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ABSTRACT 

MEMS ((micro-electro-mechanical system) based sensing technologies have garnered interest in replacing 

the traditionally heavy and expensive ring laser gyros and servo accelerometers used in inertial 

measurement unit (IMU) for obtaining position/velocity and attitude estimates. A strapdown MEMS bases 

IMU consists of tri-axial accelerometers (ACCs) and tri-axial angular rate sensors (ARSs) often aided with 

GNSS measurements. MEMS based sensors suffer from stochastic errors such as bias instability which needs 

to be considered during the estimation of the navigation data. This paper presents a dual stage cascaded 

extended Kalman filtering (EKF) framework for fusing the ACC and ARS measurement with the GNSS 

measurements. Additionally, vehicle true airspeed data is used for the estimation of air data such as angle 

of attack and sideslip. The performance of the EKF based navigation algorithm is tested using the Saab 340B 

twin engine turboprop aircraft operated by the Cranfield University’s National Flying Laboratory Centre 

(NFLC). In-flight dynamic maneuvers were performed following the DO-334 - Minimum Operational 

Performance Standards (MOPS) for Strapdown Attitude and Heading Reference Systems (AHRS) for 

collecting data to assess the performance of the navigation algorithm. From the maneuvers performed, the 

assessment shows the performance of the attitude estimation meets the requirements in terms of ensuring 

accuracy.  

Keywords: nonlinear navigation; extended Kalman filter; INS/GNSS sensor fusion, MEMS sensors, DO-334 

standard; air data estimation 

Nomenclature 

𝑎𝑥𝑚
, 𝑎𝑦𝑚

, 𝑎𝑧𝑚
  = Body acceleration in x, y, and z axis measured by the sensor (g) 

𝑎𝑒𝑏𝑥, 𝑎𝑒𝑏𝑦, 𝑎𝑒𝑏𝑧
  =  External linear body acceleration in in x, y, and z axis. (m/s2)  

𝑏𝑔𝑥
, 𝑏𝑔𝑦

, 𝑏𝑔𝑧
  = Angular rate sensor bias in x, y, and z-axis (rad/s) 

𝑏𝑎𝑥
, 𝑏𝑎𝑦

, 𝑏𝑎𝑧
  = Accelerometer sensor bias in x, y, and z-axis (g) 

𝑢, 𝑣, 𝑤   = Velocity in the body-frame (m/s) 

𝑃𝑁 , 𝑃𝐸 , 𝑃𝐷   = Position in North, East and Down (m) 

𝑉𝑁, 𝑉𝐸 , 𝑉𝐷   = Velocity in North, East and Down (m/s) 
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𝑉𝑜   = True air speed (m/s) 

𝜔𝑥𝑚
, 𝜔𝑦𝑚

, 𝜔𝑧𝑚
 = Body angular rate in x, y, and z axis measured by the sensor (rad/s) 

Φ, 𝜃, 𝜓   = Euler angles (roll, pitch, heading) (rad) 

𝒙, 𝒖, 𝒛   = States, input and measurement of the extended Kalman filter 

^   = Denotes the prediction step of the Kalman filter 

1 Introduction 

Through the development of MEMS ((micro-electro-mechanical system) based sensing technologies 

there is a renewed interest in replacing the traditionally heavy and expensive ring laser gyros and servo 

accelerometers used in inertial measurement unit (IMU) with MEMS based IMUs. A strapdown inertial 

system consisting of tri-axial accelerometers (ACCs) and tri-axial angular rate sensors (ARSs) is 

commonly used for attitude (roll, pitch, yaw angle), as well as for position and velocity evaluations (the 

so-called PVA estimates) [1]. MEMS-based inertial sensors suffer from deterministic errors and 

stochastic errors. Deterministic errors such as scale factor, misalignment and nonorthogonality can be 

corrected using simple laboratory experiments such as those using a “Rotational Tilt Platform” [2]. 

Stochastic errors such as bias instability need to be considered in the real time data processing which 

presents a considerable challenge in the navigation data estimation processes [3], [4], [5]. 

The attitude and heading reference system (AHRS) is formed using estimated attitude by integrating 

angular rates (ARS measurements), primarily aided by the ACC measurements. Heading estimation in 

the AHRS is traditionally aided by magnetometers. However, magnetometers are sensitive to hard and 

soft iron effects [1]. With the availability of the Global Navigation Satellite System (GNSS) 

measurements the heading angle can be obtained using the GNSS measurements. The position and 

velocity (PV) estimates can be obtained by integrating the ACC measurements, the so-called dead-

reckoning process. Due to the stochastic errors in MEMS-based sensors, dead reckoning cause unbounded 

error growth, which needs to be corrected using the position aids obtained from Global Navigation 

Satellite System (GNSS) measurements [6]. The aiding of IMUs measurements using GNSS to obtain 

PVA estimates is called INS/GNSS navigation solutions.  

There have been several navigation algorithm proposed for fusing INS/GNSS in order to obtain PVA 

estimates, such as temporally interconnected observers [7], complementary filters or Kalman filters (KF)  

and extended Kalman Filter (EKF) with various architectures [4], [8], [9], nonlinear observers (NLO) 

[10], unscented Kalman filters (UKF) and particle filters (PF) [11] and eXogenous Kalman Filter [12]. 

The authors previously suggested a navigation algorithm framework for PVA estimates using a dual 

structured EKF for PVA estimation where the attitude estimation filter is cascaded with a PV estimation 

filter [6]. This cascaded navigation algorithm avoids the need to propagate additional states, resulting in 

the covariance propagation becoming computationally efficient [6]. The proposed navigations extend the 

framework to include the air data estimates such as angle of attack (AoA) (𝛼) and angle of sideslip (AoS) 

(𝛽). Even if the aircraft is equipped with an AoA and AoS sensor, it is essential to have an estimator for 

𝛼 and 𝛽, since the AoA and AoS sensors are known to be prone to error and can provide erroneous 

readings. For example, feeding erroneous AoA measurements contributed to several air accidents [13], 

[14]. A details survey on the measurements and estimation of AoA and AoS can be found in Ref [15], 

[16], [17].  

The purpose of this article is to develop a navigation algorithm using nonlinear estimation technique, 

specifically extended Kalman Filter whose performance is assessed against the dynamic maneuvers for 
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longitudinal and lateral-directional motion such as pitch up/down, short-period, long-period, steady-

sideslip, sharp turn, etc. which are required in DO-334 standards [18].  

The proposed navigation algorithm is tested using the Cranfield University Saab 340B twin-engine 

turbo aircraft (see Fig. 1a), called Flying Laboratory operated by the National Flying Laboratory Centre 

(NFLC). The flying platform offers a unique facility to validate the performance of such estimation 

framework. The aircraft has gone through a series of modifications to include various teaching, research 

and experimental equipment including a MEMS based IMU sensors called Ekinox-D: Dual GPS INS 

[19], GNSS receiver and a set of AoA and AoS sensors (see Fig. 1b).  

  

(a) Cranfield’s Saab 340B National Flying 

Laboratory 

(b) Installed AoA and AoS sensors. 

Fig. 1. Saab 340B operated by the NFLC. 

The performance of the navigation algorithm using the MEMS-based IMU and GNSS measurements 

is compared against the Saab 340B onboard analogue Flight Data Acquisition System which uses 

Rockwell Collins AHRS 3000 IMU unit [20]. Additionally, the performance of the air data estimates is 

compared with the 𝛼 and 𝛽 measurements.  

The rest of the paper is organized as follows: Section 2 outlines the principles of proposed dual stage 

navigation algorithm using the extended Kalman filter. Section 3 presents the data acquisition system, 

flight test platform and experimental setup. Section 4 presents details analysis of the results and 

discussion. Finally concluding the paper with final remarks.  

2 Principles of the Navigation Algorithm 

A loosely coupled navigation algorithm using multi-stage EKF architecture is proposed. The overall 

estimation process is divided into two main sections: an Attitude estimator and a Position/Velocity with 

air data estimator. By using cascaded Kalman filtering, this method avoids the need to propagate 

additional states making the algorithm computationally efficient. Keeping the number of states in the 

estimator to a minimum, the tuning of the EKF becomes less complex. Additionally, the modular structure 

of the proposed framework makes the addition of extra aiding sources to the Attitude estimator and/or the 

PV estimator straight forward keeping the core framework the same.   

The novelty in the proposed algorithms lies in the inclusion of air data estimates in addition to the 

PVA estimates. The overall estimation process is shown in a block scheme in Fig. 2. In the following 

sections, each part of the estimator structure is introduced in detail. 
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Fig. 2. IMU/GNSS loosely coupled integration scheme using a dual structure EKF estimator. 

The traditional axis system is used for developing the navigation algorithm where the x-axis points 

towards the nose of the aircraft, the y-axis points towards the starboard and z-axis points downwards.  

2.1 EKF Based Attitude Estimator 

The aircraft/vehicle attitude is represented in this case by Euler angles since we assume singularity 

free calculations. This assumption comes from the operation conditions and limits of most commercial 

aircraft. The state vector 𝒙 and input 𝒖 are defined by  

 
𝒙 = [𝜙, 𝜃, 𝜓, 𝑏𝑔𝑥

, 𝑏𝑔𝑦
, 𝑏𝑔𝑧

]
𝑇

, 𝒖 = [ 𝜔𝑥𝑚
, 𝜔𝑦𝑚

, 𝜔𝑧𝑚
]
𝑇
 

(1) 

and 𝒙  is updated using the input 𝒖 along with the following the EKF model    

 𝒙̇ = 𝒇

(

 
 
 
 [

1 sin𝜙 tan𝜃 cos𝜙 tan𝜃
0 cos𝜙 −sin𝜙
0 sin𝜙 sec𝜃 cos𝜙 sec𝜃

]([

𝜔𝑥𝑚

𝜔𝑦𝑚

𝜔𝑧𝑚

] − [

𝑏𝑔𝑥

𝑏𝑔𝑦

𝑏𝑔𝑧

])

0
0
0 )

 
 
 
 

 (2) 

It is assumed that the bias of the ARS sensors varies very slowly and the rate of change of ARS biases 

are approximated as zero.  

The expected measurements prediction vector, 𝒛̂  given by 
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𝒛̂ = [

sin𝜃
−cos𝜃 sin𝜙
−cos𝜙 sin𝜃

𝜓

 ] (3) 

is related to the ACC readings when the ACC measurement is not affected by external acceleration and 

is subject to only gravity, which means steady state, equilibrium motion. The measurement, 𝒛 is given 

by: 

 
𝒛 = [

𝑎𝑥𝑚

𝑎𝑦𝑚

𝑎𝑧𝑚

𝜓𝐺𝑁𝑆𝑆

] (4) 

The heading (𝜓) is evaluated based on the GNSS velocities as: 

 𝜓𝐺𝑁𝑆𝑆 = atan2 (𝑉𝐺𝑁𝑆𝑆𝐸𝑎𝑠𝑡
, 𝑉𝐺𝑁𝑆𝑆𝑁𝑜𝑟𝑡ℎ

 ) (5) 

and is used for aiding when following condition is fulfilled 

 𝑛𝑜𝑟𝑚𝑉𝑒𝑙𝐺𝑁𝑆𝑆
= √ 𝑉𝐺𝑁𝑆𝑆𝑁𝑜𝑟𝑡ℎ

2 + 𝑉𝐺𝑁𝑆𝑆𝐸𝑎𝑠𝑡
2 + 𝑉𝐺𝑁𝑆𝑆𝐷𝑜𝑤𝑛

2 > 5 𝑚/𝑠 (6) 

We note that usage of GNSS velocities provides the course (track) angle, which is equal to the heading 

angle only when the sideslip angle is zero. This assumption leads to a reasonable approximation when 

winds and turns are not too large. If the 𝑛𝑜𝑟𝑚𝑉𝑒𝑙𝐺𝑁𝑆𝑆
 is less than 5 m/s (approx. 10kts), then the heading 

estimation based on GNSS velocity is noisy. If the ACC and ARS readings are affected by vibration 

arising from the vehicle structures, an adaptive pre-processing can be applied before the data are used 

inside EKF, for details on adaptive filtering for reducing vibration impact please see Ref [3]. 

As shown in the block diagram in Fig. 2, the ARS bias is fed back to the ARS input. The detection of 

dynamics is important because if the ACC measurements are used to correct the attitude estimated when 

the aircraft was not in a steady-state condition then the attitudes will be wrongly corrected. The ACC 

data are only used as measurement to correct the attitude whenever there is no significant dynamics 

detected in the vehicle motion. 

2.2 Dynamic Detection 

For the ACC based aiding in an attitude estimator it is important to recognize conditions under which 

ACC readings are affected by only gravity, which means no dynamic change in the motion. For this 

purpose, we have designed a dynamics detector formed by three parameters which are monitored 

simultaneously from data history. In our case it was set to a history window of 2 seconds. These 

monitoring parameters are: 

1. The norm of the ACC readings 

 
𝐴𝐶𝐶𝑛𝑜𝑟𝑚 = √𝑎𝑥𝑚

2 + 𝑎𝑦𝑚
2 + 𝑎𝑧𝑚

2  (7) 

2. The norm of the ARS data 

 
𝐴𝑅𝑆𝑛𝑜𝑟𝑚 = √(𝜔xm

− 𝑏𝑔𝑥
)
2
+ (𝜔ym

− 𝑏𝑔𝑦
)
2
+ (𝜔zm

− 𝑏𝑔𝑧
)
2
 (8) 

3. The rate of heading change  
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𝜓̇ = (
(𝜔𝑦𝑚

− 𝑏𝑔𝑦
) sin𝜙

cos𝜃
+

(𝜔𝑧𝑚
− 𝑏𝑔𝑧

) cos𝜙

cos𝜃
) (9) 

In an ideal case only 𝐴𝐶𝐶𝑛𝑜𝑟𝑚 can be monitored for detecting dynamics; and when it equals to 1g, 

no dynamic conditions could be considered. However, under real operating conditions under harsh 

environment bounds/thresholds should be set to allow possibility for variation along with monitoring the 

parameters from (7)-(9). We have thus considered the following conditions and no dynamic motion is 

assumed to be present when all three conditions are met simultaneously. 

Condition 1: |𝐴𝐶𝐶𝑛𝑜𝑟𝑚 − 1𝑔| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝐶𝐶 . 

Condition 2: |𝐺𝑌𝑅𝑛𝑜𝑟𝑚| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐺𝑌𝑅 . 

Condition 3: |𝜓̇| < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝑅𝑆. 

The threshold values are chosen depending on a vehicle type and/or adaptively modified according 

to operational conditions. The three parameters from (7)-(9) are monitored for 2 seconds from the history 

of the estimation, when all conditions 1-3 are met throughout 2 second window, it is considered that 

ACC output is affected just by gravity and thus ACC based attitude estimation is used for compensating 

the attitude obtained primarily by free integration of ARS data.  

2.3 EKF Based Position/Velocity and Air Data Estimator  

The estimator estimates position in the NED frame (𝑃𝑁 , 𝑃𝐸 , 𝐷𝐷), velocity in the body-frame (𝑢, 𝑣, 𝑤) 

and ACC bias (𝑏𝑎𝑥, 𝑏𝑎𝑦, 𝑏𝑎𝑧) in the body frame while using GNSS position and velocity as aiding 

measurements in addition to the true airspeed (𝑉𝑜) and 𝛼 and 𝛽 measured by the aircraft’s pitot-static 

tube and AoA and AoS probes. The state vector, 𝒙  i and input 𝒖 iare 

 𝒙 = [𝑃𝑁 , 𝑃𝐸 , 𝑃𝐷 , 𝑢, 𝑣, 𝑤, 𝑏𝑎𝑥
, 𝑏𝑎𝑦

, 𝑏𝑎𝑧
, 𝛼, 𝛽]

𝑇
, 𝒖 = [ 𝑎𝑒𝑏𝑥 , 𝑎𝑒𝑏𝑦, 𝑎𝑒𝑏𝑧, 𝑪𝒃

𝒏]
𝑇
 (10) 

and  𝒙 is updated using 𝒖 and the  following the EKF model 

 𝒙̇ = 𝒇

(

 
 
 
 
 
 
 
 
 
 
 
 

𝑪𝒃
𝒏 [

𝑢
𝑣
𝑤

]

[

𝑎𝑒𝑏𝑥

𝑎𝑒𝑏𝑦

𝑎𝑒𝑏𝑧

] − [

𝑏𝑎𝑥

𝑏𝑎𝑦

𝑏𝑎𝑧

]

0
0
0

𝑢(𝑎𝑒𝑏𝑧 − 𝑏𝑎𝑧
) − 𝑤(𝑎𝑒𝑏𝑥 − 𝑏𝑎𝑥

)

𝑢2 + 𝑤2

𝑢 (𝑎𝑒𝑏𝑦 − 𝑏𝑎𝑦
) − 𝑣(𝑎𝑒𝑏𝑥 − 𝑏𝑎𝑥

)

𝑢2 + 𝑣2
 )

 
 
 
 
 
 
 
 
 
 
 
 

 (11) 

Here 𝑪𝒃
𝒏 is the direction cosine matrix transforming the body-frame to NED navigation frame. The inputs 

𝑎𝑒𝑏𝑥 , 𝑎𝑒𝑏𝑦 , 𝑎𝑒𝑏𝑧
 in eq (10) are calculated as: 

 [

𝑎𝑒𝑏𝑥

𝑎𝑒𝑏𝑦

𝑎𝑒𝑏𝑧

] = [

𝑎𝑥𝑚

𝑎𝑦𝑚

𝑎𝑧𝑚

] 𝑔 − 𝑪𝒃
𝒏 [

0
0
1
] + 𝑨𝑪𝑭 (12) 
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The 𝑨𝑪𝑭 is the anti-centrifugal force experienced by the vehicle and is calculated as: 

 

𝑨𝑪𝑭 =

(

 
 

𝑣(𝜔𝑧𝑚
− 𝑏𝑔𝑧

) − 𝑤 (𝜔𝑦𝑚
− 𝑏𝑔𝑦

)

−𝑢(𝜔𝑧𝑚
− 𝑏𝑔𝑧

) + 𝑤(𝜔𝑥𝑚
− 𝑏𝑔𝑥

)

𝑢 (𝜔𝑦𝑚
− 𝑏𝑔𝑦

) − 𝑣(𝜔𝑥𝑚
− 𝑏𝑔𝑚

)
)

 
 

 (13) 

The expected measurements prediction, 𝒛̂ and measurement, 𝒛 are given by: 

 

𝒛̂ =

[
 
 
 
 
 
 
 
 

𝑃𝑁

𝑃𝐸

𝑃𝐷

𝑪𝒃
𝒏 [

𝑢
𝑣
𝑤

]

√𝑢2 + 𝑣2 + 𝑤2

𝛼
𝛽 ]

 
 
 
 
 
 
 
 

;  𝐳 =

[
 
 
 
 
 
 
 
 
𝑃𝑁

𝑃𝐸

𝑃𝐷

𝑉𝑁

𝑉𝐸

𝑉𝐷

𝑉𝑜

𝛼
𝛽 ]

 
 
 
 
 
 
 
 

 (14) 

As shown in the estimation block diagram in Fig. 2, it is important to validate GNSS data before they 

are processed. Any bad sample from the GNSS data may cause an inaccurate estimation of the state 

vector. The details of the method on GNSS data validation can be found in Ref [6]. 

3 Data Acquisition, Experimental Setup and Flight Testing 

This section provides an overview of the data acquisition unit, flight test platform and experimental 

setup.  

3.1 Experimental Platform 

The flight experiment is conducted using the Cranfield University’s National Flying Laboratory - G-

NFLB Saab 340B aircraft, shown in Fig. 1. The Saab 340B is a turboprop with a maximum take-off 

weight of 13155 kg, powered by two GE CT7-9B engines (maximum continuous rating 1750 SHP).  It 

has been converted into a laboratory for in-flight experimental work by the installation of an 

instrumentation system and seat-back displays. The cabin layout in G-NFLB is configured to 33 seats, 

although the normal maximum seating capacity of 24 is used. The on-board instrumentation system 

consists of signal conditioning units, power supplies, an Inertial Management Unit (IMU) and a data 

acquisition system. 

3.2 Data Acquisition Unit 

The original aircraft was modified to add instrumentation for use as a flying laboratory. The forward 

galley was removed and replaced with an equipment rack containing computer, data acquisition unit and 

other onboard instrumentation shown in Fig. 3. 

Within the sets of additional instruments there is a MEMS based inertial measurements unit called 

Ekinox-D. Ekinox-D is a tactical grade compact high end MEMS sensor. The advanced INS/GNSS comes 

with one or two antennas and provides orientation, heave, and centimeter-level position when aided with 

real time kinematics (RTK) based GNSS positioning. Ekinox sensors are embedded with an 8 GB data 

logger for post-operation analysis or post-processing. 
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The aircraft is additionally retro fitted with 861CAR Rosemount AoA and AoS vanes shown in Fig. 

1b. Two AoS probes are fitted, one 

on the left and one on the right side. 

The Curtis Wright’s KAM-500 is 

used for the analogue data 

acquisition of on-board Saab 340B 

instruments such as Rockwell 

Collins AHRS 3000 IMU unit as 

well as other aircraft parameters 

such as control surface deflections 

and control stick positions using the 

Commercial Standard Digital Bus 

(CSDB) protocol. The attitude and 

heading reference information 

obtained from the CSDB protocol is 

used as a reference for comparing 

the performance the proposed 

navigation algorithm.  

3.3 Experimental Setup and Flight Testing 

The experimental flight included various flight patterns including slow turns and rapid altitude 

changes. The flight includes rolling, take-off, climb cruise, descent, landing, and other additional dynamic 

maneuvers such as Phugoid and roll mode as mentioned in the DO-334 standard as shown in Fig. 4. 

 

(a) 2D trajectory projection on the Google Map of the flight test performed. 

Fig. 3. Overview of NFLC's Saab 340B instrumentation. 
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(b) Altitude profile of the flight along with other air parameters. 

Fig. 4. Flight test trajectory.  

4 Results and Discussion 

4.1 Attitude Estimation 

This section presents the estimation results of the proposed cascaded dual stage navigation algorithm 

using EKF. The attitude information obtained from the CSDB data acquisition system is used as a 

reference for comparison with the EKF estimates. Additionally, the commercially available Ekinox-D 

IMU unit estimation is compared. The attitude estimates are shown in Fig. 5. In Fig. 5b it can be seen that 

the ARS biases vary slowly. The innovation plot for the estimator is presented in Appendix A.  

  

(a) Attiude estimate (b) Estimated ARS bias 

Fig. 5. Attitude estimation from the Attitude Estimator. 

The evaluation of the attitude estimates is evaluated using the DO-334 standards. The requirements state 

that under dynamic conditions for the Category 4 AHRS aided heading system with GNSS the root mean 
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squared error (RMSE) of attitude (𝜙 and 𝜃) when compared to the reference system must be less than 

twice the 2.5𝑜 and less than twice 6𝑜for heading (𝜓) [18]. The RMSE of the attitude and heading estimate 

is presented in Table 1. The RMSE of the EKF estimates is calculated with respect to the Saab 340B’s 

internal instrumentation obtained via CSDB. 

Table 1. Evaluation of attitude and heading performance for the EKF estimator compared to aircraft 

onboard instrument measurements. 

Flight Evaluation Profile: Standard Maneuvers 
   RMSE (o) 

No. Maneuvers Condition 𝝓 𝜽 𝝍 

1 Taxi, take-off, climb 
Standard take off 

speed 
0.78 1.43 5.42 

2 Straight and level 5 mins 0.38 0.58 2.74 

3 
Standard rate right 

turn 

360o heading 

change 
1.43 1.05 5.25 

4 Phugoid mode  2.73 1.44 2.3 

5 
Roll mode (steep bank 

angle) 
Up to 50o 1.18 0.84 5.04 

6 Approach and landing 
Standard landing 

speed 
1.40 1.07 5.56 

From Table 1 it can be seen that the EKF based attitude and heading estimator produces RMSE which 

are below specified limits for the presented dynamic maneuvers, meeting the Category 4 criteria.   

4.2 Position/Velocity and Air Data Estimation  

There were no reference data available for comparing the position estimates. The position and 

velocity estimates are compared with the single point GPS measurements. Fig. 6 presents the position and 

velocity estimates.  

  

(a) Position estimates. (b) Velocity estimates. 

Fig. 6. Position and Velocity estimates using the Position/Velocity air data estimator. 

For the comparison purposes the 𝛼 and 𝛽 was calculated using Eq (15)-(16).  

 𝛼 = tan−1 (
𝑤

𝑢
) (15) 

 𝛽 = tan−1 (
𝑣

𝑢
) (16) 

The estimated air data, the measured air data and calculated air data from the estimates is plotted in 

Fig. 7a. The ACC bias estimates are shown in Fig. 7b. 
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(a) Air data estimates. (b) ACC bias estimates. 

Fig. 7. Air data and ACC bias estimates using the Position/Velocity and Air data estimator. 

In Fig. 7a, at the beginning of the flight, the measured 𝛼 and 𝛽 values start from non-zero position. 

It is because the installed AoA and AoS sensor were floating vent type, hence they only provide reliable 

measurement when the airspeed is large enough.  The calculated 𝛼 and 𝛽 using Eq (15) and (16) 

overestimates the air data. In contrast it can be seen the EKF estimates slowly converges to the measured 

𝛼 and 𝛽. It is worth noting here, that the convergence of the estimated 𝛼 and 𝛽 is slow because the tuning 

value chosen for the measurement covariance is relatively large, (see Appendix C for tuning values). This 

is chosen intentionally to avoid erroneous estimates in the case of faulty measurements. The innovation 

plots of the estimator are presented in Appendix B.  

Conclusions 

The paper presented a modular framework for INS/GNSS and air data fusion using dual stage 

cascaded extended Kalman filter (EKF) for obtaining attitude, position/velocity and air data estimates. 

The navigation algorithm is tested using the Saab 340B twin-engine turboprop aircraft operated by the 

Cranfield University’s National Flying Laboratory Centre (NFLC). A specific flight test was conducted 

to include the dynamic maneuvers listed in DO-344 standards for the performance evaluation of the 

navigation algorithm. The performance evaluation shows that the attitude and heading estimates meet the 

requirements mentioned in the standard. However, the position and velocity estimates could not be 

quantified due to the lack of reference data. Future work will include expanding the scope of the flight 

test and obtain reference position and velocity estimates for the assessment of position estimates.  
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Appendices 

Appendix A 

Innovation plots for the attitude estimator. 

 
Fig. 8. Innovation plot for the attitude estimator. 

The innovation plots in Fig. 8 have a normal distribution like shape around the zero-mean value.  

Appendix B 

Innovation plot for the Position/Velocity Air data estimator. 

  
(a) Position innovation. (b) Velocity innovation. 
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(c) Air data innovation. 

Fig. 9. Innovation plots for the position/velocity air data estimator. 

Fig. 9a has normal distribution like shape for position innovations around zero-mean value. In 

comparison in Fig. 9b the velocity estimates in 𝑉𝑁 and 𝑉𝐸 does not have normal distribution like shape 

due to value of measurement covariance being different. 

Appendix C 

This section provides the tuning parameters used in the estimation algorithm. 

Attitude estimator 

Measurement noise covariance 

When compensation using accelerometer only: 

𝑅 = diag[25𝑚𝑔, 25𝑚𝑔 25𝑚𝑔] 

When compensation using accelerometer and heading from GNSS velocity:  

𝑅 = diag[25𝑚𝑔, 25𝑚𝑔 25𝑚𝑔, 1.5𝑜] 

Position/Velocity and Air data estimator 

Measurement noise covariance  

When compensating with GNSS position, velocity, and air data from pitot-static tube and AoA and 

AoS sensor: 

𝑅 = diag[1𝑚, 1𝑚, 9𝑚, 4𝑚/𝑠, 4𝑚/𝑠 ,4𝑚/𝑠, 25𝑚/𝑠, 6.25𝑜 , 6.25𝑜 ] 

Threshold value used in Section 2.2 

These values are set from the observation of the aircraft dynamics.  

Condition 1: 50 mg < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝐶𝐶 . 

Condition 2: 5o/s  < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐺𝑌𝑅 . 

Condition 3: 10𝑜/s < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝑅𝑆. 
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