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ABSTRACT

This paper presents a Model Predictive Control (MPC) approach for satellite formation flying
around Halo orbits, exploiting the dynamics of the quasi-halo orbits in the context of the Circular
Restricted Three-Body Problem (CR3BP), utilizing a relative dynamics model based on the Local
Vertical Local Horizontal (LVLH) coordinate frame. The dynamics of quasi-halo orbits are ana-
lyzed, proposing an MPC solution, optimized for real-time satellite autonomy and dynamic space
environments. The MPC controller demonstrated its effectiveness in trajectory recovery tasks, with
its performance sensitivity to cost function weights revealing crucial trade-offs between maneuver
time and fuel consumption.
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Nomenclature

S = Synodic frame
L = Local Vertical Local Horizontal (LVLH) frame
𝑀1, 𝑀2 = primary masses
𝜇 = primaries mass ratio
𝝆 = relative position vector
𝒓𝐿 = position of the leader satellite
𝒓𝐶 = position of the chaser satellite
𝒓ℎ = position of the targeted orbit
𝝎𝑙/𝑖 = angular velocity of the LVLH frame
𝒖(𝑡) = control vector
𝒙(𝑡) = spacecraft state
𝑨(𝒙) = State transition matrix
𝑩(𝒙) = Input matrix
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1 Introduction
Formation flight among multiple satellites in orbit has become a cornerstone of modern space

technology development. The concept of a distributed satellite system, comprising several smaller
satellites, is lauded for its superior performance and enhanced reliability. Such configurations are
designed to withstand the loss of individual agents without compromising the mission’s overall success.
The applications of these systems are diverse, spanning scientific research, Earth observation [1], and the
burgeoning field of telecommunications satellite constellations [2].

On the other hand, the cislunar space — the region encompassing Earth and the Moon — is
witnessing a rapid expansion in the use of distributed systems, underpinning the future of space exploration
and utilization. The Lunar Gateway, a critical element of NASA’s Artemis program, exemplifies this
expansion. Scheduled to occupy a Near Rectilinear Halo Orbit (NRHO) around the Earth-Moon 𝐿2 point,
the Gateway offers a prime case study for this investigation. NRHOs are highly elongated orbits within
the Halo family, providing distinctive characteristics and stability for formation flight. The quasi-halo
orbits, quasi-periodic trajectories in the proximity of halo orbits, present an attractive proposition for
formation flight due to their inherent stability and fuel efficiency. These orbits have been extensively
studied in the field of astrodynamics, with the computation of quasi-periodic tori being achieved through
the GMOS algorithm [3].

Fuel-centric rendezvous and formation flying strategies near libration points have been researched
in the past. [4] describes the preliminary design of a phasing trajectory in a cislunar environment.
The use of invariant manifold connections has been explored [5], and surrogate models have been
developed to streamline global optimization efforts [6]. Comparisons between classical phasing and
manifold connections for fuel efficiency have also been conducted [7]. In contrast, safety-focused close-
rendezvous operations are increasingly gaining attention in the literature. [8] introduced a targeting law
merged with a navigation filter. [9] suggested practical rendezvous scenarios for Earth-Moon Halo orbits.
Shooting methods targeting rendezvous are explored in [10]. Notably, most of these studies employ the
Earth-Moon co-rotating frame, which isn’t optimal for describing target-specific state constraints. This
shortfall justifies the broader use of local frames in close rendezvous, as noted in [11]. In this context,
[12] proposed a Moon-centric local frame, considering the Lunar Gateway’s practical Moon orbit. [13]
proposed a safe automatic rendezvous strategy using this reference frame. Recently, the feasibility and
controller design for chemically propelled satellite formation flight in cislunar space was studied in [14].

Model Predictive Control (MPC) leverages a system model to predict future behavior over a receding
horizon and optimize control sequences based on a cost function [15]. MPC ensures effective handling of
constraints and, if well-designed, has a feasible computational load, thus being ideal for real-time satellite
autonomy in dynamic space environments. In recent years it has been extensively studied for various
spacecraft control scenarios, including attitude control and station keeping [16], rendezvous maneuvers
[17], and formation flight [18].

The work presented in this paper considers spacecraft equipped with electric propulsion, employing
relative dynamics models in the Local Vertical Local Horizontal (LVLH) frame. The dynamics of
quasi-halo orbits are analyzed, proposing a MPC solution, optimized for real-time satellite autonomy and
dynamic space environments, leveraging the Circular Restricted Three-Body Problem (CR3BP) as our
foundational dynamical model. The paper presents some initial findings with a basic MPC design, that
will serve as the initial step to more robust designs, as remarked upon in Section 6.

The paper is structured as follows. Section 2 presents the CR3BP model, orbit computation methods,
and the controller’s basics for managing formation flight. Next, Section 3 deals with the study of quasi-
halo orbits, their dynamics, practical applications, and controller design. Section 5 then presents the
simulation results of our controller’s performance. We finish in Section 6 with some concluding remarks
and future ideas.
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Fig. 1 Inertial and rotating frames (adapted from [19])

2 Dynamic Model
In this section, the model of the three-body problem in its simplified circular restricted form is

initially presented. Following this, the periodic and quasi-periodic orbits of interest within this model are
introduced. Lastly, the section discusses the relative motion problem between two satellites, presenting
both the nonlinear and linearized equations for this scenario.

2.1 The CR3BP model
The Circular Restricted Three-Body Problem (CR3BP) is a simplification of the dynamics of the

problem in which the two primaries, Earth and the Moon, revolve around their center of mass in circular
orbits and are the only two sources of gravitational influence considered. The system is defined by the
gravitational parameters of the two primaries 𝜇1 and 𝜇2 respectively and consequently by the primaries
mass ratio 𝜇. Consider an inertial frame, denoted as I =

{
𝑂; 𝚤𝐼 , 𝚥𝐼 , 𝒌̂ 𝐼

}
, centered on the center of mass

of the primary bodies, where the plane formed by the unit vectors 𝚤𝐼 and 𝚥𝐼 , respectively for X and Y
axes, coincides with the orbital plane, and 𝒌̂ 𝐼 aligns with the system’s rotational axis (Z-axis). Then, let’s
define a right-handed rotating synodic reference frame S =

{
𝑂; 𝚤𝑠, 𝚥𝑠, 𝒌̂𝑠

}
with the x-axis unit vector 𝚤𝑠

points along the imaginary line connecting the two primaries, and directed towards the second one, the
z-axis unit vector 𝒌̂𝑠 coinciding with 𝒌̂ 𝐼 , and the y-axis unit vector 𝒋𝑠 completing the triad, as shown in
Fig. 1. The equations of motion can be conveniently expressed in the synodic coordinates (𝑥, 𝑦, 𝑧) and
their time-derivatives, using the augmented potential defined as:

𝑈̄ (𝑥, 𝑦) = −1
2

(
𝜇1𝑟

2
1 + 𝜇2𝑟

2
2

)
− 𝜇1

𝑟1
− 𝜇2

𝑟2
(1)

with 𝑟1 and 𝑟2 distances of a point mass 𝑚 from 𝑀1 and 𝑀2, resulting in the following system:


¥𝑥 − 2 ¤𝑦 = −𝑈̄𝑥

¥𝑦 + 2 ¤𝑥 = −𝑈̄𝑦

¥𝑧 = −𝑈̄𝑧

(2)

where 𝑈̄𝑥 , 𝑈̄𝑦, 𝑈̄𝑧 denote the partial derivatives of 𝑈̄ with respect to 𝑥, 𝑦, 𝑧 respectively.
The CR3BP admits five points of equilibrium, the Lagrangian points, three of them (𝐿1, 𝐿2 and 𝐿3) lie
on the x-axis of the rotating frame and are called collinear points while 𝐿4 and 𝐿5 are the equilateral
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Fig. 2 2-dimensional torus with latitudinal (red) and longitudinal (blue) invariant curves on the left,
propagated trajectory (yellow) on the right (adapted from [20])

points. Of particular significance among these are the collinear points L1 and L2, as they give rise to
various families of periodic orbits. One notable family within these is the Halo orbits, which can be
further categorized into southern and northern Halo families. Within the Halo orbit families, the Near
Rectilinear Halo Orbits (NRHO) stand out due to their remarkable elongation and intriguing stability
properties. In both practical applications and scientific studies, the 9:2 lunar synodic resonant NRHO
within the Southern L2 Halo family, which closely approaches the lunar north pole with a periselene
radius of ∼ 3225 km and a period of about 6.5 days, is the preferred choice. This orbit has also been
selected for the Lunar Gateway project.

2.2 Quasi-periodic orbits
Let’s introduce the concept of quasi-periodic orbits associated with 2-dimensional invariant tori.

From an eigenvalue perspective, these orbits are characterized by two complex conjugate eigenvalues
with unit norm, indicating a center-center-saddle dynamics. Unlike periodic orbits, which reside on
1-dimensional tori with a single fundamental frequency (the inverse of the revolution period), quasi-
periodic orbits on 2-dimensional tori feature two fundamental frequencies: the longitudinal frequency
¤𝜃0, and the latitudinal frequency ¤𝜃1.
Using a stroboscopic map, a quasi-periodic orbit trajectory can be represented as a curve on this torus as

shown in Fig. 2, starting from the first latitudinal curve and progressing along the longitudinal direction
across the entire torus. Given the mapping time𝑇0 and the angle of rotation 𝜌, the state vector 𝒖 undergoes
a rotation of 𝜌, satisfying:

𝒖(0, 𝜃0, 𝜃1) = 𝒖(𝑇0, 𝜃0, 𝜌 + 𝜃1) (3)

The periodic orbit traces a trajectory in R6 space around the reference periodic orbit. A rotation operator
𝑹 can be defined as:

𝑹(−𝜌)𝒖(𝑇0, 𝜃0, 𝜃1) − 𝒖(0, 𝜃0, 𝜃1) = 0 (4)

The GMOS algorithm, as described in [20], is utilized to compute quasi-Halo orbits. An initial guess is
generated using the Multiple-Shooting correction scheme. This scheme discretizes two invariant curves
into patches: the longitudinal curve with M equally spaced points in time and the latitudinal curve with
N states. This yields multiple quasi-Halo orbits that adhere to continuity constraints. Another constraint
is required to specify the desired family. Specifically, we calculated families of quasi-halo orbits with
a constant mapping time. The initial guess is obtained via the Monodromy Matrix at the perimoon of
the reference periodic Halo orbit. The correction process follows, involving the Jacobian matrix, and the
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pseudo-arc-length continuation scheme is subsequently used to find the next family initial guess.

2.3 Relative motion equations
In the context of this study, at a generic instant, two satellites are considered: a leader L in a NRHO

orbit, and a chaser C, for which it is desired to be in point H along a quasi-halo orbit. Let 𝒓𝐿 , 𝒓𝐶 , and 𝒓ℎ
represent their respective positions relative to the synodic frame. The relative motion is described using
the Local Vertical Local Horizontal (LVLH) frame, as presented in [12]. The LVLH frame provides a
more intuitive and physically meaningful way to analyze the relative motion of the vehicles.
It is convenient to define the LVLH frame centered in the targeted orbit position H as L =

{
𝒓ℎ; 𝚤, 𝚥, 𝒌̂

}

(a) (b)

Fig. 3 (a) LVLH frame configuration with respect to the synodic frame and (b) with respect to the positions
of leader and chaser.

defined based on the synodic reference frame, then 𝒌̂ (R-bar) is pointing towards the center of mass 𝑂,
𝚥 (H-bar) points in the opposite direction of the angular momentum of the corresponding point at the
origin of the LVLH reference frame and as a result 𝚤 (V-bar). Starting from the relative position of the
chaser satellite from the origin of the LVLH frame 𝝆, it is possible to obtain the following equation:

[ ¥𝝆]I = − 2𝝎𝑙/𝑖 × [ ¤𝝆]I − 𝝎𝑙/𝑖 × (𝝎𝑙/𝑖 × 𝝆) − ¤𝝎𝑙/𝑖 × 𝝆

+ (1 − 𝜇)
(

𝒓𝒉 − 𝑹1

∥𝒓𝒉 − 𝑹1∥3 − 𝒓𝒉 + 𝝆 − 𝑹1

∥𝒓𝒉 + 𝝆 − 𝑹1∥3

)
+ 𝜇

(
𝒓𝒉 − 𝑹2

∥𝒓𝒉 − 𝑹2∥3 − 𝒓𝒉 + 𝝆 − 𝑹2

∥𝒓𝒉 + 𝝆 − 𝑹2∥3

) (5)

where 𝑹1 and 𝑹2 are the positions of the two primaries in the synodic frame and whose norms are 𝑅1 = 𝜇

and 𝑅2 = 1 − 𝜇, 𝝎𝑙/𝑖 is the angular velocity of the local LVLH frame with respect to the inertial one and
[ ¤𝝎𝑙/𝑖]L its derivative in L.
These quantities can be expressed as a function of 𝒓ℎ and ¤𝒓ℎ with respect to the synodic frame (see [12]).
The equation is nonlinear in 𝝆 due to the term associated with gravitational acceleration, so we will refer
to this set of equations as Nonlinear Equations of Relative Motion (NERM). To streamline controller
design and improve computational efficiency, given that operations are conducted in the vicinity of the
reference orbit that is |𝝆 | << |𝒓ℎ |, the dynamics are linearized around the reference system’s origin,
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Fig. 4 Illustration of the NRHO in the Earth-Moon system (adapted from [21])

resulting in the Linear Equations of Relative Motion (LERM):

[ ¥𝝆]I = − 2𝝎𝑙/𝑖 × [ ¤𝝆]I − 𝝎𝑙/𝑖 × (𝝎𝑙/𝑖 × 𝝆) − ¤𝝎𝑙/𝑖 × 𝝆

−
(

1 − 𝜇

∥𝒓ℎ − 𝑹1∥3 𝑯̄1 +
𝜇

∥𝒓ℎ − 𝑹2∥3 𝑯̄2

)
𝝆

(6)

where:
𝑯̄𝑖 = 𝑰3×3 − 3

(𝒓𝒉 − 𝑹𝒊) ⊗ (𝒓𝒉 − 𝑹𝒊)
∥𝒓𝒉 − 𝑹𝒊 ∥2 (7)

with 𝑖 = 1, 2. Let’s define 𝒖(𝑡) ∈ R3 the control vector and 𝒙(𝑡) ∈ R6 the spacecraft state as 𝒙 =
[
𝝆𝑇 , ¤𝝆𝑇

]𝑇 .
Then the relative dynamics can be expressed in matrix form as a linear time-varying system:

¤𝒙(𝑡) =
[

03×3 𝑰3×3

𝑨𝝆 (𝑡) −2𝛀𝑙/𝑖 (𝑡)

]
𝒙(𝑡) +

[
03×3

𝑰3×3

]
𝒖(𝑡) (8)

where 𝛀𝑙/𝑖 is the skew matrix of angular velocity 𝝎𝑙/𝑖 and ¤𝛀𝑙/𝑖 represents its derivative:

𝑨𝝆 = −𝛀2
𝑙/𝑖 −

[ ¤𝛀𝑙/𝑖
]
L − 1 − 𝜇

∥𝒓𝒉 − 𝑹1∥3 𝑯̄1 −
𝜇

∥𝒓𝒉 − 𝑹2∥3 𝑯̄2 (9)

3 Quasi-Halo orbits computation and selection
The choice of an appropriate reference orbit plays a critical role in the design and implementation of
formation flight missions. In the following sections, we will delve into the details of selecting and char-
acterizing the quasi periodic torus associated with the NRHO as our reference orbit, considering mission
objectives, and assessing its compatibility with autonomous formation flight. The 9:2 synodic resonant
L2 southern NRHO was calculated using the built-in function of the SEMpy Python library [22], with an
initial periselene radius of 3225.11 km. The resulting orbit has a period 𝑇 = 157.50 h, a Jacobi Constant
𝐽 = 3.05865, and initial state in synodic coordinates given by 𝒓0 = [3.9281𝑒5, 0,−6.9958𝑒4]𝑇 𝑘𝑚 and
𝒗0 = [0,−0.1053, 0]𝑇 𝑘𝑚/𝑠. The pair of complex conjugate eigenvalues associated with the calculated
orbit is 𝜆𝑐1,2 = 0.6845 ± 0.7290.
In order to compute the quasi periodic tori the GMOS differential correction algorithm was implemented
in Python. Due to the high eccentricity of these orbits, the dynamics near the periselene is very fast and
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(a) (b)

Fig. 5 Distances from the central NRHO orbit of a sample of computed quasi-halos propagated from the
aposelene over three NRHO periods (a), and distances from the central NRHO, displaying the average,
maximum, and minimum distances as a function of 𝑠 (b).

leads to computational issues for the differential correction scheme. For this reason, despite calculating
the monodromy matrix at the periselene after one orbit, the origin of the longitudinal curve is located
at the aposelene of the NRHO orbit and thus it corresponds to the angle 𝜃0 = 0°. In the initialization

Initialization Continuation
𝑀 𝑁 𝜖 𝜌0 𝛿𝑠

5 26 1 × 10−3 0.8168 rad/orbit 2 × 10−3

Table 1 Parameter Settings for Initialization and Continuation

and continuation of the two-dimensional torus, the parameters detailed in Tab. 1 were employed. A
total of 55 tori were computed with increasing aposelene distances. For each torus, we computed 26
quasi-halo orbits, which we will refer to either by numbering from 1 to 26 or by specifying the angle
values of 𝜃1 for 𝜃0 = 0. Each torus is uniquely labeled based on the distance 𝑠 of the point corresponding
to 𝜃0 = 0 and 𝜃1 = 0 from the NRHO orbit. The distance between the quasi-halos and the central NRHO
orbit over the period is influenced by the dynamics, which exhibit rapid changes near periselene. At
this point, the distances increase significantly, as seen in Fig. 5a. However, this effect is short-lived.
As assessed in [23] and illustrated in Fig. 5b, as the parameter 𝑠 increases, the maximum distance also
increases rapidly. Still, it’s essential to note that, for 90% of the period, the motion remains confined
within a much narrower range. This behavior can be attributed to the dynamics near the periselene,
as indicated in the figures. The torus with 𝑠 = 302.4 km was chosen for the purpose of this study. A
more comprehensive analysis was conducted to explore the dynamics of the computed quasi-halo orbits,
aiming to identify motion patterns and evaluate the potential for executing a multi-satellite formation
flight on the quasi-periodic torus. An initial observation focused on the symmetry of the quasi-halo orbit
No. 1 (0°/0°) over three orbital periods, as depicted in Fig. 6. It was noted that the trajectory exhibited
symmetry with respect to the 𝑥 = 0 plane of the LVLH reference frame and that with quasi halo No.
14 (0°/180°) exhibited a diametrically opposite and symmetric trajectory, with the angle between them
remaining close to 180°for most of the time as showned in Fig. 7. These characteristics support their
selection for forming a stable and equidistant three-satellite formation with the leader in the center and
two chasers diametrically opposite.
In a broader context, the 26 quasi-halo orbits are explored for potential configurations accommodating

more satellites on non collinear arrangements with specific angles (𝛽) or fixed average distances (𝑑).
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Fig. 6 Trajectories of quasi-halo orbits No. 1 (0°/0°) and No. 14 (0°/180°) over three orbital periods.

(a) (b)

Fig. 7 (a) Distances of a sample of computed quasi-halos propagated from the aposelene over three NRHO
periods, and (b) distances from the central NRHO, displaying the average, maximum, and minimum distances
as a function of 𝑠.

(a) (b)

Fig. 8 Scatter plot showing the relationship between relative distance variability, angle variability, and
mean angle for each pair of quasi-halo orbits
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Analyzing the orbits in pairs, we assess their performance over a three-period duration, focusing on key
metrics such as the average and standard deviation of relative distances and angles. The results of these
analyses are visualized through a scatter plot in Fig. 8, where the 𝑥 and 𝑦 axes represent the mean and
standard deviation of distances, and the z-axis displays the mean 𝛽 angle. The color bar indicates the
standard deviation of the angle. Notably, we observe that smaller angles (< 30° and > 150°) exhibit low
standard deviations, indicating stable, aligned formations. On the other hand, configurations with angles
close to 90° display higher variability, challenging formation stability.
This analysis allows us to select orbit combinations that minimize inter-satellite distance and angle
variability, thereby enhancing overall formation performance.

4 Model Predictive Control for formation flight
In the following section, the design of the MPC controller for a single chaser, in the configuration

depicted in Fig. 3b, will be introduced. The designed controller’s performance will then be assessed
through simulations in the subsequent section.

4.1 Cost Function
The discrete nature of Model Predictive Control requires the discretization of the continuous system.

In this context, we employed Radau collocation on finite elements, which is a direct, simultaneous, and
full discretization approach, to derive the equivalent discrete system with respect to time:

𝒙𝑘+1 = 𝑨(𝒙𝑘 )𝒙𝑘 + 𝑩(𝒙𝑘 )𝒖𝑘 (10)

where 𝑘 is the current time instant. We adopted a Receding Horizon approach, shifting the prediction
horizon [𝑘, 𝑘 + 𝑁𝑝] as the control process unfolds. In our research, we considered the case of electric
propulsion, involving continuous and low-thrust maneuvers approximated by a sequence of discrete
control inputs.
The control problem at each time step 𝑡𝑖 is defined by the cost function (𝑱) which includes terms for
position error (𝝆𝑘 ), control input (𝒖𝑘 ), and control input variations (Δ𝒖𝑘 ). The cost function also
minimizes propellant consumption and ensures stable tracking of the reference trajectory.

𝑱 =

𝑖+𝑁𝑝−1∑︁
𝑘=𝑖

(
𝝆𝑇𝑘W𝑙𝜌𝝆𝑘 + 𝒖𝑇𝑘W𝑙𝑢𝒖𝑘 + Δ𝒖𝑇𝑘RΔ𝒖𝑘

)
+ 𝒙𝑇𝑖+𝑁W𝑚𝒙𝑖+𝑁 (11)

where 𝑁𝑝 is the prediction horizon. In the control design, we focus on minimizing position errors
(𝝆𝑇

𝑘
W𝑙𝜌𝝆𝑘 ) within the Lagrangian term. This emphasizes the precise tracking of desired trajectories

to achieve formation flight objectives. In contrast, the stabilizing term 𝑉 𝑓 considers both position and
velocity to ensure overall orbit stability (𝒙𝑇

𝑖+𝑁W𝑚𝒙𝑖+𝑁 ). The term Δ𝒖𝑇
𝑘
RΔ𝒖𝑘 penalizes abrupt changes

in acceleration, promoting smoother control actions, while the term 𝒖𝑇
𝑘
W𝑙𝑢𝒖𝑘 optimizes propellant

consumption, critical for extended mission durations.

4.2 Constraints
A constraint on the maximum thrust the propulsion system can deliver is implemented. The con-

straint is anisotropic to maintain quadratic problem properties, however, it would overestimate the actual
maximum possible input by a factor of

√
3, so, given the real maximum thrust limit in acceleration 𝑈̄, for

each component we set 𝑢𝑚𝑎𝑥 =
𝑈̄√

3
. Then the constraint equation read as:

−𝑢𝑚𝑎𝑥 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥 , 𝑖 = 1, 2, 3 (12)
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A nonlinear collision avoidance constraint has been introduced to enhance the overall safety of the
formation flight, designating a zone around the main satellite that must be avoided to prevent potential
collisions.The collision avoidance constraint was implemented using the following bound inequality:

−∥𝝆 − 𝒓∥2 < −𝑅𝑐𝑜 (13)

In the absence of a more sophisticated model, 𝑅𝑐𝑜 should be chosen to be greater than the minimum
distance reached between the satellites at perilune. Otherwise, the satellite will need to execute maneuvers
that result in a larger distance error in the region immediately following perilune.

4.3 Mass estimation
Finally a simple method for determining the propellant mass𝑚𝑝𝑟𝑜𝑝 is needed. Following the approach

used in [24], assuming factors such as the initial spacecraft mass 𝑚0 and the specific Impulse 𝐼𝑠𝑝, and
calculating the Δ𝑉 from the control velocities, the Tsiolkovsky equation can be used:

𝑚𝑝 = 𝑚0

(
1 − 𝑒

− Δ𝑉
𝐼𝑠𝑝𝑔

)
(14)

where we need to estimate the value of Δ𝑉 . Given the number of steps of the simulation 𝑁𝑠𝑡𝑒𝑝𝑠 and the
time step 𝑡𝑠𝑡𝑒𝑝. it can be roughly computed as:

Δ𝑉 = Δ𝑉𝑥 + Δ𝑉𝑦 + Δ𝑉𝑧 (15)

Δ𝑉 𝑗 =

𝑁𝑠𝑡𝑒𝑝𝑠∑︁
𝑘=1

|𝑢 𝑗 |𝑡𝑠𝑡𝑒𝑝 (16)

where 𝑗 represents the directions 𝑥, 𝑦, and 𝑧.

𝑡𝑠𝑡𝑒𝑝 𝑁 𝛿𝑟 𝛿𝑣 𝑢𝑚𝑎𝑥 W𝑙𝜌 W𝑙𝑢 W𝑚 R

6 min 50 50 km 0 km/s 10−4 m/s2 105 𝑰3×3 0.3 𝑰3×3 106 𝑰6×6 𝑰6×6

Table 2 Simulation parameters

5 Results
In the following section, we consider the case of a leader satellite in an NRHO orbit and a chaser with

the quasi-halo (0°/0°) as the reference orbit. The LERM equation (Eq. 6) will be used for the MPC model,
while the plant model will encompass the complete set of NERM equations (Eq. 5). To address the
optimization problem, the open-source nonlinear optimization package Ipopt (Interior Point Optimizer),
integrated into the do-mpc library [25] has been employed. For larger problems with numerous variables,
the default MUMPS solver is a recommended choice, as evaluated by [26].
It is assumed that the leader satellite is capable of performing station-keeping in its NRHO orbit. The
time step was selected as a compromise between mitigating discretization errors and accounting for
the problem’s dynamics. Parameters used for the following simulations are shown in Tab. 2. Finally,
reasonable values were considered for the chaser satellite, such as 𝑚0 = 250 kg and 𝐼𝑠𝑝 = 3000 s.
Simulations were conducted on a computer equipped with an Intel Core i7-8750H processor and revealed
that solving each MPC optimization problem step takes between 230 ms and 450 ms. This computational
time depends on the system’s dynamics. Near the aposelene region, the optimizer converges faster,
resulting in shorter computation times while requiring more time near the periselene region. Importantly,
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(a) (b)

(c) (d)

Fig. 9 Transfer maneuvers from quasi-halo 1 to: (a) quasi-halo 6; (b) quasi-halo 14; (c) quasi-halo 21; (d)
quasi-halo 25.

the computational time remains significantly lower than the MPC controller’s time step of 6 minutes
for all simulated scenarios. The controller has been tested for two fundamental maneuvers: trajectory
recovery in the presence of an initial disturbance and orbital transfer to another quasi-halo orbit.

5.1 Transfer Maneuvers
Regarding the transfer maneuver, the initial reference orbit is quasi-halo No. 1 (0°/0°), and the most

challenging transfer is to quasi-halo No. 14 (0°/180°), diametrically opposite. A sample of transfer
trajectories is shown in Fig. 9. All transfer maneuvers start shortly after the aposelene.
It was observed that while the controller can execute all transfers if initiated within approximately 20
hours after the aposelene, it encounters difficulties in transferring to the more distant orbits if the starting
time is significantly delayed after the aposelene.
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Fig. 10 Performance in recovery maneuver of the reference orbit

5.2 Reference orbit recovery
A Monte Carlo simulation was conducted to assess the chaser’s ability to return to its reference orbit

following an initial disturbance of 100 km in magnitude. The starting point along the orbit, represented
by the angle 𝜃0, was systematically varied at intervals of 10°. For each 𝜃0 angle, five simulations were
carried out, with the direction of the perturbation vector randomly selected from the entire 4𝜋 solid angle.
Due to the intensive computational demands, the number of simulations could not be further increased.
The time required for the maneuver and the propellant consumption were measured as performance
indicators, and the results are shown in Fig. 10. To optimize computation time, the focus was placed on
analyzing the controller’s performance using only the portion of the orbit that spanned from aposelene
to periselene. This approach leveraged the fact that if the controller succeeded in this part of the orbit, it
was likely to function effectively in the second part, from periselene to aposelene. Moreover, conducting
simulations starting very close to the periselene with the same disturbance was infeasible, as even a small
initial disturbance in this region could lead to significant changes in the motion dynamics.

5.3 Weight sensitivity in controller performance
The analysis examined various weight combinations to determine how changes in Lagrangian weights

affected the controller’s ability to optimize flight time and fuel consumption. The results are illustrated
in Fig. 11. The chosen weight intervals were kept close to the values in Tab. 2, as significant
deviations during the initial tuning phase resulted in controller instability and ineffective maneuver. The
graphs confirm the significance of this choice, showing an exponential relationship between propellant
consumption and the weight associated with control input, as well as between maneuver time and the
weight associated with position. A slight decrease in the positional weight, can result in a substantial
increase in flight time, eventually leading to controller instability and an inability to complete the
maneuver. On the other hand, the dependence on the weight of the control input appears to exhibit a
linear behavior.
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(a) (b)

(c) (d)

Fig. 11 Relationship between Lagrangian weights and controller performance

6 Conclusion and Future works
This study investigated the viability of low-thrust propulsion in conjunction with a Model Predictive

Control (MPC) approach for satellite formation flying in the context of the CR3BP. By examining the
dynamics of quasi-halo orbits, the research identified stable configurations for formations of single or even
multiple satellites. The MPC controller demonstrated its effectiveness in trajectory recovery tasks, with
its performance sensitivity to cost function weights revealing crucial trade-offs between maneuver time
and fuel usage. While the computational burden of the MPC is demonstrably lower than the simulation
time step, it remains an aspect requiring optimization for onboard execution on resource-limited satellite
platforms. Future endeavors will focus on validating this control strategy against high-fidelity models
and refining state estimation through integrated estimators. In addition, we aim to extend the scope of
our current study by advancing the design of a robust rendezvous controller specifically tailored for the
complexities of the CR3BP environments. Drawing inspiration from established robust control strategies
in Keplerian rendezvous, such as the chance-constrained method and Halo orbit management techniques
[21, 27–29], we plan to adapt the robust method delineated in [30] for R3BP. Our approach will integrate
a stochastic parameter estimator with a Model Predictive Control (MPC) framework [31], facilitating
real-time recalibrations that respond to disturbances, thereby enhancing control precision. Furthermore,
an exploration of chaser propulsion types—whether chemical or electrical—will be incorporated into our
research.
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