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ABSTRACT

In this paper, the problem of identifying the inertia matrix of a satellite when the input data can
be of low observability is tackled. The confidence in the final estimation is of high importance and
is harder to assess when a high observability is not guaranteed on every part of the whole dataset.
This paper proposes a method that enhances the knowledge of the reliability of the identification
process. An extended Kalman filter with variable covariance is implemented and tested with
high-fidelity simulator data.
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Nomenclature

0 = null vector
𝑰𝒅 = identity matrix
diag = a diagonal matrix
𝝎 = (𝜔𝑥 , 𝜔𝑦, 𝜔𝑧) = angular velocity of the satellite in the satellite reference frame
¤𝝎 = ( ¤𝜔𝑥 , ¤𝜔𝑦, ¤𝜔𝑧) = angular acceleration of the satellite in the satellite reference frame
𝑰𝑪𝑩 = inertia matrix of the central body of the satellite
𝑰𝑺𝑷 = inertia matrix of the solar panel of the satellite
𝒉𝒕𝒐𝒕 = total angular momentum of the satellite
𝒉𝑹𝑾 = sum of the reaction wheels angular momentum
¤𝒉𝑹𝑾 = sum of the reaction wheels torques
�̄� = estimated state of the EKF
�̂� = predicted state of the EKF
𝒙 = measured state of the EKF
u = input of the EKF
f = prediction function of the EKF
h = measurement function of the EKF
dt = timestep
P = covariance matrix of the states in the EKF
Q = covariance matrix associated with the prediction equations in the EKF
R = covariance matrix associated with the measurement equations in the EKF
F = f state derivative matrix
H = h state derivative matrix
O = observability matrix
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𝚿 = regressor matrix
M = number of states in the EKF

The vectors are in bold lower case and the matrices in bold upper case.

1 Introduction
For demanding satellite attitude control systems, the identification of the inertia matrix is of high

importance as its knowledge impacts the agility and pointing performance. Indeed, as explained in
Ref. [1, 2], the CNES Microcarb satellite for instance has an attitude control law that directly depends
on the known inertia diagonal terms. Even if the robustness is ensured on a large uncertainty set, the
performance will be impacted if the true value is far from the known inertia value. In addition, the inertia
matrix is always uncertain before flight because on-ground calibrations are difficult, and the inertia values
varies with time because of the fuel consumption so there is a legitimate interest to calibrate the inertia
value when the satellite is in orbit. In this paper, it is considered that the inertia identification is not
calculated on board the satellite but from telemetry data on ground which can limit the available data.

Classical on-ground inertia identification techniques include the least-squares method as described
in Ref. [3]. Refinement has been proposed in Ref. [4] where constraints on the positivity are enforced.
Other types of methods include the extended Kalman filter (EKF) like in Ref. [5, 6] where the attitude and
angular velocity are also estimated. The unscented Kalman filter (UKF) has also proven to be an adequate
candidate for identifying the inertia matrix like in Ref. [2, 7, 8]. In Ref. [9], maximum likelihoodmethods
have been studied for inertia identification using telemetry data. Also, the Instrumental Variable (IV)
method has proven to be efficient and theoretically unbiased contrary to other methods in Ref. [10, 11]
in case of a closed-loop system. Recent improvements have been made to include delay and actuator
misalignment in the identification method in Ref. [12], applied to the Microcarb case.

In order to obtain a precise identification with an acceptable confidence level, estimation methods
need to have inputs of a minimum observability level. However, this requires the satellite to perform
specific maneuvers, imposing operational constraints. There is therefore a need to be able to identify
the inertia matrix on data available –usually attitude maneuvers not designed for this purpose. The issue
faced here is the observability of the data available for the inertia estimation and the confidence obtained
in the identification process. Referred to as experiment design, works of Ref. [13, 14] give interesting
observability criteria that became metrics for our previous work Ref. [2]. In Ref. [15], the experiment
design is carried out thanks to a cubic spline parametrization and cost functions based on the observability
metrics.

In previous related papers Ref. [2, 10–12], the identification methods -consisting in the IV develop-
ment and validation mainly, and of an UKF - have been designed and their performance evaluated on data
with good observability. Then, Ref. [15] tackled the issue of experiment design and Ref. [2] focused
on the observability problem and proposed a methodology to select the most observable data to perform
the identification, with a comparison between various observability metrics. Divisions into small groups
and combinations of the data are proposed and evaluated. This method proved to be efficient but requires
a sharp knowledge of the acceptable optimality criteria values. Also, a specific normalization has to be
performed with respect to the duration of the maneuvers, and many simulations are necessary to ensure
the range of confidence depending on the values of the criteria. Therefore, it requires expert knowledge
to run this functionality, and the confidence in the final estimation value is more uncertain especially for
the UKF, while the IV remained at very good performance levels.

A need was therefore identified for a simpler method that could give good performance and a reliable
confidence level in the output identification especially when the observability is not constant over the
dataset. Furthermore, having another identification method in addition to the IV and UKF is precious as
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it helps validate the identification results. That is why an extended Kalman filter has been designed and
tested, and is the core of this paper. In order to obtain reliable variance on the estimate, the covariance
matrices are varying depending on the observability, which is a similar approach to the one proposed
in Ref. [16]. It is especially interesting since it enables the identification to focus the evaluation of the
interesting data in an autonomous manner, without having to proceed to a thorough evaluation of the data
as in Ref. [2]. In addition, tuning the EKF becomes easier and closer to the physical parameters than
without this observability dependence. This makes the tool easy to use and generic for different missions
and for non-expert engineers, where only a few parameters need to be tuned.

This paper is organized as follow. The first part is devoted to the description of theMicrocarb satellite
test case as it implies specific derivation of the dynamic equations compared to usual implementations.
Then, the extended Kalman filter tested is presented. In the following part, an observability study of the
data used for the study and the subsequent explanation of the tuning of the EKF parameters are shown.
Finally, the identification results are presented. The paper finishes with a conclusion and perspectives.

2 The Microcarb satellite

Fig. 1 Microcarb satellite. Credits CNES

Microcarb is a CNESmission dedicated to the study of the CO2 fluxes in the atmosphere. It intends to
lead the way towards the development of a future operational system able to monitor the CO2 emissions as
described in Ref. [17]. A view of the satellite can be seen in Fig. 1. The attitude and orbit control system
is based on the CNES AOCS Myriad series of microsatellites described in Ref. [18] with specificities
and details provided in Ref. [19]. The identification of the inertia matrix is necessary for the performance
of the mission. The sensor in this normal mode is a star tracker. A Kalman filter estimates in real-time
the angular velocity and the attitude of the satellite. The reaction wheels ensure the guidance reference
tracking, and magnetotorquers counter the external disturbances coming from the space environment
and avoid reaction wheel saturation. Many guidance modes exist that require agility on the satellite.
Therefore, there can be a variety of excitations along the principal axes of the satellite. Another specific
point on Microcarb is that there is a rotating solar panel which inertia is well-known but not negligible
compared to the inertia of the main body. The inertia of the solar panel is much less uncertain as it can
be measured on-ground contrary to the platform inertia. The orientation of the solar panel with respect
to the central body of the satellite varies but is known at each time step. In usual identification methods,
only the whole inertia matrix is calculated. An update of the equations used in the identification methods
has been carried out in Ref. [2]. The total inertia matrix is divided into two terms and is expressed at the
center of gravity of the satellite:

1) the inertia matrix of the solar panel assumed as an input and known;
2) the inertia of the central body that is constant and is to be estimated.
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To do the identification simply, it is necessary to assume that the center of gravity is at a constant
location on the satellite, and this approximation has been verified as acceptable. A high-fidelity simulator
of the Microcarb dynamic behavior in closed-loop, including equipment high-fidelity representation
with realistic noises and non-linearity behaviors, has been developed and validated at CNES. For our
identification method, the output available by our simulator which are representative of the flight data
available on-ground consists of the raw attitude from the star tracker, the estimated attitude and angular
velocity of the satellite, the commanded torques and angular momentum of the reaction wheels and the
orientation of the solar panel. The simulations are carried out with typical noises and uncertainties.

3 The extended Kalman filter implemented
The justification of the choice of the equations and simplifications are given in subsection 3.3.

3.1 Prediction equations
In this paper, a classical extended Kalman filter has been implemented with variable covariance

matrices in discrete time. The estimation states �̂� chosen are the total angular momentum of the satellite
𝒉𝒕𝒐𝒕 and the six inertia parameters corresponding to the three diagonal terms 𝑰𝒙𝒙 ,𝑰𝒚𝒚 and 𝑰𝒛𝒛 and three
off-diagonal terms 𝑰𝒙𝒚,𝑰𝒙𝒛 and 𝑰𝒚𝒛 of the central body inertia matrix. The choice of the total angular
momentum as a state is motivated by the fact that the state transition matrix of the prediction equations
is simpler to assess without impacting the quality of the results (see section 3.3). Using the classical
dynamic equations of motion in rotation in the satellite reference frame, the prediction equations (1) are
given at a time step 𝑘 + 1. The input u is therefore composed of 𝝎, ¤𝝎, 𝒉𝑹𝑾 and ¤𝒉𝑹𝑾 .

�̄�(𝑘+1) = f(�̂�(𝑘), u) =


�̄�(𝑘 + 1) =�̂�𝒕𝒐𝒕 (𝑘)+

+ dt
(
(𝑰𝑪𝑩 (𝑘) + 𝑰𝑺𝑷) ¤𝝎 + ¤𝒉𝑹𝑾 +

(
(𝑰𝑪𝑩 (𝑘) + 𝑰𝑺𝑷)𝝎 + 𝒉𝑹𝑾

)
× 𝝎

)
𝑰𝑪𝑩 (𝑘 + 1) = 𝑰𝑪𝑩 (𝑘)

(1)

The state transition matrix which is the partial differentiation of equation (1) with respect to the
states is given in equation (2). The cross-product of equation (1) is neglected since its values are orders
of magnitudes lower than the other terms.

F =
𝜕f
𝜕�̂�

=



1 0 0 dt ¤𝜔𝑥 0 0 dt ¤𝜔𝑦 dt ¤𝜔𝑧 0
0 1 0 0 dt ¤𝜔𝑦 0 dt ¤𝜔𝑥 0 dt ¤𝜔𝑧

... 0 1 0 0 dt ¤𝜔𝑧 0 dt ¤𝜔𝑥 dt ¤𝜔𝑦

0 0 1 0 0 0 0 0
. . .

0 . . . 0 1


(2)

3.2 Measurement equations
For the measurement equations, it is simply the equation (3).

𝒉𝒕𝒐𝒕 = 0 (3)

The differentiation of equation (3) gives the matrix H expressed in equation (4).
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𝒉𝒕𝒐𝒕 =
𝜕h
𝜕�̂�

=


1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0

 (4)

3.3 Justification of the approximations
As can be deduced from the choice of the equations, the external torques are neglected as well as

the magnetotorquer action and this is because the data that will confer observability and more precise
identification results is located in agile maneuvers where the external torques are negligible. In order
to ensure a precise estimation, this study proposes to vary the diagonal terms of Q and in particular the
terms related to the prediction of the total angular momentum. When the observability is high enough,
this covariance becomes very small so that the innovations calculated in the Kalman filter are associated
with the inertia updates and not the total angular momentum which remains constant enough at the
timescale of an attitude maneuver. Indeed, if there is a discrepancy in the estimation process during agile
maneuvers, the inertia should be updated and not the total angular momentum from a physical point of
view, as there is no other major contributor of external disturbance during the maneuvers for this type
of satellite. Like this, the convergence of the inertia states of the EKF can be very fast when there is
enough observability. The covariance matrix of the estimates follows the observability trend. Indeed, as
seen in Ref. [2], for the UKF, when maneuvers are followed by guidance modes where there is no agility,
the disturbances, noise and other non-linear effects that cannot be modeled through the identification
method become predominant and impact the identification performance since the algorithm may correct
the inertia to match the data during the calm period. From an observability point of view, having the
maneuvers plus the calm guidance period will not decrease the observability level of the whole dataset
since the necessary information is present so data that does not confer observability and can decrease
the precision of the estimation is not detectable. This is why this approach of modifying the covariance
matrix is chosen, to help the algorithm correct the right parameters depending on the satellite movement.

4 EKF observability and tuning

4.1 Observability analysis
For this paper, a set of maneuvers representing a typical day of the Microcarb mission is used. The

set of simulated maneuvers is shown below in Fig. 2.

In this typical day, it can be noticed that the Y-axis of the satellite is much more solicited than the
other axes and especially more than the X-axis. On the X-axis, there is only one major maneuver at around
31 000s. For this paper, the study is considered between 300 seconds and 60 000s including therefore
the maneuver soliciting the satellite X-axis. From Ref. [20], the uniform observability condition of the
EKF can be checked by ensuring bounds on the observability matrix which is given with the formula in
equation (5), by extension of the linear case to the non-linear system studied in the EKF.

O(𝑘 − 𝑀, 𝑘) =


H(𝑘 − 𝑀)

H(𝑘 − 𝑀 + 1)F(𝑘 − 𝑀)
...

H(𝑘)F(𝑘 − 1) . . . F(𝑘 − 𝑀)


(5)
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Fig. 2 Typical day of Microcarb – dataset used for this analysis

The lowest singular value of O(𝑘 − 𝑀, 𝑘) is then calculated. Indeed, even if the rank of the matrix
shows that the EKF is uniformly stable, it could be due to the noise that prevents the singular value from
being exactly zero. On this dataset, the observed minimal value of the observability matrix is given in
Fig. 3 along with the angular velocity profile associated.

The observability condition is always verified since the minimal singular value is of 6e-9 (ensuring
the condition of Ref. [20]) but the singular values are much higher when maneuvers take place, which is
logical given that the F matrix depends mainly on the angular accelerations. Then, a local observability
measure is chosen for tuning the varying covariance, inspired by the work of Ref. [13, 14], and the
evaluation of Ref. [2] which considered the E-optimality criterion as the most efficient metrics. At each
time step, the regressor matrix 𝚿 is calculated like defined in equation (6).

𝚿 =


¤𝜔𝑥 0 0 ¤𝜔𝑦 ¤𝜔𝑧 0
0 ¤𝜔𝑦 0 ¤𝜔𝑥 0 ¤𝜔𝑧

0 0 ¤𝜔𝑧 0 ¤𝜔𝑥 ¤𝜔𝑦

 (6)

The vector 𝝃 is deduced with equation (7). It represents the local observability for each of the three
axes of the satellite.

𝝃 =


𝚿(:, 1)𝚿(:, 1)𝑇

𝚿(:, 2)𝚿(:, 2)𝑇

𝚿(:, 3)𝚿(:, 3)𝑇

 (7)
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Fig. 3 Minimal singular value of the observability matrix of the EKF (upper subfigure). Angular velocity
along each satellite axis (lower subfigure)

For each axis, if the obtained value is higher than a defined threshold, then the associated covariance
term is replaced by a lower value in the covariance matrixQ associated with the total angular momentum
equations. On the presented dataset, Fig. 4 shows the values obtained with these calculations.

These values are consistent with the angular velocities. A threshold of 𝜏 = 0.3.10−8 is chosen given
the results of Fig. 4 to keep an acceptable observability level and filter noisy data.

4.2 Tuning of the EKF with variable covariance
The covariance matrix Q is given in equation (8).

Q =

[
𝑸1 03𝒙6

06𝒙3 𝑸2

]
=



𝛼1 0 0 0 0 0 0 0 0
0 𝛼2 0 0 0 0 0 0 0
0 0 𝛼3 0 0 0 0 0 0
0 0 0 10−6 0 0 0 0 0
0 0 0 0 10−6 0 0 0 0
0 0 0 0 0 10−6 0 0 0
0 0 0 0 0 0 10−7 0 0
0 0 0 0 0 0 0 10−7 0
0 0 0 0 0 0 0 0 10−7



(8)
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Fig. 4 Observability along time with respect to each axis (upper subfigures). Angular velocity along each
satellite axis (lower subfigures)

The value of 𝛼𝑖 is given in equation (9).

𝛼𝑖 =

{
10−4, 𝝃 (𝑖) ≤ 𝜏

10−9, 𝝃 (𝑖) > 𝜏
, 𝑖 = 1 . . . 3 (9)

The first 𝛼 value has been calculating by taking into account the fact that external torques are
neglected and the modelling during calm periods is less representative. For the second value, there is a
need to make a significant gap and ensure the ratio with the terms of 𝑸2 is high enough. It is the ratio
with 𝑸1 that is of importance for the first three diagonal terms of 𝑸2. These terms are located between
the two possible 𝛼 values. The covariance of the off-diagonal terms of the inertia matrix are given a lower
value since these inertia values are known to be small, and thus should remain small in the identification
output. For the measurement covariance matrix, R = 10−4𝑰𝒅 for the same reason as the first possible
value of 𝛼: the external torques neglected. To conclude, tuning this EKF is rather simple because it takes
into account the physical knowledge of the equations in the case where there is no observability. When
there is, the ratio between 𝑸1 and 𝑸2 values becomes more important and is to be tuned.

4.3 Tuning of the EKF with fixed covariance
Tuning the variable-covariance EKF has proven to be simpler than the fixed-covariance which

required trial and errors to be convergent. As mentioned in Ref. [2], to obtain satisfactory results, it was
necessary to choose covariance values far lower than the physical noises of the system for 𝑸1 especially:
𝑸1 = 10−9𝑰𝒅, 𝑸2 = diag(10−11, 10−11, 10−11, 10−12, 10−12, 10−12), R = 10−5𝑰𝒅.
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4.4 Other parameters for the identification
For the simulations presented in the next part, the initial state of the EKF is:

�̂�0 = (0, 0, 0, 12.5, 23.7, 18.2,−1,−1,−1)which represents 5%error in the diagonal terms of the iner-
tia matrix compared to the true value. These values are coherent with on-ground estimates and uncertain-

ties on the inertia matrix before flight. The initial covariance of the state is: 𝑷0 =


𝑰𝒅 03𝒙3 03𝒙3

03𝒙3 𝑰𝒅 03𝒙3

03𝒙3 03𝒙3 0.01𝑰𝒅


5 Identification results

5.1 Results with the fixed-covariance EKF
The classical EKF is first implemented and the final values of the identification for this case is given

in Tab. 1.

Table 1 Identification results for the fixed-covariance EKF case

True value (𝑘𝑔.𝑚2) Estimated value (𝑘𝑔.𝑚2) Relative errors (%)
𝐼𝑥𝑥 13.907 13.435 3.394
𝐼𝑦𝑦 21.625 21.469 0.724
𝐼𝑧𝑧 20.220 19.856 1.801
𝐼𝑥𝑦 -0.821 -0.611 25.574
𝐼𝑥𝑧 -0.847 -0.605 28.670
𝐼𝑥𝑦 -0.331 -0.261 21.346

The final relative error is below 5% for the EKF with the fixed-covariance case for the diagonal
terms which are the most important parts. The off-diagonal terms remain small and acceptable even if
the relative errors are high. The estimation results with respect to time are given in Fig. 5, 6 and 7. It can
be noticed that the identification improves during the maneuvers, especially for the X-axis where only
one maneuver is of importance like noticed in Fig. 2.

Fig. 5 Result of the identification with respect to time of the EKF with fixed-covariance for the X-axis
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Fig. 6 Result of the identification with respect to time of the EKF with fixed-covariance for the Y-axis

Fig. 7 Result of the identification with respect to time of the EKF with fixed-covariance for the Z-axis

The final results are precise, however the confidence level corresponding to the 3-sigma values issued
from the covariance matrix of the estimated states does not include the true value so is not correct and
cannot be trusted. That is why a varying covariance has been implemented.

5.2 Results with the varying-covariance EKF
The final values of the identification with a varying-covariance EKF are given in Tab. 2. The final

Table 2 Identification results for the EKF with the varying-covariance case

True value (𝑘𝑔.𝑚2) Estimated value (𝑘𝑔.𝑚2) Relative errors (%)
𝐼𝑥𝑥 13.907 13.630 1.990
𝐼𝑦𝑦 21.625 21.357 1.241
𝐼𝑧𝑧 20.220 20.356 0.673
𝐼𝑥𝑦 -0.821 -0.703 14.379
𝐼𝑥𝑧 -0.847 -0.869 2.535
𝐼𝑥𝑦 -0.331 -0.531 60.272

values are very good with very small errors for the diagonal terms and the off-diagonal ones remain in
very acceptable values. However, the main advantage of this method can be seen in Fig. 8, 9 and 10.
In this case, the confidence levels follow better the maneuvers and the true value is now located inside
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the confidence level. The interval of confidence increases during the phases of low motion. The values
given in Tab. 1 and 2 are the final estimates, however it would be interesting to select as output the
estimates when the covariance is the lowest, for instance in Fig. 8 in the X-axis, it would be preferable to
select the identified value when the covariance is at lowest. The identification results for the covariance
vary more rapidly than with the fixed-covariance case when there are maneuvers so when observability
is higher, which is the expected behavior. An advantage of this method is therefore to simply launch
the identification on the data without doing an observability analysis beforehand. The method takes
into account the current observability of the data autonomously. In addition, the covariance level shows
directly if the estimate is reliable or not, and for instance, if only the 25 000 seconds of data were available,
then the user would know that the 𝐼𝑥𝑥 value would not be reliable enough, which was less obvious in
Fig. 5.

Fig. 8 Result of the identification with respect to time of the EKF with varying-covariance for the X-axis

Fig. 9 Result of the identification with respect to time of the EKF with varying-covariance for the Y-axis

6 Conclusion
In this paper, the identification of the inertia matrix problem with observability constraints is first

presented and justifies the development of a method that can provide reliable information about the
variance of the estimate with respect to time. Indeed, for operational purposes, it is of high importance
to be able to assess the reliability of the output, especially with data that can be of mixed-level of
observability. Therefore, an extended Kalman filter with variable covariance has been implemented. The
values of the estimates are close to the true ones and compared to the EKF with fixed-covariance, the
confidence level is more representative of the true performance of the identified estimates. A weighted
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Fig. 10 Result of the identification with respect to time of the EKF with varying-covariance for the Z-axis

IV method has also been implemented, however as long as the observability is of a minimal value, the
classical IV method performs very well, especially since it has been tuned precisely for the Microcarb
mission. For other missions where the filters would not be perfectly tuned, it could be of interest to
implement this type of method where including the observability helps the algorithm to focus on the
interesting data. The next step would be to test the methods on telemetry data to compare the results of
the estimation for different datasets.
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