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ABSTRACT

Accurate modeling of the unsteady aerodynamics during flow separation is critical for effective
pilot stall training in Flight Simulation Training Devices and the development of automatic stall
recovery controllers. Kirchhoff’s theory of flow separation has gained popularity due to its relative
simplicity and suitability for parameter identification from flight data. The goal of this work is
to improve an existing Cessna Citation II dynamic stall model’s fidelity by applying Kirchhoff’s
method for each wing surface, separately. The main contribution is the identification of asymmetric
flow separation development using the flight-derived roll moment and a roll moment model based
on the differential flow separation between the wing surfaces. The longitudinal model structures
are adopted from the existing, validated baseline stall model. The lateral-directional model outputs
are in good agreement with the validation flight data, showing an average reduction of 48% in Mean
Squared Error (MSE) compared to the baseline stall model. In contrast, the longitudinal model
output results in an average MSE increase of 88%, suggesting that the estimated asymmetric flow
separation parameters are unsuitable for longitudinal stall modeling. Hence, a hybrid approach
is proposed that combines separate sets of flow separation parameters for the longitudinal and
lateral-directional models.

Nomenclature

𝑎 = Linear acceleration [m/s2]
a = Regression variable vector
𝐴 = Regression matrix
𝑎1 = Flow separation parameter - shaping [-]
𝑏 = Aircraft wing span [m]
𝑐 = Mean chord length [m]
𝐶∗ = Aerodynamic force/moment coefficient [-]
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𝐼∗ = Mass moment of inertia about *-axis [kgm2]
𝐽 = Objective function value [-]
𝑙 = Aircraft length [m]
𝑚 = Aircraft mass [kg]
𝑀 = Mach number [-]
𝑛 = Load factor [-] (unless otherwise specified)
𝑁 = Number of data points
p = Orthogonalized regression variable vector
𝑝, 𝑞, 𝑟 = Pitch / roll / yaw rate [rad/s]
𝑅2 = Explained variance [-]
𝑆 = Wing surface aera [m2]
𝑋 = Flow separation point variable [m]
𝑦𝑤 = Moment arm of single-wing lift vector [m]
𝛼 = Angle of attack [◦]
𝛼∗ = Flow separation scheduling parameter [rad]
𝛽 = Sideslip angle [◦]
Δ𝐾𝛼 = Kirchhoff regressors differential [-]
𝛿𝑎 = Aileron deflection [◦]
𝛿𝑒 = Elevator deflection [◦]
𝛿𝑟 = Rudder deflection [◦]
𝜖 = Residual vector
𝛾𝑘, 𝑗 = Gram-Schmidt scaling parameter [-]
𝜙 = Bank angle [◦] / orthogonal parameter vector
𝜓 = Heading angle [◦]
𝜌 = Pearson’s linear correlation coefficient [-]
𝜎 = Standard deviation
𝜎𝑦 = Scaling parameter for PSE metric [-]
𝜏1 = Flow separation parameter, transient effects [s]
𝜏2 = Flow separation parameter, quasi-steady effects [s]
𝜃 = Pitch angle [◦] / parameter vector

Subscripts
0 = Steady state / Initial value
𝑏 = Body-fixed reference frame
𝐷 = Drag force
𝑙 = Roll moment
𝐿 = Lift force / Left wing
𝑚 = Pitch moment
𝑛 = Yaw moment
𝑅 = Right wing
𝑇 = Thrust force
𝑌 = Lateral force

Superscripts
¯ = Mean value
¤ = Time-derivative
ˆ = Estimate
⊤ = Transpose vector

1 Introduction
Aerodynamic forces and moment models are traditionally based on stability and control derivatives

[1]. This approach has led to adequate dynamic aircraft models for the nominal flight envelope. However,
in stall and post-stall flight conditions, aerodynamic forces and moments exhibit nonlinear and noticeable
unsteady effects as a result of flow separation. Furthermore, the effectiveness of a control surface
can be reduced due to potential interactions with the turbulent wake resulting from separated flow. A
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recent study conducted wind tunnel experiments with a scaled aircraft model to investigate lateral control
authority during stall, identifying a reduction of approximately 40% in aileron effectiveness [2]. Adequate
modeling of such unsteady aerodynamics during flow separation is critical for pilot training in Flight
Simulation Training Devices (FSTDs), for upset situations and loss-of-control in flight (LOC-I) [3, 4], as
nearly 40% of LOC-I accidents are categorized as stall-related [5].

Recently, Computational Fluid Dynamics (CFD) methods have been employed to evaluate complete
aircraft stall models [6]. The EU-funded project "Simulation of Upset Recovery in Aviation" (SUPRA)
introduced a complex approach, based on wind tunnel data and complemented by CFD analysis [4, 7].
While these methods can achieve high levels of accuracy, they often come with the drawbacks of being
computationally expensive and requiring rigorous validation procedures. Hence, model identification
from flight data remains relevant.

A popular stall modeling approach is based on Kirchhoff’s theory of flow separation. First introduced
by [8], Kirchhoff’s method aims to model the lift using an internal flow separation variable 𝑋 , a coordinate
describing the location of the flow separation point on the upper airfoil surface. Conveniently, this variable
has also been shown to adequately model nonlinear effects that occur in the drag and the pitch moment
coefficients [9, 10]. A direct measurement of the flow separation point is difficult to obtain. Alternatively,
it has been approximated using a first-order ordinary differential equation (ODE), of which the parameters
are estimated from wind tunnel tests, flight data, or a combination of the two [9–11]. The main limitation
of Kirchhoff’s method is that the flow separation point is generally considered as a one-dimensional
coordinate, rendering it unsuitable for describing any flow separation asymmetry. To combat this issue,
[12] modeled the normal force on each wing separately using Kirchhoff’s theory, whereas [13] included
additional lift surfaces and applied a quadratic polynomial approximation. This paper explores variants of
the first two approaches. Alternatively, in [14] a geometric (wing) segmentation approach was introduced
to model asymmetric stall.

The goal of this work is to improve a previously developed Cessna Citation II dynamic stall model’s
fidelity [15] by applying asymmetric stall modifications to Kirchhoff’s method. The main contribution is
the identification of asymmetric flow separation development, using the flight-derived roll moment and a
roll moment model that explicitly accounts for the differential flow separation between the wing surfaces.
Additionally, an attempt is made to identify any variations in lateral-directional control effectiveness.
To reach the set objectives, flight experiments were conducted using TU Delft’s laboratory aircraft,
dedicated to gathering data containing strong asymmetric and dynamic excitation, as well as control
surface deflections, during accelerated stall maneuvers. The flow separation parameters are identified
through a nonlinear optimization, and the resulting separation variables are subsequently treated as fixed
internal state variables. For this purpose, a roll-moment model structure is selected based on an analysis
of Kirchhoff’s model and an alternative first-order approximation.

The performed flight experiments and the resulting data are detailed in Section 2. Subsequently, the
system identification methodology is explained in Section 3. Section 4 presents the results of the model
identification and validation processes. The main conclusions are summarized in Section 6.

2 Flight Experiments and Data

2.1 Research Aircraft
All flight experiments were conducted with a Cessna Citation II (550) aircraft (PH-LAB), a twin-jet

originally built for executive travel. The PH-LAB is co-owned by TU Delft and Netherlands Aerospace
Center (NLR). A custom Flight Test Instrumentation System (FTIS) is installed, which aggregates all the
measurement data from the sensors. For this research, a crucial part of the measurement equipment is the
air data boom connected to the aircraft nose, as highlighted along with the body-fixed reference frame
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in Fig. 1. This device allows for accurate measurements of the airflow angles. Important geometry and
mass/inertia properties of the aircraft are given in Table 1.

Fig. 1 Top view of the research aircraft, includ-
ing the body-fixed reference frame and a high-
lighted air data boom. Adapted from [15].

Table 1 Cessna Citation II general specifications
(BEW=Basic Empty Weight).

Dimensions Mass and inertia (BEW)

𝑏 15.9 m MTOW 6600 kg
𝑙 14.4 m MLW 6100 kg
𝑐 2.09 m BEW 3900 kg
𝑆 30.0 m2 𝐼𝑥𝑥 12392 kgm2

𝐼𝑦𝑦 31501 kgm2

𝐼𝑧𝑧 41908 kgm2

𝐼𝑥𝑧 2252.2 kgm2

2.2 Experiment Design
All new stall maneuvers were conducted in clean configuration, between Flight Level (FL) 150 and

200. Since a large bulk of the previous stall data was gathered at this altitude [15], this choice allows for
model validation using a combination of the data sets.

The classic quasi-steady stall maneuver, during which the airspeed is reduced at approximately
-1 kt/s, has proven ineffective for parameter estimation purposes [10]. In this condition, unsteady
state variables such as pitch rate 𝑞 and angle of attack rate ¤𝛼 are close to zero, while other states
vary simultaneously and approximately linearly, leading to strong correlations. These conditions make
parameter estimation a difficult task and any resulting model will be of a low fidelity. Instead, two types
of dynamic maneuvers were applied during the stall maneuvers, quasi-random disturbance (QR) inputs
and 3-2-1-1 inputs. Both input types are displayed in Fig. 2. QR refers to the pilot attempting to apply
quasi-random inputs with as little correlation as possible, a piloting technique based on the description
of [16] with the goal of obtaining excitation for a large input bandwidth. During the experiments, a
fly-by-wire system was available to apply automatic 3-2-1-1 inputs, ensuring reliable dynamic roll axis
excitation [17]. To avoid reaching excessively large bank angles (which could lead the aircraft into a
spin), it was chosen to direct the longest positive input (”3”) in the opposite direction of the stall approach
bank angle, with an amplitude scaled such that no excessive bank angles where achieved on the second
("2") pulse in the direction of the stall approach bank angle. Hence, all 3-2-1-1 maneuvers were initiated
to the left.
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Fig. 2 An example of a simultaneous 3-2-1-1 aileron input and a QR elevator input.
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The newly conducted experiments are exclusively 1.1𝑔 accelerated stalls (to the right), with the
purpose of inducing asymmetric flow separation effects. The term "accelerated" refers to a stall maneuver
that is performed with a reference bank angle, or load factor 𝑛𝑧. To further impose asymmetry, 6 stall
maneuvers were performed with a reference sideslip angle. The objective was to reach 𝛽ref = 5◦, which
was in practice difficult to maintain for the pilots. The fact that this choice required significant rudder
inputs provided an additional benefit for parameter identification, as [15] noted that only a subset of
the previous data included sufficient rudder inputs for accurate estimation of the yaw moment model
parameters.

3 Modeling and System Identification Methodology

3.1 Kirchhoff’s Flow Separation Model
The description of nonlinear behavior in the proposed stall model is based on Kirchhoff’s theory of

flow separation. In its original form, this model describes the lift coefficient of an airfoil 𝐶𝐿 at high angle
of attack 𝛼:

𝐶𝐿 = 𝐶𝐿𝛼

(
1 +

√
𝑋

2

)2

𝛼 (1)

where 𝐶𝐿𝛼 is the airfoil’s lift slope. The flow separation point 𝑋 is a non-dimensional coordinate that
represents the position of the separation point on the upper surface of the airfoil. It ranges from 0 to 1,
where 𝑋 = 1 indicates fully attached flow and 𝑋 = 0 corresponds to fully separated flow [8]. According
to Kirchhoff’s theory, 𝑋 is the solution to the following ODE:

𝜏1
𝑑𝑋

𝑑𝑡
+ 𝑋 =

1
2
{1 − tanh (𝑎1 (𝛼 − 𝜏2 ¤𝛼 − 𝛼∗))} , (2)

with 𝑎1 a shaping parameter that describes the abruptness of the stall, 𝛼∗ the stall angle of attack, 𝜏1
models transient effects, while 𝜏2 captures hysteresis from attached flow to flow separation, and vice
versa.

3.2 Asymmetric Stall Modeling using the Roll Moment
The aerodynamic coefficient that is most important for describing asymmetric stall characteristics

is the roll moment coefficient, as it is directly dependent on lift differentials between the lifting surfaces
(e.g., wing, tail) on both sides of the aircraft. In this research, only the differential between the main
wing surfaces is considered. The individual surface lift coefficients are modeled by Kirchhoff’s model.

Δ𝐶̂𝑙 =

[
(𝐶𝐿𝛼)𝐿

(
1 +

√
𝑋𝐿

2

)2

𝛼𝐿 − (𝐶𝐿𝛼)𝑅
(
1 +

√
𝑋𝑅

2

)2

𝛼𝑅

]
𝑦𝑤

𝑏
(3)

where 𝑋𝐿 and 𝑋𝑅 are the flow separation variables for the left and right wing, and 𝛼𝐿 and 𝛼𝑅 the local
angle of attack at a distance 𝑦𝑤 on the left and right wing surface, respectively.

Symmetric wings would imply equal airfoil properties, resulting in the simplification 𝐶𝑙Δ𝐾𝛼 =

(𝐶𝐿𝛼)𝐿 = (𝐶𝐿𝛼)𝑅. For simplicity, the notation Δ𝐾𝛼 is introduced:

Δ𝐶̂𝑙 = 𝐶𝑙Δ𝐾𝛼Δ𝐾𝛼
𝑦𝑤

𝑏
with Δ𝐾𝛼 =

(
1 +

√
𝑋𝐿

2

)2

𝛼𝐿 −
(
1 +

√
𝑋𝑅

2

)2

𝛼𝑅 (4)
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Note that Kirchhoff’s model was developed for complete airfoils, not single (half) wings. In Eq. 4,
it is assumed that it can provide an adequate description of the difference in lift between individual wing
surfaces. Considering the fact that Kirchhoff’s model may not be suitable for a single wing surface, a
simpler alternative description of asymmetric stall is proposed:

Δ𝐶̂𝑙 = 𝐶𝑙Δ𝑋Δ𝑋
𝑦𝑤

𝑏
with Δ𝑋 = (𝑋𝐿 − 𝑋𝑅) (5)

Eq. 5 is a simplification of Lutze et al.’s model [13]: the dependence of the left wing surface lift on 𝑋𝐿 ,
is approximated as a first-order polynomial, where the bias is included in the general bias term of the
model (𝐶𝑙0). The same holds for the right wing surface. The symmetry property of the aircraft is again
taken into account, to obtain a single parameter 𝐶𝑙Δ𝑋 . The flow separation variables are each governed
by their own ODEs:

(𝜏1)𝐿,𝑅
𝑑𝑋𝐿,𝑅

𝑑𝑡
+ 𝑋𝐿,𝑅 =

1
2

{
1 − tanh

(
𝑎1

(
𝛼𝐿,𝑅 − 𝜏2 ¤𝛼𝐿,𝑅 − 𝛼∗

) )}
(6)

Finally, for the longitudinal models, the symmetric flow separation variable 𝑋 is computed by taking the
mean of 𝑋𝐿 and 𝑋𝑅 at every data point:

𝑋 =
𝑋𝐿 + 𝑋𝑅

2
(7)

3.3 Local Angle of Attack Computation
The local angle of attack at an arbitrary point 𝑃 is computed through a kinematic relationship that

describes the local airflow velocity, whereby the aircraft is assumed to be a rigid body [18]:

𝛼𝑃 = atan
(
𝑤𝑃

𝑢𝑃

)
= atan

(
𝑤 − 𝑞Δ𝑥𝑃 + 𝑝Δ𝑦𝑃
𝑢 − 𝑟Δ𝑦𝑃 + 𝑞Δ𝑧𝑃

)
(8)

where Δ𝑿 𝒑 = [Δ𝑥𝑃 Δ𝑦𝑃 Δ𝑧𝑃]⊤ are the distances from the aircraft center of gravity (CG) to the point
𝑃. For the left and right wings only the lateral offset is relevant: Δ𝑿𝑳,𝑹 = [0,±𝑦𝑤, 0]⊤. Since 𝑦𝑤 is to
describe a moment arm of the lift vector, ideally this value is equal to the distance to the center of lift
of a single wing surface, measured from the fuselage center line. As an approximation, it is set equal to
the lateral location of the Mean Aerodynamic Chord (MAC). Fig. 3 presents a reconstructed response of
the local angles of attack to a 3-2-1-1 aileron input, during an accelerated stall maneuver. Note that the
angle of attack at the CG (𝛼) is assumed to be the mean of the local variants (𝛼𝐿,𝑅), which may not be
correct for large side-slip angles.

5

10

15

0 10 20 30 40 50 60 70 80 90

-5

0

5

Fig. 3 The response of the local and general angle of attack to a 3-2-1-1 aileron input (𝑡 ≈ 30 s to 𝑡 ≈ 40 s),
during an accelerated stall maneuver (ASYM set 21).
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3.4 Identification Problem and Approach
The main objective of the identification procedure is the creation of a 6-DOF aerodynamic model

of the aerodynamic force and moment coefficients. As such, the downstream identification task is the
estimation of the parameter vectors (𝜃) of the coefficients of lift (𝐶𝐿), drag (𝐶𝐷), lateral force (𝐶𝑌 ), roll
moment (𝐶𝑙), pitch moment (𝐶𝑚), and yaw moment (𝐶𝑛):

𝜃𝐶𝐿 , 𝜃𝐶𝐷 , 𝜃𝐶𝑌 , 𝜃𝐶𝑙 , 𝜃𝐶𝑚 , 𝜃𝐶𝑛 (9)

The 𝑋-parameters provide a convenient description of the flow separation variables. Once these
parameters are known or estimated, 𝑋𝐿 and 𝑋𝑅 can be determined by solving their respective ODEs, i.e.
Eq. (6). Hence, the second set of parameters to estimate consists of the 𝑋-parameters:

𝜃𝑋 = [ 𝜏1 𝜏2 𝑎1 𝛼∗ ]⊤ (10)

As previously proposed in [15], the parameter estimation approach is split into two parts: the
nonlinear 𝑋-parameter estimation and the linear 𝐶𝑖-parameter estimation, see Fig. 4.
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Fig. 4 A flowchart describing the proposed identification approach.

3.4.1 Step I: Initial Roll Moment Model Selection
To initialize the nonlinear optimization, an initial guess of a roll moment model structure is required.

Note that this model structure is modified iteratively in Step II and Step III, see Fig. 4. The following
conventional linearized model structure is suitable outside the stall region [19] and was used during
initialization:

𝐶̂𝑙 (𝑥, 𝜃)lin = 𝐶𝑙0 + 𝐶𝑙𝛽 𝛽 + 𝐶𝑙𝑝 𝑝 + 𝐶𝑙𝑟 𝑟 + 𝐶𝑙𝛿𝑎 𝛿𝑎 + 𝐶𝑙𝛿𝑟 𝛿𝑟 (11)

In order to identify asymmetric flow separation characteristics in Step II of Fig. 4, terms related
to 𝑋𝐿 and 𝑋𝑅 must be included in the initial roll moment model. Two mathematical formulations of
asymmetric stall were introduced in Section 3.2. The effectiveness of the parameter identification task is
evaluated for both formulations, to determine whether a modification of Kirchhoff’s model is required or
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a simpler approximation is sufficient. Eq. (4) and Eq. (5) are appended to the conventional roll moment
model to obtain the initial roll moment model for the structure selection process. In this paper, this model
is referred to as Model B-I, where the "I" denotes that this is the first iteration of Model B.

Model B-I 𝐶̂𝑙 (𝑥, 𝜃)0 = 𝐶̂𝑙 (𝑥, 𝜃)lin + 𝐶𝑙Δ𝑋Δ𝑋
𝑦𝑤

𝑏
with Δ𝑋 = (𝑋𝐿 − 𝑋𝑅) (12)

Note that the simplicity of the additional term of model B comes from the exclusion of local angles
of attack: once the 𝑋-parameters are estimated, these local computations are no longer required for
evaluating the model output.

3.4.2 Step II: Nonlinear Parameter Estimation
A nonlinear optimization method is employed for the identification of the flow separation parameters.

The nonlinearity of the problem originates from the ODEs of Eq. (6). The objective function is the mean
squared error (MSE) of the roll moment model output 𝐶̂𝑙 (𝜃, 𝑥) with respect to the measured 𝐶𝑙 :

𝜃 = arg min
𝜃

𝐽 (𝜃, 𝑥) with 𝐽 (𝜃, 𝑥) = 1
𝑁

(
𝐶𝑙 − 𝐶̂𝑙 (𝜃, 𝑥)

)⊤ (
𝐶𝑙 − 𝐶̂𝑙 (𝜃, 𝑥)

)
(13)

where 𝐶𝑙 , 𝐶̂𝑙 ∈ R𝑁×1 and 𝑁 denotes the number of data points in a training set.

As mentioned in Section 3.1, the 𝑋-parameters are mostly dependent on airfoil and wing configura-
tion. Only 𝜏1 is determined by the free-stream velocity. Both conditions are assumed to be equal between
the wing surfaces. Hence, a single set of 𝑋-parameters is to be estimated:

(𝜃𝑋)𝐿 = (𝜃𝑋)𝑅 = 𝜃𝑋 = [ 𝜏1 𝜏2 𝑎1 𝛼∗ ]⊤ (14)

The parameter vector associated with this optimization is the result of appending the 𝐶𝑙-parameters
to the 𝑋-parameters. Note that these𝐶𝑙-parameter estimates are not directly used for the final roll moment
model. These additional estimates provide a method of verification of the optimization, as they should
converge to similar values. For the first iteration, the introduced initial roll moment model structures
yield the parameter vectors of the associated optimization problems:

(𝜃𝑛𝑙)𝐵 =

[
𝜏1 𝜏2 𝑎1 𝛼∗ 𝐶𝑙0 𝐶𝑙𝛽 𝐶𝑙𝑝 𝐶𝑙𝑟 𝐶𝑙𝛿𝑎 𝐶𝑙𝛿𝑟 𝐶𝑙Δ𝑋

]⊤
(15)

Upper and lower bounds are enforced on the parameters, to shrink the solution space. The opti-
mization is performed by an Interior Point algorithm implementation, using the fmincon function from
MATLAB’s optimization toolbox.

3.4.3 Step III: Model Structure Selection
The general objective of the model structure selection procedure (Step III in Fig. 4) is to generate a

compact (parsimonious) model that retains adequate complexity to capture the nonlinearities associated
with aircraft stall [20]. Minimizing the number of model terms enhances parameter identifiability,
leading to improved accuracy in parameter estimates and prediction (validation) performance. The
interdependence of the model structure selection tasks is further detailed in Fig. 5. The roll moment
model structure 𝐶̂𝑙 (𝑥, 𝜃) must be selected first, as any changes in this model could result in different
𝑋-parameter estimates. Once these parameter estimates are fixed, the remaining model structures can
be selected. Finally, it is chosen to keep the longitudinal model structures equal to those of the previous
stall model, as these were shown to capture the nonlinearities of aircraft stall adequately [15]. The newly
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estimated 𝑋-parameters are used for the evaluation of this model, providing the opportunity to evaluate
the proposed method for the application of longitudinal modeling.

Initialize 

Kirchhoff-based

Estimate -
parameters

Using   & 

Select 

MOF-Algorithm +
Model fit

TRUE== 

Select Remaining
Model Structures

MOF-Algorithm +
Model fit

 Selected

-parameters
fixed

= FALSE

Fig. 5 The process of model structure selection using multivariate orthogonal functions (MOF), starting
from the initial roll moment model.

Model structure selection and parameter estimation are coupled procedures. While selecting a
model structure is a prerequisite for parameter estimation, evaluating the adequacy of a postulated model
requires parameter estimates. This circular dependence makes the problem difficult to solve objectively
[20]. A possible solution is the concept of stepwise regression, where statistical hypothesis testing
is employed to select model terms from a pool of proposed terms [21]. An additional challenge lies
in the potential correlation between independent variables. To tackle these challenges, [20] applied a
Multivariate Orthogonal Functions (MOF) modeling algorithm, with the purpose of global aerodynamic
modeling. Subsequent work has proven the effectiveness of this technique for the application of aircraft
stall modeling [15, 16]. Hence, the MOF selection method is also employed in this paper.

The reconstructed flight data amounts to a pool of candidate regressors, to be used in the model
structure selection. The performance of the described selection algorithm relies completely on the
combined explanatory value of this candidate pool. The pool of candidate regressors considered in this
paper can be found in Table 2. Several different categories of regressors are identified. A bias term is
included in every model. To employ additional a priori knowledge, a linearized quasi-steady analytical
aircraft model is taken as a reference [19], where a distinction is made between regressors that describe
symmetric and asymmetric motion.

Table 2 The candidate regression variables categorized by model type.

Regressor Type Symmetric Asymmetric

Bias 1 1
Measured 𝛼, 𝑞, 𝐶𝑇 , 𝑀 , 𝛿𝑒 𝛽, 𝑝, 𝑟, 𝛿𝑎, 𝛿𝑟

Time-derivative ¤𝛼 ¤𝛽
Flow Separation 𝑋 , (1 − 𝑋) Δ𝑋

𝑦𝑤
𝑏

, Δ𝐾𝛼 𝑦𝑤𝑏

3.4.4 Step IV: Linear Parameter Estimation
Given a set of six linear-in-the-parameters model structures, Step IV concerns the identification of

the 𝐶𝑖-parameters. The selected model structures are linear polynomials:

𝐶̂𝑖 = 𝜃𝐶𝑖1 𝒂1 + 𝜃𝐶𝑖2 𝒂2 + . . . + 𝜃𝐶𝑖𝑛 𝒂𝑛, for 𝑖 ∈ {𝐿, 𝐷,𝑌, 𝑙, 𝑚, 𝑛} (16)

where 𝐶̂𝑖 is the model output of force or moment 𝑖, 𝒂 𝑗 are the regressor vectors and 𝜃𝐶𝑖 𝑗 are the parameters
from the vector 𝜃𝐶𝑖 . Using the matrix notation the equation reduces to the regression form:
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𝐶̂𝑖 = 𝐴𝜃𝐶𝑖 , with 𝐴 = [𝒂1 𝒂2 . . . 𝒂𝑛] (17)

An OLS solution is applied to minimize the model error 𝜖 = 𝐶𝑖 − 𝐶̂𝑖, where 𝐶𝑖 denotes the
measurement vector. This results in the closed-form solution for all parameter vectors:

𝜃𝐶𝑖 = (𝐴⊤𝐴)−1𝐴⊤𝐶𝑖, for 𝑖 ∈ {𝐿, 𝐷,𝑌, 𝑙, 𝑚, 𝑛} (18)

4 Results
The described methodology is applied to the flight test data to obtain the stall model. Due to the

interdependencies in the approach of Fig 4, the order of presentation of the results is important. The
initial roll moment model structure selection (Step I) was detailed in Section 3.4.1. Converging to a final
roll moment model structure is a prerequisite for estimating the final set of 𝑋-parameters. Therefore, this
process is described first (Step IIIa). Subsequently, the final nonlinear optimization results are detailed
(Step II) and the remaining model structures are selected (Step IIIb). When the 𝑋-parameters and all
model structures are fixed, the results of the linear regression step are shown (Step IV), presenting the
complete stall model. Finally, the model is validated using a subset of the flight test data set.

4.1 Step IIIa: 𝐶𝑙-Model
The initial (Model B-I) and final (Model B) nonlinear optimizations of the 𝑋-parameters using the

𝐶𝑙 measurement data results are presented in Table 3.

Table 3 𝑋-parameter estimates of the initial (Model B-I) and final (Model B) roll moment models, for the
𝐶𝑙-model structure selection. Results are compared to the baseline model from [15]. The lowest standard
deviation of a given parameter is bold-faced.

Optimization Model B-I Model B Baseline Model [15]
𝜃 Bounds 𝜃 𝜎𝜃 𝜃 𝜎𝜃 𝜃 𝜎𝜃

𝜏1 [s] [0.001, 0.50] 0.1166 0.0598 0.0971 0.0282 0.2547 0.1565
𝜏2 [s] [0.000, 0.80] 0.5386 0.1486 0.5526 0.1636 0.0176 0.0819
𝑎1 [-] [15.00, 40.0] 17.269 2.9987 16.865 1.1672 27.671 6.7177
𝛼∗ [rad] [0.100, 0.35] 0.1744 0.0363 0.1730 0.0194 0.2084 0.0202

In Fig. 6a the model structure for 𝐶𝑙 resulting from the MOF algorithm are shown for the first and
second MOF iterations, respectively. In the figures, the candidate regressors on the vertical axis are
selected in the number of stall maneuvers as shown on the horizontal axis. A grey bar indicates that
the corresponding regressor is frozen into the model, either due to selection in a previous iteration, or
because it concerns a bias term. The iterations were terminated after the second iteration because no
further significant improvements of the model fit were obtained after this.

The final structure of Model B is:

𝐶̂𝑙 (𝑥, 𝜃) = 𝐶𝑙0 + 𝐶𝑙𝛽 𝛽 + 𝐶𝑙𝑟 𝑟 + 𝐶𝑙𝛿𝑎 𝛿𝑎 + 𝐶𝑙Δ𝑋Δ𝑋
𝑦𝑤

𝑏
(19)

It should be noted that the model structure in Eq. 19 does not contain a roll damping term (𝐶𝑙𝑝 ),
which was consistently rejected during the stepwise regression procedure due to lack of significance.
Instead the effects of roll damping are captured in the 𝐶𝑙Δ𝑋Δ𝑋 term. While this does lead to better
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(a) Results of the first (top) and second (bottom) it-
erations of the MOF algorithm using𝐶𝑙 data. Grey
bars indicate terms in the model structure that were
fixed because of selection in a previous iteration, or
because the considered term is a bias term which by
default is always included. Horizontal axis counts
the number of maneuver sets out of a total of 24,
with dashed line indicating the 50% mark.
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(b) Model term contributions, after OLS (ASYM set 7).

Fig. 6 𝐶𝑙-Model structure selection algorithm results and final model term contributions

validation performance, this does lead to issues when blending the nominal (non-stall) aerodynamic
model with the stall model.

Table 4 presents the model fit for the intermediate and final models, on the validation set. The model
fit metrics that are used in this paper are MSE and the explained variance 𝑅2.

Table 4 Performance of the intermediate and the selected model structures, evaluated by the validation fit.

Model Structure MSE 𝑹2 𝒎𝒊𝒏(𝑹2) 𝒎𝒂𝒙(𝑹2)

Model B-I 1.49E-6 0.74 0.55 0.85
Final Model B 1.41E-6 0.75 0.63 0.86

4.2 Step II: Nonlinear Optimization
The objective of Step II of Fig. 4 is to provide adequate estimates of the 𝑋-parameters. Since there

is no flow separation measurement available, the estimates are analyzed by their variances, distributions,
and a comparison with the baseline stall model. The optimization is verified by a cost function analysis
and a comparison of nonlinear optimization results with the results of linear regression.

In the following discussions, only the final selected structure of Model B is considered. The 𝑋-
parameter estimates and their standard deviations can be found in Table 3, for the proposed model and
the baseline model [15].
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4.3 Step IIIb: Remaining Force and Moment Coefficient Models
The remaining model structures are selected using the 𝑋-parameter estimates associated to the final

𝐶𝑙-model. This section describes this selection procedure. The performed analyses are based on the
results of the MOF-algorithm, validation fit after performing OLS, comparisons with literature, and the
visible contributions of regressors to the model output.

Using the MOF selection algorithm, the final model structure for 𝐶𝑛 is:

𝐶̂𝑛 = 𝐶𝑛0 + 𝐶𝑛𝛽 𝛽 + 𝐶𝑛𝑟 𝑟 + 𝐶𝑛𝛿𝑎 𝛿𝑎 + 𝐶𝑛𝛿𝑟 𝛿𝑟 + 𝐶𝑛Δ𝑋Δ𝑋
𝑦𝑤

𝑏
+ 𝐶𝑛𝛼𝛼 (20)

As with the model structure for 𝐶𝑙 , stepwise regression consistently rejected the 𝐶𝑛𝑝 which effects
where captured by the 𝐶𝑛Δ𝑋Δ𝑋 term, leading to potential issues when blending the nominal aerodynamic
model with the proposed stall model.

0 5 10 15 20

0 5 10 15 20

(a) Results of 2 iterations of the MOF algorithm.
Grey bars indicate fixed model terms.
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(b) Model term contributions, after OLS (ASYM set 16).

Fig. 7 𝐶𝑛-model structure selection results.

The final model structure for 𝐶𝑌 determined using the MOF selection algorithm is:

𝐶̂𝑌 = 𝐶𝑌0 + 𝐶𝑌𝛽 𝛽 + 𝐶𝑌𝑟 𝑟 + 𝐶𝑌𝛿𝑎 𝛿𝑎 + 𝐶𝑌𝛿𝑟 𝛿𝑟 + 𝐶𝑌Δ𝑋Δ𝑋
𝑦𝑤

𝑏
(21)

As previously discussed, the longitudinal model structures are taken directly from previous work
[15]. For completeness, they are included in this model structure description. The longitudinal model
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(a) Results of 2 iterations of the MOF algorithm.
Grey bars indicate fixed model terms.
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(b) Model term contributions, after OLS (ASYM set 16).

Fig. 8 𝐶𝑌 -model structure selection results.

structures include three transformations of 𝑋 , one for each model:

𝐶̂𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼

(
1 +

√
𝑋

2

)2

𝛼 + 𝐶𝐿
𝛼2 (𝛼 − 6◦)2

+

𝐶̂𝐷 = 𝐶𝐷0 + 𝐶𝐷𝛼𝛼 + 𝐶𝐷 𝛿𝑒 𝛿𝑒 + 𝐶𝐷𝑋 (1 − 𝑋) + 𝐶𝐷𝐶𝑇𝐶𝑇
𝐶̂𝑚 = 𝐶𝑚0 + 𝐶𝑚𝛼𝛼 + 𝐶𝑚𝑋𝛿𝑒 max(0.5, 𝑋)𝛿𝑒 + 𝐶𝑚𝐶𝑇𝐶𝑇

(22)

The traditional Kirchhoff term is included in the lift model. As Kirchhoff’s model was developed for
airfoils, a correction term is added to model the entire aircraft lift, based on a univariate spline in 𝛼 with
zero-order continuity:

(𝛼 − 6◦)2
+ =

{
(𝛼 − 6◦)2 when 𝛼 ≥ 6◦

0 when 𝛼 < 6◦
(23)

The (1 − 𝑋)-term in the drag model describes a drag increase due to flow separation. Finally,
max(0.5, 𝑋)𝛿𝑒 in the pitch moment model provides a reducing effect on the elevator effectiveness,
with an upper limit of 50% reduction.

4.4 Step IV: Aerodynamic Parameter Estimates
Table 5a and Table 5b present the outcomes of the parameter estimation process for the asymmetric

and symmetric aerodynamic model equations, respectively. These tables display the estimated parameter
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values, the standard deviations of the estimates across the data sets, and the findings of two statistical
tests (one-sample Kolmogorov-Smirnov (KS) test and one-sample 𝑡-test).

Table 5 Aerodynamic parameter estimates, with standard deviations and results of statistical tests. KS-test:
N = normally distributed, X = not normally distributed. 𝑡-test: o = zero-mean, * = not zero-mean,

(a) Asymmetric models.

Estimates KS-test 𝑡-test
𝜃𝐶𝑖

[-] 𝜃 𝜎𝜃 𝑝 ℎ 𝑝 ℎ

𝐶𝑙0 -0.0006 0.0004 0.5267 N 0.0389 *
𝐶𝑙𝛽 -0.0279 0.0108 0.7790 N 0.0000 *
𝐶𝑙𝑟 0.0661 0.0562 0.8271 N 0.6019 *
𝐶𝑙𝛿𝑎 -0.0501 0.0104 0.6221 N 0.0000 *
𝐶𝑙Δ𝑋 -0.1274 0.0145 0.7102 N 0.0000 *

𝐶𝑛0 0.0006 0.0011 0.8810 N 0.0687 o
𝐶𝑛𝛽 0.0709 0.0093 0.7497 N 0.0000 *
𝐶𝑛𝑟 -0.0598 0.0590 0.6226 N 0.0000 *
𝐶𝑛𝛿𝑎 0.0113 0.0043 0.9600 N 0.0000 *
𝐶𝑛𝛿𝑟 0.0493 0.0267 0.1090 N 0.0000 *
𝐶𝑙Δ𝑋 -0.0302 0.0110 0.3024 N 0.0000 *
𝐶𝑛𝛼 0.0049 0.0056 0.5810 N 0.0000 *

𝐶𝑌0 0.0021 0.0100 0.5576 N 0.2691 o
𝐶𝑌𝛽 -0.5013 0.0629 0.9420 N 0.0000 *
𝐶𝑌𝑟 0.6204 0.5314 0.8824 N 0.0001 *
𝐶𝑌𝛿𝑎 -0.1344 0.0390 0.9847 N 0.0000 *
𝐶𝑌𝛿𝑟 -0.0725 0.2683 0.2270 N 0.0917 o
𝐶𝑌Δ𝑋 -0.4588 0.0663 0.8865 N 0.0000 *

(b) Symmetric models.

Estimates KS-test 𝑡-test
𝜃𝐶𝑖

[-] 𝜃 𝜎𝜃 𝑝 ℎ 𝑝 ℎ

𝐶𝐿0 0.2480 0.0897 0.9210 N 0.0000 *
𝐶𝐿𝛼

4.3991 0.8553 0.7341 N 0.0000 *
𝐶𝐿

𝛼2 18.854 5.2721 0.3663 N 0.0000 *

𝐶𝐷0 -0.0078 0.0167 0.9037 N 0.0038 o
𝐶𝐷𝛼

0.3372 0.1219 0.7914 N 0.0000 *
𝐶𝐷𝛿𝑒

-0.1715 0.0743 0.8754 N 0.0000 *
𝐶𝐷1−𝑋 0.0246 0.0120 0.9937 N 0.0000 *
𝐶𝐷𝐶𝑇

0.4301 0.0743 0.6382 N 0.0000 *

𝐶𝑚0 0.0324 0.0190 0.9607 N 0.0000 *
𝐶𝑚𝛼

-0.5497 0.1171 0.6830 N 0.0000 *
𝐶𝑚𝛿𝑒𝑋

-0.9220 0.1445 0.8446 N 0.0000 *
𝐶𝑚𝐶𝑇

0.0857 0.0974 0.9830 N 0.0004 *

4.5 Stall Model Validation
The presented aerodynamic parameters have resulted in a 6-DOF stall model that should be capable

of adequately describing the nonlinearities of flow separation. To validate the model, the model fit is
evaluated using the validation data set. This data set contains 6 stall maneuvers and was not used in the
identification phase.

The validation fit is visualized in Fig. 9, which presents the model output of the best- and worst-
performing validation sets. Both Table 6 and Fig. 9 present a satisfactory agreement with the data
of the lateral-directional models. This result confirms that using a flow separation differential in the
roll moment model structure allows for the identification of asymmetric flow separation characteristics.
Moreover, the identified flow separation variables are capable of adequately capturing the nonlinearities
of the lateral force and the yaw moment.

Conversely, the longitudinal models present a lacking description of the flight data, most notably
because of the lack of pitch damping provided by the model, which is caused by averaging of the (highly)
dynamic pitch damping over the complete stall maneuver. The model structures were directly taken from
a validated stall model [15]. 𝑋 is computed by averaging the local flow separation variables 𝑋𝐿 and 𝑋𝑅,
which are each evaluated using the roll-based 𝑋-parameter estimates. This approach is less suitable for
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longitudinal stall modeling using Kirchhoff’s method, as the resulting flow separation variable is not fully
capable of accurately describing the flow separation effects of the drag and the pitch moment.

Table 6 Aerodynamic model fit properties, averaged over the training sets and validation sets.

Training Validation
Model MSE 𝑅2 𝑚𝑖𝑛(𝑅2) 𝑚𝑎𝑥(𝑅2) MSE 𝑅2 𝑚𝑖𝑛(𝑅2) 𝑚𝑎𝑥(𝑅2)

𝐶𝑙 1.03E-6 0.77 0.42 0.89 1.41E-6 0.75 0.63 0.86
𝐶𝑛 4.85E-7 0.65 0.27 0.89 8.50E-7 0.68 0.36 0.92
𝐶𝑌 4.11E-5 0.63 0.16 0.92 5.73E-5 0.65 0.25 0.89

𝐶𝐿 4.09E-3 0.80 0.55 0.91 3.51E-3 0.78 0.67 0.87
𝐶𝐷 1.13E-4 0.70 -0.15 0.84 1.10E-4 0.67 0.29 0.80
𝐶𝑚 2.10E-4 0.50 -0.34 0.80 1.83E-4 0.43 -0.25 0.64

-0.01

0

0.01

Best - set 16

Flight data

Model

Worst - set 12

-0.01

0

0.01

-0.1

-0.05

0

0.05

0

0.5

1

0

0.1

0.2

-0.1

0

0.1

10

Left

Right

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

0 10 20 30 40 50 60 70 80 90

Fig. 9 Model validation plots, presenting the model output of the best- and worst-performing validation
sets.
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5 Discussion
This research has presented a methodology for identifying asymmetry in aircraft stall characteristics,

based on flight data acquired using a Cessna Citation II laboratory aircraft. This section discusses
the results of the presented model, by comparing them with previous models of the aircraft. Several
aerodynamic models have been developed for this Cessna Citation II aircraft. A numerical performance
comparison can be found in Table 7, which presents the validation fit metrics for the proposed model,
the baseline stall model [15], and the nominal envelope model [22]. The last-mentioned model does not
include specific stall-related dynamics and was identified in the normal flight envelope. It is included in
this comparison to evaluate the merit of the current methodologies. The longitudinal model structures
of the proposed model and the baseline stall model are equal but feature different 𝑋-parameter values,
and therefore different aerodynamic parameter estimates. The observations are visualized for an example
maneuver in Figs. 10a and 10b, for the lateral-directional the longitudinal axes, respectively.

The proposed model showcases the best prediction performance for 𝐶𝑙 , 𝐶𝑛, and 𝐶𝑌 . In comparison
to the lateral-directional outputs of the baseline stall model on the ASYM data set, the MSE reduces
with 56%, 52%, and 35% respectively. Refer to Table 7 for all relative differences in MSE and 𝑅2 with
respect to the baseline model. The proposed methodology of estimating flow separation parameters from
the roll moment has proven effective at improving the lateral-directional model fidelity. Conversely, the
fidelity of the longitudinal models 𝐶𝐿 , 𝐶𝐷 , and 𝐶𝑚 worsens with the new 𝑋-parameters, as the previous
model performs greater in terms of MSE and 𝑅2. Moreover, the proposed model performs better than
the nominal envelope model, in every axis.

In order to take advantage of both methodologies, a hybrid approach can be applied. In this case,
two 𝑋-parameter sets can be defined: (𝜃𝑋)𝑠 and (𝜃𝑋)𝑎. The symmetric flow separation variable 𝑋
is computed using (𝜃𝑋)𝑠 and the angle of attack at the C.G., while the asymmetric flow separation
variables 𝑋𝐿 , 𝑋𝑅 are computed using (𝜃𝑋)𝑎 and the local angles of attack. This approach would require
no additional optimizations, as the models were identified for similar flight conditions, and the lift-
based model has shown a good fit on the current validation data set. TUsing the hybrid approach with
(𝜃𝑋)𝑠 = [0.2547, 0.0176, 27.671, 0.2084]⊤ [15] and (𝜃𝑋)𝑎 = [0.0971, 0.5526, 16.865, 0.1730]⊤ (the
estimates of this paper) results in the lateral-directional model fit properties in the first column of Table
7 and the longitudinal properties of the second column. It should be noted that with such a hybrid
approach, the flow separation variables lose their physical meaning since (𝜃𝑋)𝑠 and (𝜃𝑋)𝑎 may no longer
be correlated.

Table 7 Comparison of the proposed model performance with previous Cessna Citation II models. The
model fit properties are computed for the 6 validation sets, including the relative difference with respect to
the baseline model.

Proposed Stall Model Baseline Stall Model [15] Nominal Envelope Model [22]
Model MSE 𝑅2 MSE 𝑅2 MSE 𝑅2

𝐶𝑙 1.41E-6 (-56%) 0.75 (+70%) 3.20E-6 0.44 5.21E-5 (+1530%) -6.24
𝐶𝑛 8.50E-7 (-52%) 0.68 (+196%) 1.80E-6 0.23 5.39E-5 (+2890%) -18.9
𝐶𝑌 5.73E-5 (-35%) 0.65 (+30%) 8.86E-5 0.50 3.57E-3 (+3930%) -15.2

𝐶𝐿 3.51E-3 (+142%) 0.78 (-14%) 1.45E-3 0.91 5.37E-3 (+270%) 0.64
𝐶𝐷 1.10E-4 (+90%) 0.67 (-20%) 5.78E-5 0.84 1.94E-3 (+3250%) -5.02
𝐶𝑚 1.83E-4 (+31%) 0.43 (-31%) 1.39E-4 0.62 1.22E-3 (+780%) -2.84
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Fig. 10 A comparison of the flight data, the proposed stall model output, the baseline stall model [15], and
the nominal envelope model [22].

6 Conclusion
This research set out to improve the lateral-directional model fidelity of the existing Cessna Citation

II dynamic stall model. For this purpose, a flight test data set of stall maneuvers was specifically collected
to induce asymmetric flow separation effects. The accelerated stall maneuvers included dynamic inputs
in two axes, and a subset of maneuvers was approached with a reference sideslip angle. Kirchhoff’s
stall modeling method was modified to include two distinct flow separation variables, each describing
the separation development on the respective wing surface. The parameters describing these variables
were estimated using the roll moment derived from flight data, which is a novel approach. The lateral-
directional model outputs provide a good fit with the validation flight data set, with an average explained
variance of 0.70, and an average improvement of 48% in terms of MSE, compared to the baseline stall
model. Our results indicate that the estimated flow separation parameters are less suitable for longitudinal
stall modeling than for lateral-directional stall modeling. Acknowledging this fact, a hybrid Kirchhoff
method is proposed, which combines two sets of parameters describing symmetric and asymmetric flow
separation separately.

17Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



References
[1] G.H. Bryan. Stability in Aviation: an Introduction to Dynamical Stability as Applied to the Motion of

Aeroplanes. Macmillan and Company, London, 1911.

[2] M. Fouda and H.E. Taha. Effect of Wing Planform on Airplane Stability and Control Authority in Stall.
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022 San DIego, CA, USA, 2022.
DOI: 10.2514/6.2022-1161.

[3] D.H. Nguyen, M.G. Goman, M.H. Lowenberg, and S.A. Neild. Evaluating Unsteady Aerodynamic Ef-
fects in Stall Region for a T-Tail Transport Model. In AIAA Science and Technology Forum and Expo-
sition, AIAA SciTech Forum 2022. American Institute of Aeronautics and Astronautics Inc, AIAA, 2022.
ISBN: 9781624106316. DOI: 10.2514/6.2022-1932.

[4] N.B. Abramov, M.G. Goman, A.N. Khrabrov, and B.I. Soemarwoto. Aerodynamic modeling for poststall
flight simulation of a transport airplane. In Journal of Aircraft, volume 56, pages 1427–1440. American
Institute of Aeronautics and Astronautics Inc., 2019. DOI: 10.2514/1.C034790.

[5] A. A. Lambregts, G. Nesemeier, J. E. Wilborn, and R. L. Newman. Airplane upsets: Old problem, new issues.
In AIAA Modeling and Simulation Technologies Conference and Exhibit Honolulu, Hawaii, USA, number
August, pages 1115–1125, 2008. ISBN: 9781563479458. DOI: 10.2514/6.2008-6867.

[6] A. Da Ronch, D. Vallespin, M. Ghoreyshi, and K. J. Badcock. Evaluation of dynamic derivatives using com-
putational fluid dynamics. AIAA Journal, 50(2):470–484, 2 2012. ISSN: 00011452. DOI: 10.2514/1.J051304.

[7] M.H. Smaili, B.I. Soemarwoto, N.B. Abramov, M.G. Goman, A.N. Khrabrov, E.N. Kolesnikov, and L. Fucke.
Pushing Ahead-SUPRA Airplane Model for Upset Recovery. Technical report, 2017. www.nlr.nl.

[8] M. Goman and A. Khrabrov. State-space representation of aerodynamic characteristics of an aircraft at high
angles of attack. In Astrodynamics Conference Hilton Head Island, SC, USA, pages 759–766. American
Institute of Aeronautics and Astronautics Inc, AIAA, 1992. DOI: 10.2514/6.1992-4651, https://arc.
aiaa.org/doi/10.2514/6.1992-4651.

[9] D. Fischenberg. Identification of an unsteady aerodynamic stall model from flight test data. In 20th
Atmospheric Flight Mechanics Conference Baltimore, MD, USA, pages 138–146. American Institute of
Aeronautics and Astronautics Inc, AIAA, 1995. ISBN: 9780000000002. DOI: 10.2514/6.1995-3438,
https://arc.aiaa.org/doi/10.2514/6.1995-3438.

[10] J.N. Dias. Unsteady and Post-Stall Model Identification Using Dynamic Stall Maneuvers. In AIAA Atmospheric
Flight Mechanics Conference Dallax, TX, USA. American Institute of Aeronautics and Astronautics (AIAA),
6 2015. DOI: 10.2514/6.2015-2705.

[11] D. Fischenberg and R.V. Jategaonkar. Identification of Aircraft Stall Behavior from Flight Test Data. In RTO
SCI Symposium on System Identification for Integrated Aircraft Development and Flight Testing Madrid, Spain,
1998. DOI: https://doi.org/10.2514/6.1996-3441, https://arc.aiaa.org/doi/abs/10.2514/6.1996-
3441.

[12] J. Singh and R. V. Jategaonkar. Flight determination of configurational effects on aircraft stall behavior. In
21st Atmospheric Flight Mechanics Conference San Diego, CA, USA, volume 33, pages 657–665. American
Institute of Aeronautics and Astronautics, 5 1996. DOI: 10.2514/6.1996-3441, http://arc.aiaa.org.

[13] F.H. Lutze, Y. Fan, and G. Stagg. Multiaxis unsteady aerodynamic characteristics of an aircraft. In 24th
Atmospheric Flight Mechanics Conference, pages 56–64. American Institute of Aeronautics and Astronautics
Inc, AIAA, 1999. DOI: 10.2514/6.1999-4011.

[14] Christoph Deiler. Aerodynamic modeling, system identification, and analysis of iced aircraft configurations.
Journal of Aircraft, 55(1):145–161, 2018. DOI: 10.2514/1.C034390.

18Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://doi.org/10.2514/6.2022-1161
https://doi.org/10.2514/6.2022-1932
https://doi.org/10.2514/1.C034790
https://doi.org/10.2514/6.2008-6867
https://doi.org/10.2514/1.J051304
www.nlr.nl
https://doi.org/10.2514/6.1992-4651
https://arc.aiaa.org/doi/10.2514/6.1992-4651
https://arc.aiaa.org/doi/10.2514/6.1992-4651
https://doi.org/10.2514/6.1995-3438
https://arc.aiaa.org/doi/10.2514/6.1995-3438
https://doi.org/10.2514/6.2015-2705
https://doi.org/https://doi.org/10.2514/6.1996-3441
https://arc.aiaa.org/doi/abs/10.2514/6.1996-3441
https://arc.aiaa.org/doi/abs/10.2514/6.1996-3441
https://doi.org/10.2514/6.1996-3441
http://arc.aiaa.org
https://doi.org/10.2514/6.1999-4011
https://doi.org/10.2514/1.C034390


[15] J.B. van Ingen, C.C. de Visser, and D.M. Pool. Stall model identification of a cessna citation II from flight
test data using orthogonal model structure selection. AIAA Scitech 2021 Forum Virtual Event, pages 1–29,
2021. DOI: 10.2514/6.2021-1725.

[16] E.A. Morelli, K. Cunningham, and M.A. Hill. Global Aerodynamic Modeling for Stall/Upset Recovery
Training Using Efficient Piloted Flight Test Techniques. In AIAA Modeling and Simulation Technologies
(MST) Conference Boston, MA, USA, 2013. DOI: https://doi.org/10.2514/6.2013-4976, https://arc.aiaa.
org/doi/10.2514/6.2013-4976.

[17] M. Mulder, B. Lubbers, P.M.T. Zaal, M.M. Van Paassen, and J.A. Mulder. Aerodynamic Hinge Moment
Coefficient Estimation Using Automatic Fly-By-Wire Control Inputs. In AIAA Modeling and Simulation
Technologies Conference - Chicago, Illinois, 2009.

[18] J.A. Grauer. Position Corrections for Airspeed and Flow Angle Measurements on Fixed-Wing Aircraft. NASA
TM, 219795, 2017.

[19] V Klein and E Morelli. Aircraft System Identification: Theory and Practice. AIAA, 2006.

[20] E.A. Morelli. Global nonlinear aerodynamic modeling using multivariate orthogonal functions. Journal of
Aircraft, 32(2):270–277, 5 1995. ISSN: 00218669. DOI: 10.2514/3.46712.

[21] V. Klein, Batterson J.G., and P.C. Murphy. Determination of Airplane Model Structure from Flight Data by
Using Modified Stepwise Regression. NASA Technical Paper, 1916, 10 1981.

[22] M.A. Van Den Hoek, C.C. De Visser, and D.M. Pool. Identification of a Cessna Citation II Model Based on
Flight Test Data. In 4th CEAS Specialist Conference on Guidance, Navigation & Control, 2017.

19Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://doi.org/10.2514/6.2021-1725
https://doi.org/https://doi.org/10.2514/6.2013-4976
https://arc.aiaa.org/doi/10.2514/6.2013-4976
https://arc.aiaa.org/doi/10.2514/6.2013-4976
https://doi.org/10.2514/3.46712

	Introduction
	Flight Experiments and Data
	Research Aircraft
	Experiment Design

	Modeling and System Identification Methodology
	Kirchhoff's Flow Separation Model
	Asymmetric Stall Modeling using the Roll Moment
	Local Angle of Attack Computation
	Identification Problem and Approach
	Step I: Initial Roll Moment Model Selection
	Step II: Nonlinear Parameter Estimation
	Step III: Model Structure Selection
	Step IV: Linear Parameter Estimation


	Results
	Step IIIa: Cl-Model
	Step II: Nonlinear Optimization
	Step IIIb: Remaining Force and Moment Coefficient Models
	Step IV: Aerodynamic Parameter Estimates
	Stall Model Validation

	Discussion
	Conclusion

