃 )

)
=

[
𝑃

(
𝑅1 > 𝑟𝑐𝑟 (𝜃 )

)
∪ 𝑃

(
𝑅2 > 𝑟𝑐𝑟 (𝜃 )

)
∪ · · · ∪ 𝑃

(
𝑅𝑛 > 𝑟𝑐𝑟 (𝜃 )

)]
=

= 1 −
[
𝑃

(
𝑅1 ≤ 𝑟𝑐𝑟 (𝜃 )

)
∩ 𝑃

(
𝑅2 ≤ 𝑟𝑐𝑟 (𝜃 )

)
∩ · · · ∩ 𝑃

(
𝑅𝑛 ≤ 𝑟𝑐𝑟 (𝜃 )

)]
=

= 1 −
[
𝑃

(
𝑅 ≤ 𝑟𝑐𝑟 (𝜃 )

)]𝑛
=

= 1 −
[
1 − 𝑃

(
𝑅 > 𝑟𝑐𝑟 (𝜃 )

)]𝑛
(20)

The distribution of 𝑁 can be accounted for by computing the probability of having at the same time 𝑁 = 𝑛

and 𝑃
𝑛
𝑜𝑛𝑒. Given these events are independent, (21) is obtained. Note that 𝑃(𝑁 = 𝑛) = 𝑓𝑁 (𝑛) as the pdf

is discrete.

𝑃𝑜𝑛𝑒

(
𝑁 = 𝑛, 𝑅 > 𝑟𝑐𝑟 (𝜃 )

)
= 𝑓𝑁 (𝑛) 𝑃

𝑛
𝑜𝑛𝑒

(
𝑅 > 𝑟𝑐𝑟 (𝜃 )

)
(21)

The probability is evaluated across the domain of 𝑛. By using again a requirement of 20◦ as an
example, the plot in Figure 10a is obtained.

(a) For any number of impacts (𝜃𝑟𝑒𝑞 = 20◦) (b) For different requirements

Fig. 10 Multiple impact probability of at least one critical impact

Finally, the overall probability of violating the pointing requirement in all the possible cases of 𝑛 is
computed with (22), summing the probabilities at each 𝑛 = 𝑘 , since all the events are disjoint.

𝑃𝑡𝑜𝑡

(
𝑅 > 𝑟𝑐𝑟 (𝜃 )

)
=

∞∑︁
𝑘=1

𝑃𝑜𝑛𝑒 (𝑁 = 𝑘, 𝑅 > 𝑟𝑐𝑟 (𝜃 ) ) (22)

The probability is evaluated for different pointing requirements, obtaining the plot in Figure 10b. The
mc probability is plotted as well, obtained by dividing the number of runs not respecting the requirement
for the total number of runs.
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It is observed that the mc probability gets more optimistic than the analytical one with lower
requirement angles. This could be traceable to the skewness already noticed in Figure 6f, since between
Figure 9 and Figure 10b the only stochastic parameter introduced is the number of impacts 𝑛 and its
distribution 𝑓𝑁 (𝑛). In any case, differences in the results were expected, since the deterministic mc
simulator and the analytical model differ in some relevant points:

• Consecutive impacts along the fly-by modify the s/c momentum and therefore the critical radius
at the same conditions is time-varying: this phenomenon cannot be considered in the probabilistic
study, which is basically time-frozen, while it is inherently present in the mc campaign.

• For the same reason, also the impact area is time-varying as along time the off-pointing reduces
the actual impact area to its projection along the velocity direction.

• Due to inertia principal axis misalignment with respect to the spin axis, after the spin is achieved,
an initial small nutation and low off-pointing is present since the beginning of the simulation,
which was not accounted for in the analytical derivation.

• A limit of 10 impacts per time step was used during each mc shot for computational feasibility
reasons. This has a direct effect on the skewness of the distribution of 𝑁 , as previously explained.

• Finally, the 1000 shots used for the mc campaign may not be sufficient to provide significant
statistical confidence in the results, considering the rarity of the events at play.

However, the overall good match observed allows to state that the analytical derivation of probability
can be considered an effective tool for the preliminary analysis of the off-pointing angle in an agile way
with respect to cumbersome and time-consuming mc simulations. To give an idea of the benchmark
metrics, the analytical model delivers each off-pointing requirement probability point in about 0.9 s (18 s
for the full 20 points of the plot in Figure 10b) against ≈ 4 hours required for a 1000-shots mc campaign,
using MATLAB r2023b on a Dell Latitude 5440 (Intel i7-1370p).

3.3 Iterative Design
Given a pointing requirement, the analytical approach presented so far may be used either to tune

design parameters for its fulfillment, or to relax the requirement itself on the go. In fact, the variability
of these changes on the pointing budget can be assessed in a quick way by simply iterating the procedure
presented so far instead of running a different mc campaign for each frozen parameter, therefore saving
hours of time.

Consider the requirement introduced in subsection 2.1. As it can be seen in Figure 10b, the 95%
probability is not currently fulfilled: in fact, the probability of having an off-pointing larger than 20◦ is
closer to 10% than 5%.

3.3.1 Relaxing the Requirement
One may think to relax the afore-mentioned requirement by introducing a limit of applicability only

to not-destructing impacts. In fact, the highest bins are characterized by mass on the order of magnitude
of kg, which would destroy the probe rather than off-point its spin direction. The off-pointing requirement
in this sense would cover only impacts of not-destroying masses, which have only consequences on the
off-pointing. This limitation can be easily introduced by lowering the upper boundary 𝑢𝑀 , used for the
derivation of the impact mass pdf in (4).

The new probability trends obtained using different upper limits for the impact mass are reported
in Figure 11a. Lower mass limits basically translate into lower probabilities of off-pointing, especially
at larger requirement angles. This can be explained by the fact that small degrees of off-pointing are
inevitable, due to the small-to-medium masses that are never excluded; on the other hand, the large
masses are the contributors to the relatively high probability of off-pointing at larger requirement angles.
As it can be seen, setting a maximum mass limit to 0.1 g would allow to fulfill the desired probability.
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3.3.2 Tuning a Parameter
On the other hand, an example of a design parameter that could be tuned is the s/c momentum, which

dictates the gyroscopic stiffness of the probe. With a larger spin rate, the impact of particles is expected
to cause lower off-pointings, according to (16). This is verified in Figure 11b for different s/c momentum
values. The consequence in this case is an entire offset of the probability trend, as the gyroscopic stiffness
reduces the off-pointing angle regardless of the mass of the particle. By increasing the s/c momentum to
8 Nms, the probability would go down to 5%.

(a) With different upper mass limits (b) With different s/c momentum

Fig. 11 Multiple critical impact probability for different off-pointing requirements, tuning parameters

4 Conclusions
Some main contributions to the field of preliminary pointing budgeting can be identified, stemming

from the work presented in the article:

• The identification of the stochastic parameters that best capture the variability of the scenario under
study and their framing to precisely formulated distributions.

• The derivation of a fully analytical model to characterize the pointing error metrics of a spin-
stabilized s/c in case of uncertainties and discrete random events.

• A validation of the results of such model against the ones of a deterministic mc campaign to prove
the effectiveness of replacing the time-consuming simulations with the analytical model, at least
at preliminary design stages.

• A clear framework and methodology of application of statistical concepts and operations, which
the interested readers may extrapolate to other domains.

Although the analytical tool presented in this article seems promising, it should be noted that inherent
limitations characterize it. Some stochastic parameters cannot be framed straightforwardly due to a poor
understanding of the underlying phenomena. Moreover, impacts were assumed to be completely elastic.
In reality, a momentum enhancement factor is typically introduced to describe the increase in momentum
transfer due to hyper-velocity impact processes, such as cratering [17]. Future works may address these
points.
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For the mentioned reasons, a detailed mc simulation is expected to be performed in any case after the
tuning of the design parameters (e.g. mass limit or s/c momentum), removing most of the assumptions
and refining the deterministic models. In this sense, it is beneficial to stress that the method presented
in this article is expected to be used only at a preliminary stage, as the degree of complexity that can be
modeled analytically is inherently limited.

Future works may be foreseen on the application of the same method to different applications and
domains. The main complexity that one encounters when trying to do so, is to identify how the rvs
interact with each other and to fit each rv to the right pdf. The universe of possible distribution shapes
is vast: the association of the correct distribution to the empiric data set, or to the expected variability
of the rv, should be in principle feasible. If no match is found for a particular rv, assumptions have to
be introduced. Once each rv is characterized and framed, it is of outermost importance the selection of
a figure of merit to be linked with the rvs through an analytical relation, such as done in (16) with the
off-pointing angle. After these metrics are identified, the probability derivation of the figure of merit can
be accomplished, by carefully applying the rules of composition of pdfs.

In problems where the characterisation of the rvs is not the main driver of the dynamics or where
normal distributions can be employed, simpler methods such as the ones mentioned in the introduction
may be used. For those cases where the proposed method is applicable, however, accurate results can
be delivered in a fraction of time with respect to a full mc campaign. The technique presented can
thus be considered a valid addition to the tools available to engineers dealing with preliminary pointing
budgeting.
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Appendix

A Statistics
Some concepts and formulas concerning the statistics domain extensively used in the article are

detailed in the following paragraphs.

A.1 Probability
The probability 𝑃 of an outcome is obtained by counting the number of occurrences of that outcome

along all the tries. Some general rules apply:

• If two events are independent, the probability of them occurring at the same time is the product of
their probabilities.

• If two events are disjoint, i.e. mutually exclusive, the probability of either one of them occurring
is the sum of their probabilities.

• The probability of an event not occurring is 1 minus the probability of the event.
• The probability of an event occurring at least once is 1 minus the probability of the event never

occurring.

The pdf of a continuous rv 𝑋 is the function 𝑓𝑋 (𝑥) such that the probability of 𝑋 falling between
values 𝑎 and 𝑏 is given by (23).

𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) =
∫ 𝑏

𝑎

𝑓𝑋 (𝑥)𝑑𝑥 (23)

The Cumulative Density Function (cdf) and ccdf are the functions 𝐹𝑋 (𝑥) and 𝐹̄𝑋 (𝑥) that give the
probability of 𝑋 being respectively smaller or larger than 𝑥. From the pdf one may obtain the cdf and
the ccdf, by changing the integral boundaries, as shown in (24) and (25).

𝑃(𝑋 ≤ 𝑥) = 𝐹𝑋 (𝑥) =
∫ 𝑥

−∞
𝑓𝑋 (𝑥)𝑑𝑥

𝑃(𝑋 > 𝑥) = 𝐹̄𝑋 (𝑥) =
∫ ∞

𝑥

𝑓𝑋 (𝑥)𝑑𝑥

(24)

(25)

These formulas can be extended to the case with two rvs 𝑋 and 𝑌 . In this case, the Joint pdf is the
two-variables function 𝑓𝑋𝑌 (𝑥, 𝑦) that gives the probability distribution on all the possible combinations
of 𝑥 and 𝑦. The Joint pdf is used to obtain the Conditional pdf of 𝑋 given 𝑌 = 𝑦 and the Marginal pdf of
𝑋 , given by (26) and (27) respectively. The former embeds the probability of 𝑋 given that 𝑌 assumed a
certain value 𝑦. The latter expresses the probability of 𝑋 accounting for all the variability of 𝑌 : it can be
thought as averaging the conditional probability of the first rv over the distribution of all the values of
the second rv.

𝑓𝑋 |𝑦 (𝑥) =
𝑓𝑋𝑌 (𝑥, 𝑦)
𝑓𝑌 (𝑦)

𝑓𝑋 (𝑥) =
∫ ∞

−∞
𝑓𝑋𝑌 (𝑥, 𝑦)𝑑𝑦

(26)

(27)

Note that the Joint pdf of two independent rvs is simply given by (28). In this case, the Marginal pdf is
equivalent to the normal one as the value of one variable does not influence the other.

𝑓𝑋𝑌 (𝑥, 𝑦) = 𝑓𝑋 (𝑥) 𝑓𝑌 (𝑦) if 𝑋 ⊥⊥ 𝑌 (28)
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A.2 Distributions

A.2.1 Uniform
A uniform distribution returns the same probability of an event in between the domain bounds. Its

pdf is given by (29) and has a simple rectangular shape.

𝑓U (𝑥, 𝑙, 𝑢) =


0 𝑥 ≤ 𝑙

2
(𝑢−𝑙) 𝑙 < 𝑥 ≤ 𝑢

0 𝑥 > 𝑢

(29)

A.2.2 Normal
The pdf of a normal distribution is reported in (30), where 𝜇 and 𝜎 are respectively the mean and

the standard deviation of the rv.

𝑓N (𝑥, 𝜇, 𝜎) = 1
𝜎
√

2𝜋
𝑒−

1
2 ( 𝑥−𝜇

𝜎 )2
(30)

When the rv domain is constrained by upper and/or lower boundaries, this distribution can be extended
to a Normal Truncated. Its pdf is given in (31), where 𝑙 and 𝑢 are respectively the lower and upper bounds
of the rv.

𝑓N𝑇𝑟
(𝑥, 𝜇, 𝜎, 𝑙, 𝑢) = 1

𝜎

𝑓N (𝑥, 𝜇, 𝜎)
𝐹N (𝑢, 𝜇, 𝜎) − 𝐹N (𝑙, 𝜇, 𝜎) (31)

Finally, to model the distribution of the inverse of a rv, the Normal Truncated Inverse distribution can
be introduced, which is obtained using (32).

𝑓N−1
𝑇𝑟

(𝑥, 𝜇, 𝜎, 𝑙, 𝑢) = 1
𝑥2 𝑓N𝑇𝑟

(
1
𝑥
, 𝜇, 𝜎, 𝑙, 𝑢

)
(32)

A.2.3 Power-Law
As the name suggests, this distribution is related to a probability that changes with the power of the

rv to a coefficient 𝛼. Its pdf is written in (33), with the domain ranging from 𝑙 to 𝑢 [18].

𝑓L (𝑥, 𝛼, 𝑙, 𝑢) = (1 − 𝛼)𝑥−𝛼
𝑢1−𝛼 − 𝑙1−𝛼

(33)

A.2.4 Poisson
This distribution models the probability of multiple consequent events occurring in a fixed interval

of time, given a mean number of occurrences 𝜆. The pdf is given in (34). Note that this is a discrete
distribution and therefore the variable 𝑘 is used in place of 𝑥.

𝑓P (𝑘, 𝜆) = 𝜆𝑘𝑒−𝜆

𝑘!
(34)
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A.2.5 Triangular
The triangular distribution is used when there is a knowledge of the minimum and maximum

probability points.

𝑓T (𝑥, 𝑙, 𝑢, 𝑚) =


0 𝑥 ≤ 𝑙

2(𝑥−𝑙)
(𝑢−𝑙) (𝑚−𝑙) 𝑙 < 𝑥 ≤ 𝑚

2(𝑢−𝑥)
(𝑢−𝑙) (𝑢−𝑚) 𝑚 < 𝑥 ≤ 𝑢

0 𝑥 > 𝑢

(35)

The pdf reported in (35) is indeed characterized by a triangular shape, which gives zero probability
outside of the boundaries 𝑙 and 𝑢, and maximum at the triangle peak 𝑚.

A.2.6 Uniform Radius on Circle
For a circular surface of radius 𝑟, to compute the probability of sampling a radius lower than a certain

value 𝑥, one may think to increase 𝑥 from 0 till 𝜋𝑥2 reaches the total area 𝐴 = 𝜋𝑟2. The cdf is then
simply obtained by dividing this increasing area by 𝐴, as shown in (36), and the pdf is then obtained by
deriving the cdf, as shown in (37).

𝐹U𝑐𝑖𝑟𝑐
(𝑥) =

{
𝜋𝑥2

𝐴
𝑥 < 𝑟𝑚𝑎𝑥

1 𝑥 ≥ 𝑟𝑚𝑎𝑥

𝑓U𝑐𝑖𝑟𝑐
(𝑥) =

{
2𝜋𝑥
𝐴

𝑥 < 𝑟𝑚𝑎𝑥

0 𝑥 ≥ 𝑟𝑚𝑎𝑥

(36)

(37)

A.2.7 Uniform Radius on Polygon

Fig. 12 Derivation of the uniform distri-
bution of radius on a triangle

Consider the triangle in Figure 12, where 𝑟𝑖𝑛 radius of the
inscribed circle and 𝑟𝑜𝑢𝑡 radius of the circumscribed circle.
A 𝐹U𝑐𝑖𝑟𝑐

distribution could still be used for a radius that
increases up to the one corresponding to the red circle. After
that, the area of the polygon that gets covered is lower and
lower with respect to the theoretical circle, up to a radius
corresponding to the green circle. Between 𝑟𝑖𝑛 and 𝑟𝑜𝑢𝑡 the
area 𝑆 of each circular segment must be subtracted from the
circular area of radius 𝑥. This area grows with 𝑥 and is given
by (38).

𝑆(𝑥) = 1
2
𝑥2 (

2𝜙(𝑥) − sin
(
2𝜙(𝑥)

) )
= 𝑥2 (

𝜙(𝑥) − sin 𝜙(𝑥) cos 𝜙(𝑥)
)

(38)

Where the angle 𝜙 is given by (39)

𝜙(𝑥) = acos
(𝑟𝑖𝑛
𝑥

)
(39)

Considering a generic polygon with 𝑛 sides and area 𝐴, the cdf and pdf are then reported in (40)
and in (41) respectively. Note that when 𝑥 = 𝑟𝑜𝑢𝑡 , 𝜙 = 2𝜋

2𝑛 and cdf and pdf goes respectively to 1 and 0
as expected.
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𝐹U𝑃𝑜𝑙𝑦
(𝑥) =


𝜋𝑥2

𝐴
𝑥 ≤ 𝑟𝑖𝑛

𝜋𝑥2

𝐴

[
1 − 𝑛

𝜋

(
𝜙(𝑥) − sin 𝜙(𝑥) cos 𝜙(𝑥)

) ]
𝑟𝑖𝑛 < 𝑥 ≤ 𝑟𝑜𝑢𝑡

1 𝑥 > 𝑟𝑜𝑢𝑡

𝑓U𝑃𝑜𝑙𝑦
(𝑥) =


2𝜋𝑥
𝐴

𝑥 ≤ 𝑟𝑖𝑛

2𝜋𝑥
𝐴

[
1 − 𝑛

𝜋
𝜙(𝑥)

]
𝑟𝑖𝑛 < 𝑥 ≤ 𝑟𝑜𝑢𝑡

0 𝑥 > 𝑟𝑜𝑢𝑡

(40)

(41)

A.3 Sampling
To generate samples from known distribution functions, a common method used is inverse transform

sampling [19]. Given a uniform rv 𝑈 between 0 and 1, equation (42) can be used to obtain a rv 𝑋 that
follows the distribution given by 𝐹𝑋 .

𝑋 = 𝐹−1
𝑋 (𝑈) (42)

This method has the drawback of relying on the existence of the inverse for the cdf, although due to its
simplicity will be used in the mc campaign for sampling the rv used at each simulation.

B Simulation
The models used for the mc campaign will be outlined in the following paragraphs.

B.1 Dynamics
The dust impacts are assumed to be elastic and to not change the mass of the s/c nor its distribution,

so the Mass, Center of Gravity and Inertia (mci) properties remain constant throughout the simulation.
Given the modelled relative encounter velocity, trajectories are expected to have a short duration, from
20 min up to 2 h, which also allows to simplify them as straight lines of constant speed. Therefore, the
translational dynamics will be a rectilinear motion with uniform velocity, as given by (43). The attitude
is propagated by integrating the rigid body and the passive rw dynamics in the same system, according
to (44), where 𝑻𝑒𝑥𝑡 is the sum of all the external torques.[

¥𝑠
¤𝑠

]
=

[
0
𝑣

]


𝐼


0
0

𝐼𝑅𝑊


{0 0 𝐼𝑅𝑊 } 𝐼𝑅𝑊


[

¤𝝎
¤𝜔𝑅𝑊

]
=


𝑻𝑒𝑥𝑡 − 𝝎 ×

©­­­«𝐼 𝝎 + 𝐼𝑅𝑊


0
0

𝜔𝑅𝑊


ª®®®¬

0



(43)

(44)

External disturbances can be restricted to just the ones caused by the dust particle impact on the probe
surface. In fact, all the other disturbances such as Solar Radiation Pressure (srp) or gravity perturbations
caused by the comet or other celestial bodies, are negligible with respect to the discrete cumulative
impacts contribution in the timescale considered.
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B.2 Impact Model
The impact model computes the angular momentum generated by the total number of particles

impacting the s/c surface at each time step, obtained applying (45).

𝑛 = 𝑣 𝐴𝑜𝑐𝑡 𝑡𝑠 𝑁𝑛𝑢𝑚 (𝑠, 𝑐𝑎) (45)

Where 𝑠 is the distance from ca at the current time step, 𝑐𝑎 is fixed at each mc shot, 𝑁𝑛𝑢𝑚 is the numeric
density extracted from the Look-Up Tables (lut) at the corresponding 𝑠 and 𝑐𝑎 breakpoints, 𝑣 is the
impact velocity, 𝑡𝑠 is the simulation sampling time. Note that at each shot 𝑐𝑎 and 𝑣 are sampled using
inverse transform (see subsection A.3) from their modelled distributions and the numeric density lut is
re-scaled according to (9).

After 𝑛 is computed, its decimal part is retained and compared to a random uniform number
𝑋1 ∼ U[0,1] . The resulting boolean (0 or 1) is then added to the integer part such to maintain the correct
probability of rounding, as shown in (46).

𝑛𝑖𝑛𝑡 = ⌊𝑛⌋ + [(𝑛 − ⌊𝑛⌋) > 𝑋1] (46)

At this point an impact vector 𝒓𝑖 and an impact mass 𝑚𝑖 are sampled iterating (47) and (48) at each
𝑖 = 1, . . . , 𝑛𝑖𝑛𝑡 . The impact vector is scattered uniformly across the octagonal surface and the mass is
sampled through inverse transform (see subsection A.3). A maximum number of 10 impacts per time
step is considered for computational feasibility.

𝒓𝑖 = 𝑝 (𝑟𝑜𝑢𝑡 ,𝜓)
√︁
𝑌1


cos(𝜓)
sin(𝜓)

0

 where 𝜓 = 2𝜋𝑌2

𝑚𝑖 = 𝐹−1
𝑀 (𝑌3)

(47)

(48)

Where 𝑝 (𝑟𝑜𝑢𝑡 ,𝜓) gives the perimetral radius of an octagon corresponding to angle 𝜃, 𝐹𝑀 (𝑚) is the cdf of
the impact mass, and 𝑌 𝑗 ∼ U[0,1] for 𝑗 = 1, 2, 3.

Finally, the angular momentum is computed and summed up using (49), where 𝒓 is the cog distance
with respect to the center of the shield.

𝒉𝑖𝑚𝑝 =

𝑛𝑖𝑛𝑡∑︁
𝑖=1

𝑚𝑖 𝑣 (𝒓𝑖 − 𝒓 ) (49)

The momentum then enters the dynamics as an instantaneous torque, dividing it by the sample time as
shown in (50).

𝑻𝑒𝑥𝑡 =
𝒉𝑖𝑚𝑝

𝑡𝑠
(50)
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