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ABSTRACT

In this paper, a comprehensive methodology is presented for modeling a spinning flexible spacecraft
mission scenario and designing a gain-scheduled feedback control system that can robustly meet
performance requirements and adapt to the angular velocity of the spacecraft. This spacecraft is
composed of a main central body, two flexible booms and two tip masses. The model of the satellite
was designed to be compliant with the Two-Input-Two-Output Port (TITOP) approach, which offers
the possibility to model complex multibody mechanical systems, while keeping the uncertain nature
of the plant and condensing all the possible mechanical configurations in a single linear fractional
representation (LFR). Furthermore, the model fully captures the impact of centrifugal stiffening
and softening on the dynamics of the satellite’s flexible rotating booms, as well as its dependence on
the angular velocity. Ultimately, the control design considers the interactions between subsystems
and uncertainties, as well as the time-varying and coupled flexible dynamics.
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Nomenclature

aB𝑃 ≡
𝑑vB

𝑃

𝑑𝑡

�����
R𝑖

= Inertial linear acceleration vector of the body B at the point 𝑃, expressed in m s−2.

¤vB𝑃 ≡
𝑑vB

𝑃

𝑑𝑡

�����
R𝑏

= Linear acceleration vector of the body B computed at the point 𝑃 with respect

= to the body frame R𝑏, expressed in m s−2.
¤𝝎B
𝑃

= Inertial angular acceleration vector of the body B at the point 𝑃, expressed
= in rad s−2.

vB𝑃 ≡ 𝑑x𝑃
𝑑𝑡

����
R𝑖

= Inertial velocity vector of the body B at the point 𝑃, expressed in m s−1.

𝝎B
𝑃

= Inertial angular velocity vector of the body B at the point 𝑃, expressed in rad s−1.
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xB
𝑃

= Distance vector defined between the point 𝑂, the origin of the inertial frame,
= and the point 𝑃 of the body B, expressed in m.

BP = Distance vector defined between the points 𝐵 and 𝑃, expressed in m.
𝚯B

𝑃
= Euler angles vector of the body B computed at the point 𝑃 with respect
= to the inertial frame, expressed in rad and using the ’ZYX’ sequence of rotations.

Fext/B,𝐺 = External forces vector applied to the body B at the point 𝐺, expressed in N.
Text/B,𝐺 = External torques vector applied to the body B at the point 𝐺, expressed in N m.
FB/A,𝐺 = Forces vector applied by the body B to the body A at the point 𝐺, expressed in N.
TB/A,𝐺 = Torques vector applied by the body B to the body A at the point 𝐺, expressed

= in N m.
WB/A,𝐺 = Wrench vector applied by the body B to the body A at the point 𝐺:

= WB/A,𝐺 =

[
FT
B/A,𝐺

,TT
B/A,𝐺

]T
, expressed in [N,N m].

[X]R• = X (model, vector or tensor) expressed in the frame R•.
X = X (model, vector or tensor) expressed in the body frame, unless stated otherwise.
mB

𝑃
= Motion vector of the body B at the point 𝑃:

= mB
𝑃
=

[
¤vBT

𝑃
, ¤𝝎BT

𝑃
, vBT

𝑃
,𝝎BT

𝑃
, xBT

𝑃
,𝚯BT

𝑃

]T
.

PR𝑎/R𝑏
= DCM from the frame R𝑎 to the frame R𝑏 ([v]R𝑏

= PR𝑎/R𝑏
[v]R𝑎

for any vector v).
v{𝑖} = Component 𝑖 of vector v.
∥v∥2 = Euclidean norm of the vector v.
v̂ =

v
∥v∥2

= Normalized vector v̂ of a non-zero vector v (or unit vector in the direction of v).

¤x(𝑡) = First time derivative of x with respect to the body frame.
X(I,J) = Subsystem of X from the inputs indexed in the vector J to the outputs indexed

= in the vector I (if (I, J) = (:, 7 : 10), it means that one is considering the subsystem
= between the inputs from 7 until 10 to all the outputs).

diag(A, · · · ) = Block-diagonal augmented matrix.
x = Equilibrium value of x.
𝛿x = Small variation of x around a defined equilibrium.
I𝑛 = Identity matrix 𝑛 × 𝑛.
0𝑛×𝑚 = Zero matrix 𝑛 × 𝑚.
JB
𝐺

= Inertia tensor of B, computed at the point 𝐺, written in R𝑏 and expressed in kg m2.
𝑚B = Mass of B expressed in kg.
s = Laplace’s variable.

1 Introduction
The study of flexural vibration modes in rotating beams has driven extensive research in the design

of helicopter rotor systems, wind turbines and various other devices [1]. The application of structures
modeled as rotating beams is also very common in spacecraft applications, where long, flexible and
rotating space booms [2] or high-gain antennas are frequently employed, as seen in missions like Cluster
[3] or the proposed Turbulence Heating ObserveR (THOR) satellite [4]. Consequently, there is extensive
literature dedicated to exploring the dynamics and vibrations of these structures [5]. Traditionally, these
components were designed using rigid materials. However, the current trend is to employ more flexible
and lightweight structures. This trend is particularly significant in space missions.

From the perspective of the Attitude and Orbit Control System (AOCS) and Guidance, Navigation,
and Control (GNC), the challenges associated with spinning spacecraft missions primarily stem from the
influence of centrifugal stiffening on the dynamics of the satellite’s flexible rotating booms. Consequently,
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the success of such missions is heavily dependent on the ability to design an accurate system model. In this
regard, the comprehensive modeling of complex multibody structures becomes imperative, facilitating
the early prediction of worst-case scenarios and providing the capability to push the control system to its
performance limits. Moreover, having a model that is valid for any possible configuration simplifies the
synthesis of the controller, eliminating the need for frequent transitions between control modes. Indeed,
the transition between different control phases poses a critical aspect in control design, often involving
intermediate tranquilization time windows.

The main contribution of this paper is to propose an adaptive control strategy for a spinning spacecraft
that can robustly meet the required pointing performances, where the controller is gain-scheduled with
respect to the angular velocity of the spinning spacecraft. The satellite’s design is inspired by the
THOR and Cluster missions, where the main equipment platform is located around a central rigid
body. Two flexible booms, resembling long rods, are connected to the rigid hub of the spacecraft.
These booms become active when the spacecraft starts spinning. Their purpose can be to measure the
varying electrical and magnetic fields surrounding the spacecraft (Cluster mission) or to carry plasma
measurement instruments at their tips (THOR project). In this paper, these measurement instruments
will be treated as tip masses. Furthermore, it should also be noted that all the dynamic models of the
different bodies that are used in this paper have been computed in [6].

The proposed model is built using the Two-Input-Two-Output Port (TITOP) approach [7], which
considers forces and accelerations at the connection points as inputs and outputs. In contrast to con-
ventional techniques, this method does not depend on particular boundary conditions at the connection
points of the link. By integrating direct and inverse dynamic models in a concise state-space represen-
tation, the TITOP model ensures invertible input-output channels. This enables smooth incorporation
into the overall multibody system model, treating it as a block-diagram model. Moreover, this approach
provides the capability to represent complex multibody mechanical systems, preserving the uncertain
characteristics of the plant and condensing all potential mechanical configurations into a single Linear
Fractional Representation (LFR). The TITOP model effectively bridges the gap between the transfer
matrix method and the effective mass-inertia method. This approach has been previously introduced in
[8] and has found practical applications in space engineering, as demonstrated in [9–12]. The obtained
LFR model is characterized by its parameterization with respect to the angular velocity, resulting in a
Linear Parameter-Varying (LPV) system that accommodates the centrifugal stiffening effect affecting the
dynamic behavior of the spacecraft’s flexible booms.

The models constructed using the TITOP approach are well-suited for robust control synthesis, as
well as robust performance assessment. Additionally, all the models developed with the TITOP approach
have been integrated into the most recent release of the Satellite Dynamics Toolbox library (SDTlib) [13].

In this context, this paper presents a comprehensive approach for designing a spinning spacecraft
mission scenario from an end-to-end perspective, taking into account the structure and control aspects.
The authors aim to consider the challenges of flexibility, system uncertainty and time-varying dynamics
in the design of a robust controller for a spinning spacecraft. As operations of large and flexible structures
become more common in future space missions, this approach is increasingly relevant for ensuring the
success of these kinds of scenarios.

2 The TITOP approach with motion vectors
The link A𝑖 connected to the parent substructure A𝑖−1 at the point 𝑃𝑖 and to the child substructure

A𝑖+1 at the point𝐶𝑖 is depicted in Fig. 1a. The TITOP approach that has been previously presented in [7–
12, 14] links the 6 components of the interaction wrenches to the 6 components of the inertial acceleration
dual vectors at the points 𝑃𝑖 and 𝐶𝑖, assuming small motions around null equilibrium conditions. To
linearize the model of a spinning satellite around non-null kinematic equilibrium conditions (vA𝑖

𝑃𝑖
and

3Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



𝝎A𝑖

𝑃𝑖
), the TITOP model developed hereafter considers the 18-components motion vectors mA𝑖

𝑃𝑖
and mA𝑖

𝐶𝑖
,

as defined in the nomenclature, as well as their corresponding equilibrium values and variations. For
example, it follows that:

mA𝑖

𝑃𝑖
=

[
01×6, 01×6, v

AT
𝑖

𝑃𝑖
,𝝎

AT
𝑖

𝑃𝑖
, xA

T
𝑖

𝑃𝑖
,𝚯

AT
𝑖

𝑃𝑖

]T

︸                                        ︷︷                                        ︸
mA𝑖

𝑃𝑖

+
[
𝛿 ¤vA

T
𝑖

𝑃𝑖
, 𝛿 ¤𝝎AT

𝑖

𝑃𝑖
, 𝛿vA

T
𝑖

𝑃𝑖
, 𝛿𝝎

AT
𝑖

𝑃𝑖
, 𝛿xA

T
𝑖

𝑃𝑖
, 𝛿𝚯

AT
𝑖

𝑃𝑖

]T︸                                                   ︷︷                                                   ︸
𝛿mA𝑖

𝑃𝑖

(1)

Similarly, since the wrench WA𝑖+1/A𝑖 ,𝐶𝑖
applied at the point 𝐶𝑖 at the equilibrium is no longer null,

the linear TITOP model must now consider the deformed body frame R𝑎𝑖 (𝐶𝑖) attached to the body A𝑖 at
the point 𝐶𝑖, in addition to the "rigid" body frame R𝑎𝑖 attached to the body A𝑖 at the point 𝑃𝑖, as depicted
in Fig. 1a.

Therefore, the double-port or TITOP model
[
𝔗

A𝑖

𝑃𝑖𝐶𝑖
(s)

]
R𝑎𝑖

of the body A𝑖 is a linear dynamic model

between 24 inputs:

• the six components of the wrench variation
[
𝛿WA𝑖+1/A𝑖 ,𝐶

]
R𝑎𝑖 (𝐶𝑖)

applied by the child substructure
A𝑖+1 to the body A𝑖 at the point 𝐶𝑖, expressed in the deformed body frame R𝑎𝑖 (𝐶𝑖) .

• the eighteen components of the motion vector variation
[
𝛿mA𝑖

𝑃𝑖

]
R𝑎𝑖

defined at the point 𝑃𝑖 and

expressed in the rigid body frame R𝑎𝑖 .

and 24 outputs:

• the eighteen components of the motion vector variation
[
𝛿mA𝑖

𝐶𝑖

]
R𝑎𝑖 (𝐶𝑖)

defined at the point 𝐶𝑖 and

expressed in the deformed body frame R𝑎𝑖 (𝐶𝑖) .
• the six components of the wrench variation

[
𝛿WA𝑖/A𝑖−1,𝑃𝑖

]
R𝑎𝑖

that is applied by the body A𝑖 to
the parent substructure A𝑖−1 at the point 𝑃𝑖, expressed in the rigid body frame R𝑎𝑖 .

and can be represented by the block-diagram depicted in Fig. 1b. The TITOP model is composed
of the direct dynamic model (transfer from motion vector variation to wrench variation) at the point 𝑃𝑖

and the inverse dynamic model (transfer from wrench variation to motion vector variation) at the point

𝐶𝑖. This model depends on the kinematic equilibrium conditions
[
vA

T
𝑖

𝑃𝑖
,𝝎

AT
𝑖

𝑃𝑖

]T

R𝑎𝑖

at the point 𝑃𝑖 and the

equilibrium wrench at the point 𝐶𝑖

[
WA𝑖+1/A𝑖 ,𝐶𝑖

]
R𝑎𝑖 (𝐶𝑖)

=

[
WA𝑖+1/A𝑖 ,𝐶𝑖

]
R𝑎𝑖

. Indeed, considering that the

static deformations of flexible beams due to centrifugal loads are small and neglected in the computation
of the equilibrium conditions, the frames R𝑎𝑖 and R𝑎𝑖 (𝐶𝑖) are aligned. It should also be noted that the

equilibrium conditions can be propagated forward (from parent to child) to provide
[
vA

T
𝑖

𝐶𝑖
,𝝎

AT
𝑖

𝐶𝑖

]T

R𝑎𝑖

and

backwards (from child to parent) to provide
[
WA𝑖/A𝑖−1,𝑃𝑖

]
R𝑎𝑖

.

Moreover, Eq. (1) also introduced the geometric equilibrium conditions
[
xA𝑖

T

𝑃𝑖
,𝚯

AT
𝑖

𝑃𝑖

]T

R𝑎𝑖

. However,

the dynamics of the various TITOP models developed hereafter do not depend on these geometric
conditions. For this reason, they do not appear on the block-diagram depicted in Fig. 1b.

Ultimately, the subscript 𝑖 will be ommitted hereafter and the substructures (parent or child) connected
to the body in question will be denoted as • for brevity. Similarly, the equilibrium signals (represented in
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green in Fig. 1b) will not be displayed in the block-diagrams presented henceforth. For a more detailed
explanation of the TITOP approach with motion vectors, the readers are encouraged to refer to [6].

O
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[

T
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PiCi
(s)

]

Rai [δmAi
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]
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[δmAi

Pi
]
Rai
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]
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6

6
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m
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[
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Pi

ω
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]
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ω
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]
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]
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Fig. 1 (a) Three-Dimensional (3D) representation of a flexible spinning beam A𝑖 . (b) TITOP model[
𝔗

A𝑖

𝑃𝑖𝐶𝑖
(s)

]
R𝑎𝑖

block-diagram.

3 Case study: Spinning and flexible spacecraft
In the investigation of plasma characteristics in space, in-situ plasma measurements serve as a very

important tool. Spinning spacecraft platforms are commonly employed for conducting such measurements
due to their numerous advantages. One key benefit of utilizing a spinning spacecraft lies in its ability
to consistently sample the plasma surroundings. Through rotation, the spacecraft allows the plasma
instruments to capture plasma properties in all directions, leading to a more comprehensive understanding
of the plasma environment [4]. Another advantage is the spinning spacecraft’s capability to mitigate
spacecraft charging effects. Stationary spacecraft can accumulate a negative charge due to electron
buildup on its surface, disrupting in-situ plasma measurements by repelling the plasma. Nonetheless,
when a spacecraft spins, the charge is more evenly distributed across its surface, reducing the overall
charging effect. Additionally, spinning spacecraft platforms contribute to reducing instrument noise,
which can originate from sources like electromagnetic interference and thermal fluctuations. The rotation
of the spacecraft allows noise to be averaged out, resulting in more precise and reliable measurements.

3.1 Complete model of the system
For the mission scenario being studied in this paper, a spinning spacecraft is considered, as depicted

in Fig. 2, where the shape of the spacecraft is inspired by the THOR and Cluster missions. The central
cylinder B represents the main equipment platform. Furthermore, two long rod-shaped and flexible
booms A• are attached to the rigid hub of the spacecraft B and operate when the spacecraft begins
to spin. Their function can involve the measurement of fluctuating electrical and magnetic fields in
the vicinity of the spacecraft, as demonstrated in the Cluster mission. Alternatively, they may serve as
carriers for plasma measurement instruments located at their tips, as exemplified in the THOR project.
Within the scope of this paper, the primary focus will be directed towards the second scenario, where the
measurement instruments will be modeled as tip masses.

A detailed block-diagram representation of the complete system is also displayed in Fig. 2, where[
𝔗

A•
𝑃•𝐶•

(s)
]
R𝑎•

are the TITOP models of the flexible booms,
[
𝔛B
𝐺𝑃1𝑃2

(s)
]
R𝑏

the model of the central rigid

hub and
[
ℜ

S•
𝐶•
(s)

]
R𝑠•

the models of the tip masses located at the tips of the flexible booms. For a more

detailed explanation of how these linearized models are calculated, the readers are encouraged to refer to
[6]. Furthermore, the rotation matrices P•

R•/R•
are described in Appendix A.
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Fig. 2 3D representation and detailed block-diagram representation of a spinning satellite mission scenario
composed of one main rigid body, two flexible booms and two tip masses representing two measurement
instruments attached to the tip of each boom (Note: for the sake of simplicity, the x-axes are displayed in
solid red lines, the y-axes in dashed green lines and the z-axes in dash-dotted blue lines).

In the case of spinning satellites, stability is observed in rotations around the principal axes aligned
with the largest and smallest moments of inertia. Nonetheless, the rotation around the axis associated with
the intermediate principal moment of inertia is unstable. This instability results in unexpected rotations,
giving rise to a phenomenon widely recognized as the Dzhanibekov effect [15]. For this reason, it must be
ensured that the rotation axis of the spacecraft does not correspond to the intermediate principal moment
of inertia. In this particular scenario, the assumption is made that the spacecraft exclusively rotates
around the z𝑏-axis of its body frame R𝑏 (without loss of generality), which corresponds to the largest
moment of inertia (see Table 1). Consequently, it is considered that 𝝎•

• = [0, 0,Ω]T. Moreover, spinning
spacecraft undergo spin-up maneuvers, where the objective is to accelerate the system into the prescribed
spinning motion and then maintain the expected angular velocity. Hence, the complete spacecraft system
is parameterized according to the angular velocity Ω ∈ [0, 1] rad s−1, where the selection of the variation
range is based on the typical angular velocities achieved in missions of this kind.

Rayleigh damping: Rayleigh damping, also known as proportional damping or classical damping
model, expresses damping as a linear combination of the mass and stiffness matrices, that is:

C = 𝛼M + 𝛽K (2)

where 𝛼 and 𝛽 are real scalars and M, C and K are the mass, damping and stiffness matrices of a
certain dynamic system. The procedure introduced by Hall [16] is convenient for determining 𝛼 and 𝛽.
In order to use it, one has to select a desired amount of damping 𝜉 and a frequency range covering all the
modes of interest from 𝜛 to 𝑅𝜛, with 𝑅 > 1. Then, the bounds on the damping ratios that are assigned
to these modes within the specified frequency range can be computed. First, let us define Δ𝜉 as follows:
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Table 1 Spinning spacecraft mechanical data and equilibrium conditions.

Parameter Description Value

Central
rigid

body B

GP• distance vector between 𝐺 and 𝑃• in equilibrium and written in R𝑏 [±2, 0, 0] m
𝑚B mass of B 500 ± 5% kg
𝐽B𝑥𝑥 𝐽B𝑥𝑦 𝐽B𝑥𝑧

𝐽B𝑦𝑦 𝐽B𝑦𝑧
𝐽B𝑧𝑧

 inertia of B computed at the point 𝐺 and written in R𝑏


570.42 ± 5% 0 0

570.42 ± 5% 0
1000 ± 5%

 kg m2

TR𝑎1/R𝑏
change of frame DCM between R𝑎1 and R𝑏


−1 0 0
0 −1 0
0 0 1


TR𝑎2/R𝑏

change of frame DCM between R𝑎2 and R𝑏 I3

vB𝐺 inertial velocity vector of the body B computed at the point 𝐺 in equilibrium 03×1 m s−1

𝝎B
𝐺 angular velocity vector of the body B computed at the point 𝐺 in equilibrium [0, 0,Ω ∈ [0, 1]]T rad s−1

Flexible
booms
A•

𝑙A• length of A• 50 m
𝜌A• mass density of A• 2700 kg m−3

𝑆A• cross-sectional area of A• 3.14 × 10−4 m2

𝐸A• Young’s modulus of A• 7 × 1010 N m−2

𝜈A• Poisson’s ratio of A• 0.33
𝐽
A•
𝑝𝑥 second polar moment of area of A• with respect to the x𝑎-axis 1.57 × 10−8 m4

𝐽
A•
𝑦 second moment of area of A• with respect to the y𝑎-axis 7.85 × 10−9 m4

𝐽
A•
𝑧 second moment of area of A• with respect to the z𝑎-axis 7.85 × 10−9 m4

TR𝑠•/R𝑎• (𝐶• ) change of frame DCM between R𝑠• and R𝑎• (𝐶•) I3

xA•
𝑃•

distance vector between 𝑂 and 𝑃• in equilibrium and written in R𝑎• [𝑟 = 2, 0, 0]T m

𝚯
A•
𝑃• Euler angles of the beam A• computed at the point 𝑃• in equilibrium 03×1 rad

vA•
𝑃•

inertial velocity vector of the beam A• computed at the point 𝑃• in equilibrium [0, 𝑟Ω, 0]T m s−1

𝝎A•
𝑃•

angular velocity vector of the beam A• computed at the point 𝑃• in equilibrium [0, 0,Ω ∈ [0, 1]]T rad s−1

WS•/A•,𝐶• wrench vector applied by the body S• to the body A• at the point 𝐶• in equilibrium
[
𝑚S•

(
𝑙A• + 𝑟

)
Ω2, 0, 0, 0, 0, 0

]T [N,N m]

Tip
masses
S•

𝑚S• mass of S• 5 kg
𝐽
S•
𝑥𝑥 𝐽

S•
𝑥𝑦 𝐽

S•
𝑥𝑧

𝐽
S•
𝑦𝑦 𝐽

S•
𝑦𝑧

𝐽
S•
𝑧𝑧

 inertia of S• computed at the point 𝐶• and written in R𝑠•


0 0 0

0 0
0

 kg m2

vS•
𝐶•

inertial velocity vector of the beam S• computed at the point 𝐶• in equilibrium
[
0,

(
𝑙A• + 𝑟

)
Ω, 0

]T m s−1

𝝎S•
𝐶•

angular velocity vector of the body S• computed at the point 𝐶• in equilibrium [0, 0,Ω ∈ [0, 1]]T rad s−1

Δ𝜉 = 𝜉
1 + 𝑅 − 2

√
𝑅

1 + 𝑅 + 2
√
𝑅

(3)

The modes in the given frequency range [𝜛, 𝑅𝜛] will have a damping ratio bounded by 𝜉max = 𝜉+Δ𝜉

and 𝜉min = 𝜉 − Δ𝜉 . Ultimately, 𝛼 and 𝛽 can be calculated from:

𝛼 = 2𝜉𝜛
2𝑅

1 + 𝑅 + 2
√
𝑅

and 𝛽 = 2𝜉
1
𝜛

2
1 + 𝑅 + 2

√
𝑅

(4)

Within the scope of this specific application, taking into account the variability in Ω and the
characteristics of the flexible booms, the parameters are specified in the following manner: 𝜛 = 3.58 ×
10−2 rad s−1, 𝜉 = 0.01 and 𝑅 = 26.7318. Following the notation presented in [6], the new damping
matrix of the bodies A• is equal to C = 𝛼M 𝑓 𝑓 + 𝛽K 𝑓 𝑓 . Ultimately, the matrix C must be added to
the matrix D 𝑓 𝑓 in [6], so that the new damping contributions are taken into account on the state-space
representations of the flexible booms.

By considering the damping matrix C, the angular velocity varying parameter Ω appears 8, 221
and 4 times in the models of the bodies B, A• and S•, respectively. It should also be noted that the
number of computed occurrences for the varying parameter Ω depends on the equilibrium conditions
computation of the system. In this case, the number of occurrences of Ω corresponds to the spinning
satellite mission scenario displayed in Fig. 2. For the flexible boom models, it is considered that
xA•
𝑃•

= [𝑟, 0, 0]T, 𝚯
A•
𝑃• = 03×1 and 𝝎A•

𝑃•
= [0, 0,Ω]T. For this reason, it can be concluded that WS•/A•,𝐶• =
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[
𝑚S•

(
𝑙A• + 𝑟

)
Ω2, 0, 0, 0, 0, 0

]T, where 𝑚S• are the tip mass values located at the points 𝐶• and 𝑙A•

represents the lengths of the beams A•. Due to the spinning motion, it can also be inferred that
vA•
𝑃•

= [0, 𝑟Ω, 0]T. These equilibrium conditions are expressed in the body frames R𝑎• , which are the
frames of reference used to define the beam models. A similar procedure can be carried out for the
computation of vA•

𝐶•
, with vA•

𝐶•
=

[
0,

(
𝑙A• + 𝑟

)
Ω, 0

]T.

Mechanical uncertainty 𝚫mec: One of the objectives of this paper is to demonstrate how to design a
controller in the presence of model uncertainty. For this reason, relative uncertainty is taken into account
on the mass and moments of inertia of B, since the robust stability and performance of the spinning
spacecraft need to be ensured even when the mechanical characteristics of the central rigid hub are not
perfectly known. As an example, let us now consider the mass of the central rigid body 𝑚B as uncertain:

𝑚B = 𝑚B
0 (1 + 𝑟𝑚B𝛿𝑚B ) (5)

where 𝑚B
0 is the body’s nominal mass, 𝑟𝑚B is used to set the maximum percent of variation for the

body’s mass and 𝛿𝑚B ∈ [−1, 1] is a normalized real uncertainty. In this case, 𝛿𝑚B appears five times
in the LFR of the body B. Similarly, relative uncertainty is considered on the inertial properties of
B. However, only the diagonal moments of inertia are assumed to be uncertain while the off-diagonal
terms are kept at their nominal values. For the moments of inertia of the rigid body JB𝑥𝑥 , JB𝑦𝑦 and JB𝑧𝑧,
the normalized real uncertainties 𝛿JB

𝑥𝑥
and 𝛿JB

𝑦𝑦
have two occurrences in the same LFR, while 𝛿JB

𝑧𝑧
only

appears once. Furthermore, 𝛿JB
•
∈ [−1, 1] and 𝑟JB

•
are used to set the maximum percent of variation

for JB• , just like in Eq. (5). Therefore, the mechanical uncertainty block of the body B can be written
as 𝚫mec = diag

(
𝛿𝑚BI5, 𝛿JB

𝑥𝑥
I2, 𝛿JB

𝑦𝑦
I2, 𝛿JB

𝑧𝑧

)
. All the numerical values and range of variations of the

numerous system parameters which are employed in this section are described in Table 1.

When the full system is assembled, a global LFR representation is obtained, which fully captures the
dynamics and interactions between all the subsystems of the scenario being studied. Additionally, this
model also takes into account the various uncertainty effects in a very compact representation. Fig. 2 illus-
trates the internal structure of the overall LFR model [G(s,𝚫G)]R𝑏

, as well as the interconnections between
the several subsystems. In this representation, all the block uncertainties are isolated at the component
level, with 𝚫B = diag (ΩI8,𝚫mec), 𝚫A• = ΩI221, 𝚫S• = ΩI4 and 𝚫G = diag

(
𝚫B ,𝚫A1 ,𝚫A2 ,𝚫S1 ,𝚫S2

)
.

Finally, it should also be noted that it is crucial for a stable equilibrium to be established that the spacecraft
exhibits symmetry around its spin axis z𝑏.

3.2 Analysis of the spinning and flexible spacecraft dynamics
Let us now analyze the singular values of the spinning and flexible spacecraft model, given by

[G(s,𝚫G)]R𝑏
, for different values of Ω and considering 𝚫mec nominal. For instance, if the transfer

function from the second component of the external torque 𝛿Text/B,𝐺 to the second component of the
angular acceleration 𝛿 ¤𝝎B

𝐺
is considered, Fig. 3 shows how the natural frequencies of the system evolve

with respect to Ω. As stated before, the centrifugal forces applied by the tip masses S• to the spinning
beams A• are determined by the equation WS•/A•,𝐶•{1} = 𝑚S•

(
𝑙A• + 𝑟

)
Ω2. These forces are projected

onto the beams’ body frames, labeled as R𝑎• . They are also accountable for the centrifugal stiffening
effect, which causes the natural frequencies of the system to shift to the right in the singular values plots
as the value of Ω increases, as displayed in Fig. 3.
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Fig. 3 Singular values of the model [G(s,𝚫G)]R𝑏
with respect to the angular velocity Ω and along a dense

grid of frequencies (𝛿Text/B,𝐺{2} → 𝛿 ¤𝝎B
𝐺
{2} channel).

4 Control architecture and synthesis methodology
Some of the challenges of a spinning spacecraft mission scenario include the control structure inter-

actions between the flexible appendages and the AOCS, the system uncertainties, the flexible dynamics
and the dynamic couplings.

4.1 Gain-scheduled H∞ control
In order to design a control law that accommodates the desired performance requirements, the

synthesis problem is recast into the nonsmooth H∞ framework [17] by first assembling the weighted
interconnection shown in Fig. 4a. This model is used to design an LPV gain-scheduled controller
[14, 18, 19], where the scheduling variable is the angular velocity Ω. A global uncertainty block system
is built in a very straightforward way by just concatenating the individual uncertainty blocks, where the
global block is defined asΩI458. The plant model G(s) is the one represented in Fig. 2. However, only the

minimal realization corresponding to the channels 𝛿Text/B,𝐺 →
[
𝛿𝝎BT

𝐺
, 𝛿𝜙B

𝐺
, 𝛿𝜃B

𝐺

]T
is considered, with

𝛿𝚯B
𝐺
=

[
𝛿𝜙B

𝐺
, 𝛿𝜃B

𝐺
, 𝛿𝜓B

𝐺

]T, since the objective is to design an attitude controller. This interconnection is
composed of the following blocks:

Sensor and actuator models: First, the star tracker dynamics GSST (s) correspond to a first order
low pass filter with a cutoff frequency of 8 Hz. Secondly, the gyroscope dynamics GGYRO (s) are
represented by a first order low pass filter with a 200 Hz cutoff frequency. Finally, the reaction wheel
system dynamics GRW (s) are approximated by a second order transfer, with a damping ratio equal to 0.7
and a natural frequency of 200 Hz.

Disturbance weights: The weight Wext(s) = diag
(

0.002577
2.236𝑠+0.2236 ,

0.009685
2.236𝑠+0.2236 ,

0.01239
2.236𝑠+0.2236

)
N m is

used to define an upper bound on the expected closed-loop orbital disturbances at different frequen-
cies. These transfer functions are approximated from the power spectral density of the various torque
disturbances that are expected to act on a spinning spacecraft mission like Cluster.

Performance weights: The purpose of the weight W𝑢 = diag (0.8333, 0.8333, 0.8333) N−1 m−1

is to impose a desired closed-loop upper bound of 1.2 N m on the worst-case actuator signals at dif-
ferent frequencies. Similarly, the objective of the absolute pointing error (APE) requirement W𝑝 =

diag (35.2113, 35.2113) rad−1 is to impose an upper bound of 0.0284 rad on the two different axes.
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Roll-off filter: A 4th-order roll-off Butterworth filter Fro(s) with a cutoff frequency of 0.7 Hz is also
added to the output control signal u, ensuring the controller is not sensitive to high frequency content.

Finally, the structure that was chosen for the adaptable controller K̂LPV(s,Ω) is given by:

K̂LPV(s,Ω) = F𝑢

([
AK0 BK0

CK0 DK0

]
+Ω

[
AK1 BK1

CK1 DK1

]
,
I𝑛𝑐
s

)
= F𝑙

(
K(s),ΩI𝑛𝑘

)
(6)

with K(s) ⊂ RH(𝑛𝑘+𝑛𝑦)×(𝑛𝑘+𝑛𝑢)∞ , where RH(𝑛𝑘+𝑛𝑦)×(𝑛𝑘+𝑛𝑢)∞ represents the set of finite gain transfer
matrices with

(
𝑛𝑘 + 𝑛𝑦

)
outputs and (𝑛𝑘 + 𝑛𝑢) inputs. Furthermore, 𝑛𝑐 is the order of the controller, 𝑛𝑦

is the number of inputs, 𝑛𝑢 is the number of outputs, 𝑛𝑘 is the number of occurrences of the scheduling
parameter Ω, F𝑢 (·) represents the upper linear fractional transformation and F𝑙 (·) is the lower linear
fractional transformation. In Eq. (6), the matrices AK0 ,AK1 ,BK0 ,BK1 ,CK0 ,CK1 ,DK0 ,DK1 are real
matrices of appropriate dimensions. The closed-loop model, denoted C(s,Ω), can be observed in Fig.
4b. Furthermore, the uncertain closed-loop model is given by Ĉ(s,Ω,𝚫mec) = F𝑢 (C(s,Ω),𝚫mec). An
H∞ problem is solved, composed of two hard constraints. The first constraint is a requirement on the
gain from the normalized orbital disturbances to the normalized APE and worst-case actuator signals, as
follows:

sup
𝚫mec,Ω




Ĉd𝑢→ẽ(s,Ω,𝚫mec)




∞
≤ 1 (hard constraint) ,with ẽ =

[
e𝑢
e𝑝

]
(7)

The second constraint is a requirement on the input sensitivity function, which is given by:

1
𝛾

sup
𝚫mec,Ω




Ĉd𝑠→e𝑡 (s,Ω,𝚫mec)




∞
≤ 1 (hard constraint) (8)

In Eq. (8), the upper bound on the input sensitivity function is equal to 𝛾 = 1.5, which ensures on
the three different axes a modulus margin bigger than 1

𝛾
= 0.667, a gain margin bigger than 𝛾

𝛾−1 = 3
and a phase margin bigger than 2 arcsin 1

2𝛾 = 38.9 ◦. The matrix DK0 is initialized with a static baseline
Proportional Derivative (PD) controller KPD tuned to the total nominal inertia of the spinning spacecraft,
as follows:

KPD =

[
katt catt

]
with

{
katt = 𝜔2

attJtot(1:3,1:2)
catt = 2𝜉att𝜔attJtot

(9)

where Jtot is the inertia tensor of the collection of all the body elements, computed at the point 𝐺
and measured with respect to R𝑏. The objective is to have a critically damped system that returns to rest
slowly without oscillating when tracking the reference signals. For this reason, 𝜉att = 1 and 𝜔att = 0.01
Hz represent the controller’s damping ratio and natural frequency, respectively. These values of 𝜉att and
𝜔att are merely an initial tuning guess which were chosen to avoid overshoot and to achieve a large settling
time. Furthermore, AK0 , BK0 , CK0 are initialized with null matrices of appropriate dimensions. The
resulting controller K̂LPV(s,Ω) has 𝑛𝑐 = 3 states and 𝑛𝑘 = 7 occurrences of the parameter Ω.

Fig. 5 illustrates the singular values corresponding to the channels d𝑢 → ẽ and d𝑠 → e𝑡 for three
distinct closed-loop systems. The controllers utilized to close the loop in these systems are represented
by KPD, K̂PD and K̂LPV(s,Ω). The matrix K̂PD is a static controller and has the same structure as
KPD. However, this controller is optimized by means of the H∞ framework, considering the constraints
specified in Eqs. (7) and (8). In Fig. 5, each nominal closed-loop system (𝚫mec is not taken into account)
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epu

du

+

+Fro(s)

Wext(s)

GGYRO(s)

GSST (s)
Wp

K(s)

δText/B,G

δωB
G

eu
Wu

control effort

GRW(s) G(s)

zGwG

∆mec

(a) (b)

pointing
performance

Ĝ(s)
ds

=

eu
ep

e

du

=

d

u y

C(s,Ω)
ΩInkwK zK

ΩInkwK zK

et

et

uro

K(s)

[
δφB

G

δθBG

]

ds
+

+ ΩI458

zmecwmec

zGwG

∆mec

ΩI458

zmecwmec

Fig. 4 (a) System architecture used for controller synthesis. (b) Equivalent standard form of the intercon-
nection.

is parameterized according to several different values of Ω. Furthermore, the same figure also shows
the gains of the worst-case scenarios provided by the Matlab routine systune (worst combinations of
uncertain parameters) for the uncertain closed-loop systems corresponding to the controllers K̂PD and
K̂LPV(s,Ω). These worst-case scenarios are linked to the worst-case configurations of Ω and 𝚫mec for the
two different uncertain closed-loop systems. For a better computation of the worst-cases, the structured
singular value function 𝜇𝛿 (·) should be used [20], which provides very precise information about the
magnitude of uncertainty which is needed to destabilize the loop at any frequency.

(a) (b)

Fig. 5 Gains of three different nominal closed-loop systems corresponding to the controllers KPD, K̂PD and
K̂LPV(s,Ω) for different values of Ω, as well as the worst-case singular values associated with the uncertain
closed-loop systems corresponding to the controllers K̂PD and K̂LPV(s,Ω): (a) Channels d𝑢 → ẽ. (b) Channels
d𝑠 → e𝑡 .
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It can be observed in Figs. 5a and 5b that, when the baseline controller KPD is used, the gains
of the corresponding closed-loop system do not comply with the requirement on the input sensitivity
function at multiple frequencies. This is logical, as the baseline tuning method illustrated in Eq. (9) fails
to consider disturbances and performance/stability constraints. Nevertheless, the design of the robust
PD controller K̂PD does take into account all the disturbances and requirements. Despite this, the gains
of the corresponding closed-loop indicate that the imposed constraints are still not met when K̂PD is
used to close the loop. Indeed, the best achieved hard constraint values that are given by the Matlab
routine systune show exactly that for the design of K̂PD, since they are bigger than 1 for the two hard
requirements shown in Eqs. (7) and (8). Finally, when the robust LPV controller K̂LPV(s,Ω) is used, the
associated gains are always below 0 dB, meaning that the hard constraints imposed in Eqs. (7) and (8) are
completely satisfied. From this analysis, it is possible to conclude that static PD controllers may prove
inadequate for effectively controlling complex flexible systems with time-varying dynamics. Indeed, the
only controller that meets all the requirements is the robust LPV controller.

Ultimately, the gains of Fro(s)K̂LPV(s,Ω) are shown in Fig. 6 for the channels y{2} → uro and for
different values of Ω ∈ [0, 1] rad s−1. A behavior similar to that of a notch filter can be seen in the first
and third plots. This behavior serves as a means for the controller to counteract problematic resonances
caused by the system’s flexible modes, which persist within the closed-loop system’s bandwidth. For
example, the described behavior occurs at the frequency equal to 0.068 Hz for the channel y{2} → uro{3}
and for Ω = 0.1620 rad s−1. The reason behind this phenomenon is that, for Ω = 0.1620 rad s−1, the
corresponding open-loop system exhibits a resonance at the frequency of 0.068 Hz, which is attributed
to a flexible mode in the spinning spacecraft.

Fig. 6 Gains of Fro(s)K̂LPV(s,Ω) for different values of the scheduling parameter Ω ∈ [0, 1] (y{2} → uro
transfer functions).

This study is merely a glimpse of the potential offered by the TITOP multibody approach. Using
this approach to build a model of any multibody flexible structure in LFR form enables the robust control
design for a flexible system characterized by uncertainties and time-varying dynamics, all while meeting
performance requirements.

5 Conclusion
This paper outlined a study on the modeling, analysis and control of a spinning spacecraft mission

scenario, which is marked by complex and challenging interactions. To address this complexity, a linear
fractional representation of the system was built, parameterized according to the angular velocity of the
spacecraft. The paper also provides a valuable insight into the dynamics of the satellite, which includes
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a central body, two flexible booms and two tip masses. This multibody modeling approach and analysis
offers a practical understanding of the behavior of such systems under spinning conditions, which can
be beneficial for the design and operation of similar missions, like THOR and Cluster. The paper also
provides a detailed overview of the controller synthesis procedure, highlighting how to account for the
different requirements and performance limits.

Appendix A: Change of frame
In order to assemble linear TITOP models between each other and/or to connect them to the main

body, the Direct Cosine Matrix (DCM) PR𝑎/R𝑏
between the frame R𝑎 attached to the body A and the

frame R𝑏 attached to the body B must be taken into account in the propagation of the wrench and motion
vector variations. Let 𝑃 be the point where A is connected to B. Then, it follows that:[

𝛿WA/B,𝑃

]
R𝑏

= diag
(
PR𝑎/R𝑏

,PR𝑎/R𝑏

)︸                      ︷︷                      ︸
P×2
R𝑎/R𝑏

[
𝛿WA/B,𝑃

]
R𝑎

[
𝛿mB

𝑃

]
R𝑏

= diag
(
P×2
R𝑎/R𝑏

,P×2
R𝑎/R𝑏

,P×2
R𝑎/R𝑏

)
︸                                  ︷︷                                  ︸

P×6
R𝑎/R𝑏

[
𝛿mA

𝑃

]
R𝑎

(10)
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