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ABSTRACT

This work investigates the design of an impulsive controller for rendezvous operation near periodic
Halo Orbits using the Lyapunov-Floquet theory. Using the Circular Restricted Three-Body Prob-
lem (CR3BP), a framework extensively discussed in the literature, a numerical continuation via
AUTO 07P is employed to develop the bifurcation diagram for the H1 family of Halo orbits. Then,
the Lyapunov-Floquet transformation enables the conversion of the periodic Linear Time Variant
(LTV) system, derived from the linearization of the equations of motion, into an analytical solution
which takes the form of an exponential for all time instances, thereby simplifying the design process
for the controller. An impulsive control strategy is adopted for evaluating the performance of this
approach, culminating in the development and testing of a simple LQR controller, to have an initial
assessment of its efficacy compared with previous approaches.

Keywords: Spacecraft rendezvous; Halo orbits; Floquet theory; LQR

Nomenclature

𝚽(𝑡0, x0; 𝑡1) = State transition matrix from 𝑡0, x0 to 𝑡 = 𝑡1
x𝑡 (𝑡) = Absolute state of the target
r𝑡 (𝑡) = Absolute position of the target
v𝑡 (𝑡) = Absolute velocity of the target
x̂(𝑡) = Absolute state of the chaser
r̂𝑡 (𝑡) = Absolute position of the chaser
v̂𝑡 (𝑡) = Absolute velocity of the chaser
x(𝑡) = Relative state of the chaser with respect to the target
` = Parameter of the masses in the C3RBP
𝑇 = Period of closed orbit
_ = Continuation parameter in the CR3BP
L2𝑇 = Lyapunov-Floquet change of basis matrix.
A𝑘 = State matrix of the linearized system
Â𝑘 = Transformed state matrix
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B = Input matrix
K = Control gain

1 Introduction
The exploration of multi-body environments, particularly in the context of space missions, has

emerged as an increasingly active area of research. This surge in interest is partially fueled by the
International Space Station (ISS) partners’ ambitions to establish a space station in cislunar space, known
as the Lunar Gateway (or just Gateway) [1]. The strategic placement of the Gateway in lunar orbit
promises to significantly enhance scientific exploration by enabling exploration of the Solar System or
e.g. facilitating the return of lunar samples [2].

Studies exploring various orbital locations for the Gateway have identified Near Rectilinear Halo
Orbits (NRHOs) around the Earth-Moon 𝐿2 point as particularly viable, owing to their favorable stability
properties and persistence in more accurate models [3, 4]. These orbits are part of the larger family of
Halo orbits in the Circular Restricted Three-Body Problem (CR3BP), a framework extensively discussed
in the literature [5].

Far-rendezvous operations, driven primarily by fuel efficiency, have been well-explored. For example,
by exploiting properties of the stable and unstable manifolds [6]. Reference [7] compares the fuel
efficiency of invariant manifolds connections with that of classical phasing strategies. Additionally, a
surrogate-based parameter optimization strategy is employed in [8] to tackle the problem.

On the other hand, the field of close rendezvous operations, is now gaining attraction. In particular,
a proposal for the definition of the relative motion equations in the LVLH frame for rendezvous in lunar
orbits is given by [9], which is interesting for rendezvous operations as pointed out in [10]. Additionally,
rendezvous scenarios around L2 halo orbits for future transportation missions have been studied on [11],
and [12] discusses the rendezvous targeting and navigation by applying a navigation filter. Moreover,
[13] discusses different linear and non-linear models used to describe cis-lunar relative motion, with
special focus on NRHO. Recent works on rendezvous have also explored optimization with uncertainty
management [14–16] and those have also been translated into the context of CR3BP [17, 18].

However, how to describe and solve linearized relative dynamics close to Halo orbits is still unclear,
compared with the fully established theories for relative dynamics in the two-body problem. In this
context, this work investigates in particular the application of the Lyapunov-Floquet change of variables
[19] in designing a controller for the rendezvous challenge on a Halo orbit in the Earth-Moon system.
Using the Circular Restricted Three Body Problem (CR3BP) model (described in Section 2), with a focus
on the H1 family of orbits, we employ numerical continuation via AUTO 07P to develop the bifurcation
diagram for the CR3BP, as explained in Section 3.

The subsequent computation of the Lyapunov-Floquet transformation for a specific orbit facilitates
the conversion of the periodic Linear Time Variant (LTV) system, derived from the linearization of
the motion equations, into a Linear Time Invariant (LTI) system. This transformation enables the
derivation of an analytical solution which takes the form of an exponential for all time instances, thereby
simplifying the design process for the controller. An impulsive control strategy is adopted for evaluating
the performance of this innovative approach, culminating in the development and testing of a simple LQR
controller, given in Section 4 to have an initial assessment of its efficacy.

The main contribution of this work is the comparison between using the proposed transformation
to compute the control law or directly discretizing the CR3BP equations, as given in Section 5 together
with a simulation study of the proposed controller. The paper is closed with some concluding remarks in
Section 6.

2Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Fig. 1 Schematic representation of the CR3BP in the synodic reference frame

2 The circular restricted three body problem
The CR3BP is a specific case of the three-body problem (the scenario considering the dynamics of

three massive bodies subject to their mutual gravitational attraction). The main assumptions are: the
mass of the primaries is much greater than the mass of the third body and thus the latter is neglected; the
primaries follow circular orbits around the center of mass of the system; a synodic frame of reference is
usually used to express the equations. This frame of reference is defined with a certain angular speed
𝜔 = [0, 0, 𝜔𝑧]𝑇 such that both primaries always lie on the X-axis.

In order to non-dimensionalize the equations, the following reference quantities are defined:

𝑚∗ = 𝑚1 + 𝑚2, 𝑑∗ = |r1 − r2 |, 𝑡∗ = 1/𝜔𝑧, (1)

where 𝑚1, 𝑚2 are the masses of both primaries and r1 and r2 are their position vector.

A characteristic parameter ` is used to describe the system. This parameter is defined as:

` =
𝑚2

𝑚1 + 𝑚2
. (2)

In the particular case of the Earth-Moon system: ` ≃ 1.215058 × 10−2.

2.1 Equations of motion (non-dimensionalized)
Defining the state x = (𝑥, 𝑦, 𝑧, ¤𝑥, ¤𝑦, ¤𝑧), the equations that describe the CR3BP are the following, once

they have been nondimensionalized using the aforementioned reference values

¤x = f (x) =

©«

¤𝑥
¤𝑦
¤𝑧

2 ¤𝑦 + 𝑥 − (1 − `) 𝑥 + `

𝑑3
𝐸

− `
𝑥 − 1 + `

𝑑3
𝑀

−2 ¤𝑥 + 𝑦 − (1 − `) 𝑦

𝑑3
𝐸

− `
𝑦

𝑑3
𝑀

−(1 − `) 𝑧

𝑑3
𝐸

− `
𝑧

𝑑3
𝑀

ª®®®®®®®®®®®®®®¬
(3)
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where 𝑑𝐸 =
√︁
(𝑥 + `)2 + 𝑦2 + 𝑧2 and 𝑑𝑀 =

√︁
(𝑥 + ` − 1)2 + 𝑦2 + 𝑧2.

3 Numerical Continuation: AUTO
The aim of this section is to describe the procedure by which the Halo Orbit family is computed

using the software AUTO [20].

Given a general problem ¤u = h(u, _), that depends on a parameter _ ∈ R and the state vector u ∈ R𝑛.
Finding a solution for this equation is equivalent to finding a solution to

H(z) = ¤u − h(z) = 0, z = (u, _) ∈ R𝑛+1 (4)

A given solution continues to be regular (i.e. exists locally as a unique unidimensional family of solutions
[21]) when the 𝑛 × 𝑛 + 1 matrix, Hz = 𝜕H/𝜕z, has maximum rank.

When this condition is not fulfilled, the requirements of the Implicit Function Theorem are not
satisfied, and a singular point is found. In these points, it is not possible to ensure that the solution
is unique. The branching points in the bifurcation diagram are singular points [21]. AUTO uses
Keller’s pseudoarclength continuation method to obtain solution families from a certain initial solution
z0 = (x0, _0). In order to compute the periodic solutions, AUTO solves the following BVP:

¤u = 𝑇f (u, _), u, f ∈ R𝑛, _, 𝑇 ∈ R (5)
u(0) = u(1) (6)

where the period𝑇 , and _ are used as continuation parametres. Furthermore, an adequate phase condition
is used (e.g. Poincaré orthogonality condition or the integral phase condition, deduced in [22]).

3.1 Periodic orbits in conservative systems: unfolding parameter
In the case of conservative systems (such as that of the CR3BP), one option for continuing solutions

is artificially increasing the dimension of the system by adding a "damping" term, that is normally called
"unfolding parameter". As a consequence, the system that AUTO works with is a modified version of
(3) as follows

¤x =

©«

¤𝑥
¤𝑦
¤𝑧

2 ¤𝑦 + 𝑥 − (1 − `) 𝑥 + `

𝑑3
𝐸

− `
𝑥 − 1 + `

𝑑3
𝑀

+ _𝑥4

−2 ¤𝑥 + 𝑦 − (1 − `) 𝑦

𝑑3
𝐸

− `
𝑦

𝑑3
𝑀

+ _𝑥5

−(1 − `) 𝑧

𝑑3
𝐸

− `
𝑧

𝑑3
𝑀

+ _𝑥6

ª®®®®®®®®®®®®®®¬
(7)

where _ is the unfolding parameter.

As _ is a damping term, it is not possible to find periodic solutions if _ ≠ 0. In this way, the
periodicity of the solution requires _ ≃ 0 (down to numerical precision).

3.2 Obtained solutions: H1 family
The Halo H1 family of orbits emerges from the family of planar Lyapunov orbits as a bifurcation

with a nonzero vertical component. Refer to [5] for a detailed analysis on the characteristics of this family
of orbits.
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Fig. 3 Schematic representation of x(𝑡) in state space.

The bifurcation diagram corresponding to the H1 family is shown in Figure 2a. Additionally, Figure
2b show the set of periodic solutions found during the numerical propagation. Some of these orbits will
be used to analyze the control strategy.

(a) Bifurcation diagram obtained with AUTO. (b) Periodic orbits from the H1-Family obtained by nu-
merical continuation on AUTO.

Fig. 2 Results obtained by numerical continuation of periodic orbits from the H1 family with AUTO

3.3 Variational equations describing the relative motion
Let x𝑡 (𝑡) be a periodic solution of system (3) used as the reference, which may describe the motion

of the target around the halo orbit. Let the chaser’s state vector be described by x̂ = x+ x𝑡 (𝑡), where x𝑡 (𝑡)
is the relative state. Schematically, Figure 3 shows this setup.

Developing the dynamics of the chaser f (x̂) = f (x(𝑡) + x𝑡 (𝑡)) around the target’s position at a certain
time instant 𝑡:

¤x(𝑡) + ¤x𝑡 (𝑡)) = f (x(𝑡)) + x𝑡 (𝑡)) = f (x𝑡 (𝑡)) + ∇f (x𝑡 (𝑡))x(𝑡) + h(x𝑡 (𝑡), x(𝑡)) (8)

Using (3) and discarding higher-order terms:

¤x(𝑡) = A(𝑡)x(𝑡), (9)

where A(𝑡) = ∇f (x𝑡 (𝑡))x(𝑡).
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3.4 Lyapunov-Floquet change of variables
In this section, a general description of the Lyapunov-Floquet change of variables is given. For a

more in-depth analysis, refer to [19], [23], [24]. Given a Linear Time Periodic (LTP) system of the type:

¤x = A(𝑡)x, (10)

where A(𝑡) is a continuous periodic function of period 𝑇 , x(𝑡) ∈ R𝑛 and 𝑡 ∈ R. Let 𝚽(𝑡; 𝑡0) be the
state transition matrix (STM) of the system (10) from 𝑡0 to 𝑡. 𝚽(𝑡; 𝑡0) is continuous and has continuous
derivative and |𝚽(𝑡; 𝑡0) | ≥ 0. From now on, without losing generality, 𝑡0 = 0 and 𝚽(𝑡; 0) = 𝚽(𝑡). 𝚽
satisfies

𝚽(𝑡 + 𝑇) = 𝚽(𝑡)𝚽(𝑇) ∀𝑡. (11)

Since 𝚽(𝑇) is nonsingular, it is possible to define F ∈ C𝑛𝑥𝑛 such that

𝚽(𝑇) = 𝑒F𝑇 (12)

For each matrix F that satisfies (12), there exists a periodic function of period 𝑇 , L(𝑡), such that

𝚽(𝑡) = L(𝑡)𝑒𝑡F (13)

Additionally, it can be shown that taking

𝚽(𝑇)2 = 𝚽(𝑇)𝚽(𝑇) = 𝑒2𝑇F2𝑇 (14)

there exist a periodic function of period 𝑇 , L2𝑇 (𝑡), and a real matrix F2𝑇 ∈ R𝑛𝑥𝑛 [23] such that

𝚽(𝑡) = L2𝑇 (𝑡)𝑒𝑡F2𝑇 . (15)

The latter result is the one used in this project due to the obvious advantages that imply having a real
matrix of coefficients in the transformed system.

The following time-dependent change of variables is defined:

x(𝑡) = L2𝑇 (𝑡)z(𝑡) (16)

Introducing the transformation in (10):

¤L2𝑇 (𝑡)z(𝑡) + L2𝑇 (𝑡) ¤z(𝑡) = A(𝑡)L2𝑇 (𝑡)z(𝑡) (17)

Since 𝚽(𝑡) satisfies (23),

¤L2𝑇 (𝑡)𝑒𝑡F2𝑇 + L2𝑇 (𝑡)F2𝑇𝑒
𝑡F2𝑇 = A(𝑡)L2𝑇 (𝑡)𝑒𝑡F2𝑇 ⇒ ¤L2𝑇 (𝑡) + L2𝑇 (𝑡)F2𝑇 = A(𝑡)L2𝑇 (𝑡) (18)

Introducing (18) in (17):
¤z(𝑡) = F2𝑇z(𝑡), (19)

that is a Linear Time Invariant (LTI) system (i.e. it does not explicitly depend on time 𝑡) in the newly
base defined by L2𝑇 (𝑡).
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4 Impulsive control in the C3RBP
We now consider the model (3) with impulsive control, this is, the velocity can be instantaneously

changed after a time Δ𝑡. Based on (19), it is possible to obtain an analytic solution of the form

z(𝑡) = 𝑒F2𝑇 (𝑡−𝑡0)z(𝑡0) (20)

where z(𝑡0) is the initial condition.

Taking 𝑁 equidistant time instants such that 𝑡𝑘 − 𝑡𝑘−1 = Δ𝑡:

z𝑘+1 = 𝑒F2𝑇Δ𝑡z(𝑡𝑘 ) (21)

Reverting the change of variables given by L2𝑇 and introducing the impulsive control u𝑘 in the instant
𝑡𝑘

x𝑘+1 = L2𝑇 (𝑡𝑘+1)𝑒𝐹2𝑇Δ𝑡L−1
2𝑇 (𝑡𝑘 )x(𝑡𝑘 ) + Bu𝑘 ⇒ x𝑘+1 = Â𝑘x𝑘 + Bu𝑘 𝑘 = 1 . . . 𝑁 − 1 (22)

where B = [0, I3]𝑇 , and u𝑘 ∈ R3.

To obtain the matrices Â𝑘 , it is necessary to integrate numerically the IVP that defines the STM:

¤𝚽(𝑡; 0) = A(𝑡)𝚽(𝑡; 0), 𝚽(𝑡0; 0) = I𝑛 (23)

together with the system (10).

4.1 Linear Quadratic Regulator (LQR) design
In this section, the control problem is solved by using a discrete-time LQR. These controllers solve

the following problem:

min
u

𝐽 = x𝑇𝑁Q𝑁x𝑁 +
𝑘=𝑁−1∑︁
𝑘=1

x𝑇𝑘Q𝑘x + u𝑇
𝑘Ru𝑘 (24)

computing iteratively the matrix P𝑘 backwards in time from time instant 𝑡𝑘=𝑁 to 𝑡𝑘=1:

P𝑘−1 = Â𝑇

𝑘𝑃𝑘Â𝑘 − Â𝑇

𝑘P𝑘B𝑘 (R𝑘 + B𝑇
𝑘P𝑘B𝑘 )−1B𝑇

𝑘P𝑘Â𝑘 + Q𝑘 (25)

with the initial condition P𝑁 = Q𝑁 , given by the terminal cost. In the analyzed problem, B𝑘 =

[0, I3]𝑇 . The control law is defined as
u𝑘 = −K𝑘x𝑘 (26)

where
K𝑘 = (R𝑘 + B𝑇

𝑘P𝑘+1B𝑘 )−1(B𝑇
𝑘P𝑘+1Â𝑘 ) (27)

Since matrix Â𝑘 is 2𝑇-periodic, it is necessary to solve the problem in the interval [0, 2𝑇]. The
control problem is completely defined for time instants 𝑡𝑘 > 2𝑇 . 1

5 Results
In this section, the results for the implemented control law (using the transformation) are discussed,

first analyzing the worthiness of the transformation.

1Other alternative is to choose quasi-T-periodic Floquet factorizations, as described in [23] for reducing the computation
interval to the original period [0, 𝑇], increasing the computational efficiency.
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Three periodic orbits of the H1 family are studied. From the whole set of orbits computed using
AUTO, these orbits are selected in order to test the controller in a range of values of the non-dimensional
period, which is directly related with the shape and dimensions of the orbit. The non-dimensional periods
can be found in Table 1. Additionally, Figures 4-5 represent the chosen orbits.

(a) Orbit #1 (b) Orbit #2

Fig. 4 Orbits # 1 y #2 in the Earth-Moon system.

Fig. 5 Orbit #3 in the Earth-Moon system.

Table 1 Non-dimensional and dimensional periods of the chosen orbits.

Orbit # 1 2 3
𝑇 [ − ] 2.7718 2.6835 1.9530
𝑇𝑑𝑖𝑚 [h] 290.74 281.48 204.86

5.1 Effect of the transformation on the LQR design
First, a brief comparison on the performance of the LQR design is given between a controller

designed for the system untransformed states:

x𝑘+1 = Â𝑘x𝑘 + Bu𝑘 𝑘 = 1 . . . 𝑁 − 1 (28)

and for the transformed states:

z𝑘+1 = 𝑒F2𝑇Δ𝑡z𝑘 + L−1
2𝑇 (𝑡𝑘+1)Bu𝑘 = A(𝑧)z𝑘 + B(𝑧)

𝑘
u𝑘 (29)
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Table 2 Comparison of the results for the controller design on each of the bases.

Case 𝑥(2𝑇) [𝑚] �̄�(2𝑇) [𝑚] 𝑧(2𝑇) [𝑚] ¤̄𝑥(2𝑇) [𝑚/𝑠] ¤̄𝑦(2𝑇) [𝑚/𝑠] ¤̄𝑧(2𝑇) [𝑚/𝑠] Δ𝑉 [𝑚/𝑠]
z(𝑡) -1704.215 172.704 -830.180 -3.766E-3 1.772E-3 3.339E-3 46.759
x(𝑡) 14.010 19.410 -20.672 87.735E-6 -184.618E-6 -99.050E-6 56.229

where B = [0, I3]𝑇 , and u𝑘 ∈ R3 for both cases. Additionally, superindex (𝑧) indicates that it corresponds
to the transformed variables equation. The difference between both systems is which of the matrices is
constant and which one is time-dependent. In z, matrix B(𝑧) is time-dependent while the state matrix A is
constant. On the other hand, the system in x coordinates has a state matrix that is time-dependent while
having B constant.

For the wieght matrices, those collected in (30) were taken with 𝑁 = 50.

Q𝑘 = I6, R𝑘 = I3, 𝑘 = 1 . . . 𝑁 − 1, Q𝑁 = 108I6. (30)

The initial relative state was

x(0) = z(0) = [10−2, 10−2, 0, 0, 0, 0]𝑇 ,

corresponding to 5436.2 km of initial separation. The initial conditions chosen for the target’s position
are:

x𝑡 (0) = [0.8474, −0.0798, 0.1137, −0.0704, 0.1947, 0.1337]𝑇 , (31)

which corresponds to an intermediate case between apolune and perilune.

Table 2 shows the final state in SI units for both controllers after simulating with the full nonlinear
dynamics. It can be seen that the control z performs worse in comparison with its counterpart in terms
of final error after two full periods. However, the error stays below 2 km for both cases. Additionally, it
can be seen that the control cost is 20% larger when designing the controller in x with respect to the case
of z.

Figures 6 and 7 show the evolution of the figures of merit during the simulation. It can be seen that
the control on z does not experience the oscillations that the alternative shows on the z coordinate where
it overshoots above 5000 km from a zero initial value.

(a) Controlled trajectory
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(b) State and control evolution

Fig. 6 Simulation of the closed loop system performing the control on x(𝑡).
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(a) Controlled trajectory
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(b) State and control evolution

Fig. 7 Simulation of the closed loop system performing the control on z(𝑡).

5.2 Simulation results with the transformation
In this section, different cases are analyzed using the LQR model described in Section 4.1. As design

parameters, those described in (32) were taken, with 𝑁 = 50.

Q𝑘 = I6, R𝑘 = 104I3, 𝑘 = 1 . . . 𝑁 − 1, Q𝑁 = 109I6. (32)

For each orbit, two cases are considered: one where the target is near the apolune at initial time and
another where the target is near the perilune. The initial conditions of the target’s state vector, x𝑡 (0), are
found in table 3.

Table 3 Initial conditions for the target’s state vector, x𝑡 (0), in the problem (3) for all the considered cases.

Orbit # Case 𝑥𝑡 (0) [−] 𝑦𝑡 (0) [−] 𝑧𝑡 (0) [−] ¤𝑥𝑡 (0) [−] ¤𝑦𝑡 (0) [−] ¤𝑧𝑡 (0) [−]

1
Apolune 0.8256 0.0105 0.0708 0.0086 0.1823 -0.0156
Perilune 0.8775 -0.0075 -0.056 -0.0033 -0.2162 0.015

2
Apolune 0.8472 0.0521 0.1526 0.0504 0.2429 -0.0867
Perilune 0.9537 -0.0316 -0.0787 -0.0291 -0.4204 0.105

3
Apolune 0.9885 -0.031 -0.019 -0.0935 -0.6647 0.4062
Perilune 0.8979 -0.02 0.1962 -0.0282 0.1874 0.0497

The initial conditions for the relative state of the chaser with respect to the target, x(0), are given by

x(0) = [10−2, 10−2, 0, 0, 0, 0]𝑇 ,

which corresponds to 5436.2 km of initial separation. Figures 8 - 13 show the results of the closed-loop
simulations. For these simulations, the full non-linear dynamics (3) are used.

Table 4 contains the final relative states of the chaser with respect to the target after two full periods
of simulation, x̄(2𝑇) and the total control cost Δ𝑉𝑡𝑜𝑡𝑎𝑙 . As can be seen, the final state is reduced to a few
meters after two full periods. Additionally, as expected, apolune cases imply a lower cost in Δ𝑉 as well as
a better controller behavior. Finally, as the period of the orbits is reduced, these tend to be more eccentric,
increasing the differences between the apolune and perilune cases for the controller performance.
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(b) State and control evolution

Fig. 8 Simulation of the closed loop system for orbit #1 (apolune case).
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(b) State and control evolution

Fig. 9 Simulation of the closed loop system for orbit #1 (perilune case).
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(b) State and control evolution

Fig. 10 Simulation of the closed loop system for orbit #2 (apolune case).
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(b) State and control evolution

Fig. 11 Simulation of the closed loop system for orbit #2 (perilune case).
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(b) State and control evolution

Fig. 12 Simulation of the closed loop system for orbit #3 (apolune case).
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(b) State and control evolution

Fig. 13 Simulation of the closed loop system for orbit #3 (perilune case).
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The general trends for the total cost are maintained when varying the weight matrices. However, the
values used are those that gave a balance between total cost and final error in the controller.

Table 4 Relative state of the chaser with respect to the target and control cost (in dimensional variables)
after two full periods of simulation. Case refers to orbit number and perilune (P) or apolune (A).

Case 𝑥(2𝑇) [𝑚] �̄�(2𝑇) [𝑚] 𝑧(2𝑇) [𝑚] ¤̄𝑥(2𝑇) [𝑚/𝑠] ¤̄𝑦(2𝑇) [𝑚/𝑠] ¤̄𝑧(2𝑇) [𝑚/𝑠] Δ𝑉 [𝑚/𝑠]
1A 9.094 -1.185 -20.715 1.571E-5 -6.399E-5 -1.593E-5 48.20
1P 203.416 -152.620 -22.802 3.219E-6 1.186E-4 4.103E-5 109.18
2A 16.869 -13.017 -29.495 -1.214E-5 -7.212E-5 1.221E-5 40.71
2 P -21.136 39.402 112.014 1.069E-4 6.158E-4 -1.829E-4 119.06
3A 9.956 3.308 -17.745 3.234E-6 -3.402E-5 -8.254E-7 34.75
3P -165.500 79.200 1338.701 2.881E-3 1.347E-2 -9.526E-3 482.09

6 Conclusions and future work
The described method allows us to compute a discrete-time LQR by using the Lyapunov-Floquet

theory in periodic solutions of the CR3BP. This method greatly simplifies controller design and exhibits
great performance both in terms of final error and control costs for the analyzed cases, compared with
direct linearization and discretization of the CR3BP equations.

For future lines of work, an MPC controller design in line with [17, 18] will be proposed that takes
the advantages that this change of variables offers. In this way, it would be possible to impose restrictions
on the states and the control, modeling more accurately a real-world scenario.
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