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ABSTRACT

Modern modelling, analysis and robust control techniques aim to tackle parametric uncertainties
as early as possible in the design of the GNC/AOCS of space systems. However, it is most often
necessary to only consider a subset of the uncertain parameters to ensure the tractability of the
model, and the choice is generally based on the experience of the engineer. This paper investigates
the field of global sensitivity analysis to identify the most influential parameters more system-
atically, and more generally to improve the reliability and the efficiency of the V&V phase. The
selected methods are applied to a simple satellite benchmark to capture the influence of the param-
eters, including their interaction effects, on the H-infinity norm. It is shown that the Morris and
variance-based methods are able to rank the parameters in a complementary way, as the former is
computationally cheaper while the latter quantifies the impact of each parameter on the variance
of the norm. Finally, it is shown how the results of the sensitivity analysis can support the trade-
off between accuracy and computation time when using mu-analysis to estimate the worst-case
performance. Sensitivity analysis may also support plant identification and optimization-based
methods, such as control/structure co-design, by allowing to make an informed choice on which
parameters to prioritize.
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1 Introduction
The GNC/AOCS design of space systems must take into account various uncertainties that may

degrade the performance and stability. For this reason, research has been focusing on the development
of modern modelling, analysis and robust control methods to tackle parametric uncertainties as early as
possible in the design. These methods aim to quickly detect and correct problematic configurations be-
fore starting the more costly validation and verification (V&V) procedures, such as experimental testing
or Monte-Carlo simulation campaigns, in order to avoid time-consuming reiterations during the project.

In the context of the robust control of linear or linear parameter varying (LPV) systems, the state-of-
art approaches rely on the representation of the uncertain system as a Linear Fractional Transformation
(LFT) model. Then, optimization techniques based on the H∞ and H2 norms allow optimizing the
controller (e.g. routine systune of the robust control toolbox of Matlab [1, 2]), and µ-analysis techniques
[3] can assess the robust stability and performance over the whole parametric space. However, these
techniques are limited by the number of uncertain parameters and their repetitions in the LFT model. As
a consequence, it is usually necessary to only consider a subset of the uncertain parameters, in order to
reduce model complexity and apply optimization-based methods. Additionally, experimental efforts may
sometimes be necessary, either on ground or in flight, to perform identification of some of the parameters.
In the current practice, the “most important” parameters to be included in the uncertain model or to be
identified are chosen based on the experience of the engineer. This paper investigates more systematic
methods to rank the parameters by order of “importance” in the context of the robust analysis and control
of linear or LPV systems. The objectives are threefold: 1) improve the reliability of the V&V phase:
reduce the risk of erroneously judging a parameter as non-influential, provide quantitative information to
justify why each parameter is neglected or not; 2) improve the efficiency of the V&V phase: reduce the
size of the parametric space to enable optimization techniques or reduce their computation time, focus
the experimental identification efforts directly into the meaningful parameters; and 3) more generally,
provide new insight into the robustness of the model that complements other existing approaches and
validates or corrects the engineering intuition.

Sensitivity analysis (SA) is the mathematical field that studies how uncertainty in the output of a
model can be apportioned to different sources of uncertainty in the model input [4]. Sensitivity analysis
is used in various fields of natural or engineering sciences, where the resulting knowledge of the system
may help establishing priorities (focus the experimental testing, the modelling or research effort, etc.,
on the most influential parameters), simplifying models that are computationally expensive, identifying
which parameters interact with others [5]. In the context of robust control, it is worth mentioning that
the mu-sensitivity [6] is sometimes used as a SA method for this purpose. However, in the context of SA
(the use of mu-sensitivity to guide the optimization in mu-analysis algorithms, as in [7], is not addressed
here), mu-sensitivity pertains to the class of “one-factor-at-a-time” (OAT) techniques, which consist in
varying one factor at a time while keeping the others fixed. For example, the routine wcgain of Matlab’s
robust control toolbox computes the sensitivity as an approximation of the derivative of the worst-case
gain with regard to each parameter. More generally, most OAT methods are based on the computation
of the derivative of the output with regard to each uncertain parameter. SA specialists strongly advise
against OAT methods, since they are not only very local (they are generally computed at either the
nominal or the worst-case parametric configuration), but they also fail to capture the interactions between
the parameters. In satellites, a typical interaction between parameters is the resonance that arises for
some specific angular configurations of the solar array, depending on its uncertain natural frequencies
and modal participation factors as well as the moment of inertia of the central body.

On the contrary, so-called global SA (GSA) methods are designed to explore the entirety of the para-
metric space and provide concise information about the overall influence of the parameters as well as
their interactions. GSA techniques can be divided in two categories: screening techniques, which aim to
identify non influential parameters with a small number of model evaluations, and techniques that aim to
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provide quantitative information based on some importance measures [8]. Screening techniques include
for example Morris method (or elementary-effect method) [9], supersaturated design [10], or sequential
bifurcation [11]. Sampling-based methods relying on the fitting of a linear model can use measures such
as Pearson correlation coefficient, standard regression coefficient, or standardized rank regression coeffi-
cient among others [8], as long as the influence of the parameters on the output is monotonous. Methods
based on the decomposition of the variance aim to quantify the impact of the parameters on the vari-
ance of the output; such indices can be computed with Monte-Carlo sampling [12], but improvements
regarding computation time have been proposed using quasi-random sequences, bootstrap methods, or
asymptotic approximations of the variance [13]. Finally, so-called moment-independent measures can
be used when the variance is not a good representation of the variability of the distribution [14]. In
this paper, three usual GSA techniques were selected following [4, 5], namely linear regression, Morris
method, and variance-based analysis; they will be investigated in the context of the robust control syn-
thesis and analysis. It is worth mentioning that a similar approach using the Morris method was already
mentioned in [15, 16].

This paper is organized as follows. Section 2 introduces a satellite benchmark. Section 3 presents a
review of the global SA techniques and their application to the benchmark. Finally, Section 4 discusses
how the results of the SA can be used in a search of the worst-case performance with µ-analysis.

2 Presentation of the use-case: a satellite benchmark
The use-case is a satellite composed of a central rigid body, and a flexible solar panel. The dynamic

model is obtained under LFT representation with the Satellite Dynamics Toolbox - Library (SDTlib)
[17]. A controller was synthesized similarly to [18]. There are 20 uncertain parameters, detailed in
Table 1, all with uniform distribution of probability. The uncertainties on the central body are chosen
large, as in early phases of a project when the mechanical design is not yet fixed, or to take into account
variations of the propellant mass during the mission. The delay is modeled with a 2-nd order Padé
approximation, written as an LFT model.

Remark: the solar array angle θ is not an uncertain parameter, but it is considered as such in the
LFT form for classical robust control tools, and in this study to apply the global sensitivity analysis
techniques. Its range of variation is considered between −π/2 and +π/2 for symmetry reasons. The
LFT representation is parameterized with t = tan(θ/2) [19].

Element Parameters Uncertainty
Central body Center of mass (x,y,z) ± 5 or 10 cm

Moments of inertia (x,y,z,xy,xz,yz) ± 20%
Mass ± 20%

Solar array Natural frequencies (3 modes) ± 20 %
Modal participation factors (5 in total) ± 20 %

Angle θ ∈ [−π/2,+π/2]
Avionics Command delay ∈ [1,30] ms

Table 1 Uncertain parameters

In this paper, we are interested in the transfer function represented in Figure 1, representing the
closed-loop sensitivity function, whose H∞ norm is the inverse of the modulus margin of the system.

Depending on the parametric configuration, the H∞ norm can be determined either by the attitude
control mode around 1 rad/s (in 98% of the configurations), or by the first flexible mode around 6
to 10 rad/s (in 2% of the configurations). This is also visible on Figures 2a and 2b that present the
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Fig. 1 Singular values of the 3×3 benchmark transfer function (50 samples)

probability distribution of the H∞ norm and of the corresponding peak frequency, respectively (obtained
by evaluating ∼ 106 random samples and plotting the corresponding histograms). It is sought to study
the sensitivity of the H∞ norm to the uncertain parameters and in particular to take into account the
presence of these two candidates worst-case peaks.

(a) Distribution of the H∞ norm (b) Distribution of the peak frequency

Fig. 2 Distributions of probability relative to the H∞ norm of the benchmark (log scales)

3 Global sensitivity analysis: review and application

3.1 Notations
Let us consider the general notations:

• Xi the random variable representing the i-th uncertain parameter, 1 ≤ i ≤ k, with any given distri-
bution of probability,

• X the vector containing the k variables Xi, also called the input parameters,
• Y = f (X) the random variable representing the output of the evaluation of the model, here Y is

the H∞ norm of the uncertain system.

Note that a "model evaluation" consists in (i) randomly selecting a parametric configuration, (ii) substi-
tuting this configuration in the LFT model (Matlab’s function usubs), and (iii) evaluating the H∞ norm.
The reviews presented in this section are largely based on the references [4, 5].
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3.2 Linear regression

3.2.1 Linear regression: review
The linear regression method constructs a linear relationship between Y and the parameters Xi, and

uses the coefficients bi as measures of the sensitivities Slr(Xi):

Ŷ = b0 +ΣbiXi , Slr(Xi) =
∣∣∣bi

si

s

∣∣∣ (1)

where si and s are the estimated standard deviation of Xi and Y respectively. The bi are evaluated with
the least-squares method from a set of N Monte-Carlo samples of the parametric configurations.

The linear regression method is intuitive and easy to implement. It also provides the sign of the effect
of an input parameter on the output. Despite being simple, it explores the entire domain of definition
of each parameter. However, the linearity assumption is not always adequate. The method provides an
index R2 indicating the degree of linearity of the system:

R2 = Σ (Slr(Xi))
2 (2)

In [4], it is indicated to not use the linear regression to order the parameters when R2 < 0.3, and that
the linear model can be considered as good when R2 > 0.7 (but this point will be discussed in the
application). Note that the R2 accounts for individual nonlinearities of the parameters and for interaction
between parameters without being able to distinguish. Finally, it can be mentioned that the sensitivity
indices provided by the linear regression can be used to rank the parameters, but they provide very little
quantitative information about the impact of the parameters on the output.

3.2.2 Linear regression: application
Method

The use-case model was evaluated over a set of N = 10000 randomly sampled parametric con-
figurations (computation time: 161s on a 12th Gen Intel(R) Core(TM) i7-12700H 2.30 GHz), and the
coefficients of the linear model were computed by a least-squares method. All uncertain parameters were
normalized such that their values are between −1 and +1.

Results

Figure 3a shows the resulting scatter plot for the parameter "dt" (command delay), which has the
highest sensitivity index. While the linear regression accurately captures a strong correlation between
higher values of "dt" and higher values of the H∞ norm, the linear assumption is not sufficient to ex-
plain that the dispersion also seems to increase with "dt". This is even more visible on Figure 3b with
the parameter "w1" (frequency of the first flexible mode of the solar array), ranked 4th by decreasing
sensitivity. Moreover, the linear regression is not adequate to capture the non-monotonous influence of
the angle of the solar array (parameter "theta"), as visible in Fig.4; as a result, this parameter is ranked
18th in decreasing sensitivity, which is not satisfying.

The R2 is 0.71, which is generally considered as good in sensitivity analysis. This value is essentially
obtained because the linear assumption is indeed good in the 98% of the cases where the H∞ norm is
determined by the attitude control mode around 1 rad/s. However, the method is inadequate to capture
the presence of several candidate worst-case peaks, even when they are not very rare (the flexible mode
determines the H∞ norm in 2% of the cases and can be critical for space systems). Nonetheless, the
method provides a quick visual idea of the influence of the parameters whose influence is, if not linear,
at least monotonous.
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(a) Command delay "dt"
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(b) Frequency of first flexible mode "w1"

Fig. 3 Scatter plot and linear regression for 2 of the 20 parameters
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Fig. 4 Scatter plot and linear regression for the solar array angle "theta"

3.3 Morris method

3.3.1 Morris method: review
The Morris method, or elementary effects method, is general, cheap in computations, and is easy

to implement. Its only drawback is that the information that it produces is not as quantified as with the
variance-based method presented in Section 3.4.

Elementary effects

The Morris method relies on the computation of “elementary effects”. Elementary effects, noted
di(X), measure the effect on the output, at a given point X of the parametric space, of varying the i-th
parameter by a value ∆:

di(X) =
Y (X1, ...,Xi−1,Xi +∆,Xi+1, ...,Xk)−Y (X)

∆
(3)

Each elementary is a “one-factor-at-a-time” (OAT) effect, but the sensitivity indices defined thereafter
allow to explore the whole parametric space.

Sensitivity indices

For each parameter, r elementary effects will be computed at different points X1, ..., Xr of the
parametric space. Two sensitivity indices are defined for each parameter, respectively the mean (of the
absolute value) and the standard deviation of these r elementary effects:
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µ
∗
i =

1
r

r

∑
j=1

∣∣di(X j)
∣∣ (4)

σi =

√√√√1
r

r

∑
j=1

di(X j)2 −

(
1
r

r

∑
j=1

di(X j)

)2

(5)

Thus, each parameter is attributed a point in the plane (µ∗,σ). The mean µ∗ is the main indicator
of the sensitivity which reflects the total effect that the parameter has, in average, on the output. The
standard deviation σ is a good indicator of either the nonlinear influence of the parameter or the presence
of interactions with other parameters (but the method does not allow the distinction). Note that this
indication is produced individually for each parameter, contrary to the linear regression which only
provided an overall assessment of the linearity of the whole model with the R2.

Sampling strategy

Since the computation of one elementary effect requires to evaluate the model in two points, a naïve
strategy would require 2r points per parameter, hence a total of 2rk points for a total of rk elementary
effects. The strategy developed in [9] only requires r(k+1) points.

Assuming that the value of each parameter is normalized between 0 and 1, the range of variation is
discretized in p levels: each parameter can only take a value in the set Ω= {0,1/(p−1),2/(p−1), ...,1}.
The parametric space is thus Ωk. It is common practice to choose p even and ∆ = p/(2(p−1)).

Remark: it assumes that the distribution of each parameter is uniform. If it is not the case, it is recom-
mended in [4, 5] to choose the levels corresponding to quantiles of the distribution.

The sampling strategy consists in generating r random trajectories in the parametric space. Each
trajectory is composed of k+1 points noted X(1), X(2), . . . X(k+1) such that one and only one parameter
is modified by the value ∆ between two successive points, and each parameter is modified exactly once on
a trajectory. Thus, each trajectory allows the computation of k elementary effects (one per parameter).
In practice, a trajectory is represented by an orientation matrix B∗ ∈ Ω(k+1)×k, where the k + 1 lines
represent the parametric configurations X(1), X(2), . . . X(k+1), and each column represents a parameter.
The orientation matrix can be generated with the following definition:

B∗ =
(
Jk+1,1X∗+∆/2

((
2B−Jk+1,k

)
D∗+Jk+1,k

))
P∗ (6)

Where:

• Ja,b is a matrix of dimension a×b filled with ones,
• X∗ is randomly chosen in Ωk,
• B is a strictly lower triangular matrix of dimensions (k + 1)× k, whose non-zero elements are

ones,
• D∗ is a diagonal matrix of size k whose elements are either −1 or +1 (with the same probability),
• P∗ is a random permutation matrix (each column and line contains exactly one elements equal to

1, all others are zero).

This procedure ensures a random exploration of the parametric space [9].

3.3.2 Morris method: application
Method

The values r = 2000 and p = 800 were chosen. The computation time for the r(k + 1) = 42000
model evaluations was 927s.
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Results

The results of the analysis of the use-case are presented in Figure 5. Firstly, we notice that the
abscissa of the parameter "dt" (command delay) is around 0.1: this indicates that, when the (normalized)
value of "dt" is changed of ∆ ≈ 0.5, the H∞ norm was changed of 0.1×∆ ≈ 0.05 on average. Moreover,
the associated standard deviation is 0.05, which reflects either nonlinearity or interactions with the other
parameters; however, since the value of the mean is larger than the standard deviation, it seems that the
influence of "dt" is essentially additive. Most of the other parameters are distributed along the same
diagonal as "dt". However, three parameters are located on the top left corner, namely the angle of
the solar array (“theta”), and the modal participation factor in rotation (“Ry1”) and frequency (“w1”)
of the first flexible mode of the solar array. Those parameters exhibit a large standard deviation of their
elementary effects with regard to the mean values; this is an indicator of their coupled interaction leading
to the resonance that determines the H∞ norm for 2% of the parametric space.
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Fig. 5 Results of Morris method. The legend is ordered by decreasing µ∗.

Considered together, the two indices µ∗ and σ provide information about the influence of all param-
eters of the system including their interactions for a cheap computational cost. However, the information
it provides is essentially qualitative.

Convergence and computational cost

To study the convergence, we define the absolute error (AE) in a similar manner to [13]:

AE(r) =
k

∑
i=1

∣∣∣Ŝ(i,r)−S(i,rmax)
∣∣∣ (7)

where Ŝ(i,r) is the estimated sensitivity index (either µ∗
i or σi) obtained using only the first r trajectories

(the total number of model evaluations is r(k+ 1), here with k = 20), and the index S(i,rmax) obtained
with the highest value rmax = 2000 is used a a reference for the "true" value of the sensitivity index.

The resulting plot of AE versus r is presented in Figure 6 and suggests that the method needs at least
r = 500 to 1000 to converge, which is also consistent with the results of [20].

3.4 Variance-based method
The variance-based method produces the most extensive information about the system. Indeed, it

quantifies the contribution of each parameter to the variance of the output. As a consequence, it is also
the method with the highest computation cost. For this reason, it is suggested in [21] that Morris and
variance-based methods can be used in combination: Morris method provides a first screening to elim-
inate the least influential parameters, and then the variance-based method is performed on the reduced
model to refine the analysis on the remaining parameters.
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Fig. 6 Convergence of Morris method: AE vs r.

3.4.1 Variance-based method: review
Let us consider the additional notations:

• X∼i the vector containing the random variables except Xi,
• V (·) and E(·) the variance and expected value respectively.

Sensitivity indices

The method relies on the computation of two sensitivity indices, noted Si and STi. Si is the first-order
sensitivity coefficient, defined as:

Si =
VXi(EX∼i(Y |Xi))

V (Y )
(8)

Where:

• EX∼i(Y |Xi) is the expected value of Y if Xi is fixed and all other parameters vary,
• The variance VXi(·) of the above value is computed when Xi is varying,
• V (Y ) is the unconditional variance of Y .

There are two equivalent interpretations of Si:

• Si is the expected (normalized) reduction of the variance if Xi could be fixed to its true value. This
is due to the identity VXi(EX∼i(Y |Xi))+EXi(VX∼i(Y |Xi)) =V (Y ).

• VXi(EX∼i(Y |Xi)) is the first-order (additive) contribution of parameter Xi to the variance of Y. This
point will be more detailed in the decomposition of the variance further below.

STi is the total-effect index, defined as:

STi =
EX∼i(VXi(Y |X∼i))

V (Y )
= 1− VX∼i(EXi(Y |X∼i))

V (Y )
(9)

Which can be interpreted equivalently as:

• EX∼i(VXi(Y |X∼i)) is the expected variance that would remain if all parameters, except Xi, could
be fixed to their (unknown) true value.

• As for Si, VX∼i(EXi(Y |X∼i)) is the first-order contribution of X∼i, and thus, STi is the contribution
of all the rest, that is, all contributions of any order involving Xi. This point will be more detailed
in the decomposition of the variance further below.
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Decomposition of the variance

Assuming decorrelation of the uncertain parameters, the variance of Y can be decomposed as:

V (Y ) = ∑
i

Vi +∑
i

∑
j>i

Vi j + ...+V12...k (10)

With:

• Vi =VXi(EX∼i(Y |Xi)) the first-order contributions of each parameter Xi,
• Vi j = VXiX j(EX∼i j(Y |Xi,X j))−VXi(EX∼i(Y |Xi))−VX j(EX∼ j(Y |X j)) the joint effects of all pairs of

two parameters Xi and X j,
• Etc for the joint effects of combinations of 3 to k parameters.

Or, after dividing by V (Y ):

∑
i

Si +∑
i

∑
j>i

Si j + ...+S12...k = 1 (11)

Where:

• The Si represent indeed the first-order contribution of each Xi on the variance,
• The Si j...k, defined by normalizing the variances Vi j...k by V (Y ), represent all the interaction effects

between parameters.

The STi are the sum of all the terms involving Xi, e.g. ST 1 = S1+S12+S13+ ...+S123+S124+ ...+S12...k.
Thus, the difference between Si and STi is an indication of the interaction of Xi with the other parameters.

Computation of the sensitivity indices

Noting N the base sample size that is required to evaluate a variance or an expected value, a simple
strategy, using two loops to evaluate successively the variance and the expected value or vice-versa,
would imply N2 model evaluations to compute only one Si or STi. However, the method presented in
[13] only requires N(k+2) model evaluations to compute all Si and STi when the uncertain parameters
are decorrelated.

Two matrices A and B of size N × k are generated. Each line represents a parametric configuration.
The generation can be random (Monte-Carlo), or quasi-random (e.g. Sobol sequence, Halton sequence,
Latin hypercube). In the latter case, the two matrices A and B can be respectively the left and right parts
of a quasi-random sequence of size N ×2k. It is important to note that, in this case, A and B do not play
a symmetric role, because the uniformity of the quasi-random sequence decreases when the index of the
column increases.

Remark: quasi-random sequences only exist for uniform distributions of probability. It may or may not
be possible to transform the quasi-random sequence from uniform distribution to a given distribution of
probability, depending on the sequence and on the distribution; in any case, Monte-Carlo sampling is
always possible (but generally demands more samples [13]).

For each parameter Xi, a matrix A(i)
B is generated as the matrix A where the i-th column is replaced

by the i-th column of B. This step is sometimes called re-sampling, and the procedure of replacing one
column can be called radial sampling.

Finally, the indices of sensitivity can be computed using the expressions from [22]:

VXi(EX∼i(Y |Xi)) =V (Y )− 1
2N

N

∑
j=1

(
f (B) j − f (AB

(i)) j

)2
(12)
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EX∼i(VXi(Y |X∼i)) =
1

2N

N

∑
j=1

(
f (A) j − f (AB

(i)) j

)2
(13)

Where, for example, f (B) j is the output of the model evaluated for the line j of matrix B. These
expressions are based on the re-writing of the integrals expressing the variance and expected values (cf.
[22, 23] for demonstrations), and other expressions are also possible (cf. [13] for a review).

3.4.2 Variance-based method: application
Method

As suggested in [21], to limit the computation time, the variance-based method is applied to the
use-case after removing the parameters identified as the least influential by the Morris method. The
10 parameters with highest µ∗ and σ were kept in the model, the 10 others were set to their nominal
values. The matrices A and B were generated with a quasi-random Sobol sequence with N = 20000.
The estimators of equations (12) and (13) were used. The computation time for the N(k+2) = 240000
model evaluations was 3721s.

Results

The resulting total (STi) and first-order (Si) indices are presented in Figures 7a and 7b respectively.
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Fig. 7 Result of the variance method. The parameters are ordered by decreasing STi in both graphs.

These plots can be interpreted as follows:

a) The value of Si for the parameter "dt" (commande delay) is 0.65. It means that 65% of the variance
of the H∞ norm is due to the first-order effect of "dt". Moreover, if this parameter could be fixed, the
variance of the H∞ norm would be reduced of 65% (on average across all possible true values of "dt").
The same interpretation can be made for the other parameters.

b) The value of STi for the parameter "dt" is 0.82. It means that the sum of all the contributions, in
the decomposition of the variance, that involve "dt", amounts for 82% of the variance of the H∞ norm.
Moreover, if all parameters except "dt" could be fixed to their (unknown) true values, it would remain
82% of the variance on average. The same interpretation can be made for the other parameters.

c) For a parameter Xi, the difference between STi and Si provides information about the interaction of
Xi with other parameters. For example, the influence of "dt" (command delay) is essentially additive
(i.e. due to the first-order effect) because Si ≈ STi. On the contrary, for "theta" (solar array angle),
"w1" and "Ry1" (frequency and participation factor of flexible mode 1), we have Si << STi so the total
effect is essentially caused by the higher order (interaction) terms; this is consistent with the physical
interpretation (the resonance occurs only for some values of these parameters) and with Morris method.

d) The indices Si and STi do not provide the same ranking order. The parameters "Ix" (moment of
inertia around x) and "CoGz" (position of center of mass on z) have a larger first-order contribution, but
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smaller total effect than "theta", "w1" and "Ry1". The relevance of ordering by Si or STi depends on the
application. Remark: according to the literature [4, 5], µ∗ are generally a good proxy for STi, but in this
benchmark, the ranking of µ∗ actually matches with Si instead.

e) The sum of all Si is 0.72, indicating that 72% of the variance is caused by the first-order (additive)
effects (and essentially the first-order effect of "dt").

Convergence and computational cost

The absolute error (AE) is defined similarly to the Morris method:

AE(N) =
k

∑
i=1

∣∣∣Ŝ(i,N)−S(i,Nmax)
∣∣∣ (14)

where Ŝ(i,N) is the estimated sensitivity index (either STi or Si) obtained using only the first N base
samples (the total number of model evaluations is N(k+2), here with k = 10), and the index S(i,Nmax)
obtained with the highest value Nmax = 20000 is used a a reference for the "true" value of the sensitivity.

The resulting plot of AE versus N is presented in Figure 8 and suggests that the method needs at
least N = 3000 to 5000 to converge, which is also consistent with the results of [20]. Note that even
with N = 20000, in the results presented above, some of the least influential parameters have a Si that is
slightly negative or superior to the STi, which should not be physically possible but is due to insufficient
convergence (this has no strong impact on the analysis, it should simply be considered that these Si are
very close to zero).
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Fig. 8 Convergence of variance method: AE vs N.

"Factors prioritization" and "factors fixing" settings

Using STi or Si to rank the parameters depends on the reasons that motivated the sensitivity analysis.

Reference [5] describes the "factor prioritization setting" as: identify which factor, once ‘discovered’
and fixed at its true value, would reduce V (Y ) the most. In this case, the Si are the relevant metric. An
example of application for space systems is the plant identification, either on-ground or in-orbit. The Si
allow determining which factor(s) should be identified in priority and quantify the expected reduction of
variance.

Remark: in the application presented here, the angle "theta" of the solar array was represented as an
uncertain parameter with uniform distribution, although in reality, it is a time-varying parameter that
will necessarily take all possible values during a mission; this point should be kept in mind, as it affects
the variances that are computed by the method. If the method is now re-applied by fixing the angle
"theta" to its worst-case configuration found thereafter in Section 4, the parameters "w1" and "Ry1"
become 2nd and 3rd by decreasing Si (instead of "Ix" and "CoGz").
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Reference [4] defines the "Factor fixing setting" as: identify the factor or the subset of input factors
that we can fix at any given value over their range of uncertainty without significantly reducing the
output variance. In this case, the STi should be used. This setting is relevant for model reduction to
improve optimization tools. For example, the control/structure co-design approach presented in [24]
used a reduced set of the uncertain and design parameters to enable the co-optimization of the controller
and structural parameters; in such applications, the sensitivity analysis would allow to quickly make an
informed choice about which parameters to optimize. Another optimization application is µ-analysis, as
detailed in Section 4.

4 Worst-case search with sensitivity- and mu-analysis
In this section, it is proposed to use the results of the sensitivity analysis to reduce the size of the LFT

model and enable the µ-analysis tools. The µ-analysis is also compared to a Monte-Carlo experiment.

The Monte-Carlo experiment simulates NMC = 1.15×106 random samples. NMC verifies:

NMC ≥ ln(δ )
ln(1− ε)

(15)

with the values δ = ε = 10−5, which guarantees the probability [25]:

P(P(Y > Ŷmax,MC)< ε)≥ 1−δ (16)

that is, that the worst-case Ŷmax,MC found during the Monte-Carlo experiment covers 99.999% of the
probability distribution of Y with a confidence level of 99.999%. This result does not depend on the
number of uncertain parameters (here we keep the initial set of 20 in the use-case).

The µ-analysis, on the other hand, is computed with a reduced number of uncertain parameters.
Since this is a "factor fixing setting", the parameters are ranked by decreasing STi, and we define a set
of 9 reduced systems by keeping the first 2 to 10 parameters while the others are set to their nominal
value. The µ upper bounds of these reduced systems are computed independently from each other; each
parameter is initialized to its nominal value. Then, the µ lower bounds are computed with an iterative
procedure: the worst-case parametric configuration found for the i-th reduced system is used to initialize
the algorithm applied to the (i+1)-th reduced system (the last parameter is initialized with its nominal
value); this procedure was found necessary to avoid overly optimistic lower bounds. The routine wcgain
of Matlab’s robust control toolbox was used (note that more recent algorithms such as [26, 27] are
probably more efficient in terms of conservatism and/or computation time).

Figure 9a shows the lower and upper bounds depending on the number of parameters, and the worst-
case performance found by the Monte-Carlo runs. Figure 9b shows the associated computation times.
We observe the following points:

a) µ upper bounds (Figure 9a, red plot): they seem to converge to the value 2.90. With only the first
6 parameters (each total effect is at least 3% of the unconditional variance), the upper bound is already
2.84. The parameters ranked 7th to 10th (each total effect is no more than 0.3% of the unconditional
variance), only slightly affect the upper bound. These upper bounds are not very conservative, since they
are only slightly larger than the worst-case found by Monte-Carlo and by the µ lower bounds.

b) µ lower bounds (Figure 9a, blue plot): the evolution of the lower bound is not monotonous, which
indicates that adding parameters with low influence can make the search less reliable, even with a proper
initialization with the iterative procedure (in particular, for 8 parameters, the result is overly optimistic).
Nonetheless, with only 7 parameters, a rare worst case that is larger than the one found by Monte-Carlo
(with all 20 parameters), was identified.
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c) Computation times (Figure 9b): Red plot: the computation of the upper bounds is very fast when only
the most influential parameters are kept, and increases significantly when least-influential parameters
are added: e.g. from 338s with 6 parameters (STi ≥ 0.03) to 814s when adding the 7th parameter
(STi = 0.003). Blue plot: similar observation for the lower bounds: e.g. from 1704s with 6 parameters
to 4976s with 7 parameters. Remark: since the procedure for the lower bounds is iterative (step i+1 is
initialized with the results of step i), the cumulative times could also be considered.

In conclusion, the STi provide a quantitative information to assess the trade-off between the accuracy
of the µ-analysis and the computation time. The idea is that, when adding parameters who contribute
the least to the variance, (i) the contributions to the worst-case performance should become increasingly
small, and (ii) the worst-case configurations should become increasingly rare. With a reduced number
of parameters, for example here keeping the first 6 parameters (that is, fixing the parameters whose total
effects account for less than 0.3% of the unconditional variance), it is possible to quickly provide lower
and upper bounds of the worst-case performance (of the reduced system). Regarding the lower bound,
an iterative procedure may help the search, but the computation seems to become less reliable and slower
when least influential parameters are added; the sensitivity analysis can provide some insight to make
a choice on the parameters to be included. Nonetheless, the comparison with Monte-Carlo shows that
even a rare worst-case performance of the full system can be found with limited number of parameters,
and in shorter time.

(a) Worst-case H∞ norm (b) Computation time

Fig. 9 Comparison of µ-analysis for different number of parameters, and Monte-Carlo.

5 Conclusion
This paper investigated three global sensitivity analysis techniques to study the influence of uncertain

parameters on the H∞ norm of a satellite benchmark. While the linear regression was not adequate
to capture interactions between parameters, and in particular the presence of several candidate worst-
case peaks, the Morris and variance methods allowed identifying the most influential parameters. Both
methods can be used in combination, the former being computationally cheap and the latter providing
more quantitative results. Convergence was also verified numerically. Finally, it was shown how the
results can support the µ-analysis to efficiently characterize the worst-case performance.
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