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ABSTRACT

Control over a missile’s total flight time offers significant strategic advantages in military operations,
including timed target engagement and orchestrated salvo attacks to boost success rates. To this
end, this study introduces an innovative impact time guidance law tailored explicitly for planar
engagement contexts, utilizing Bézier curves to shape the missile’s range trajectory. A 4th-degree
range curve is presented, from which a generalized form of the range polynomial is derived.
Remarkably, our proposed guidance law aligns seamlessly with existing state-of-the-art impact
time control guidance laws, thereby substantiating the efficacy and adaptability of Bézier curves in
guidance law design. This alignment confirms the robust capabilities of Bézier curves as a design
tool and opens new avenues for future research in developing increasingly complex and efficient
guidance laws.
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Nomenclature

𝑉 = magnitude of the missile velocity
𝑎 = normal acceleration of the missile
𝜎 = look angle of the missile
𝜆 = LOS angle
𝑟 = range
¤𝛾 = guidance command
𝑡 𝑓 , 𝑡𝑔𝑜, 𝑡 = desired impact time, remaining time to go, elapsed time
𝑃𝑖 = control points
𝑄𝑖 = derivative curve control points

1Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

EuroGNC
Navigation

ControlGuidance
2024Bristol, UK June 11th-13th

CEAS-GNC-2024-034

mailto:catak15@itu.edu.tr
mailto:demire15@itu.edu.tr
mailto:razytekin@gmail.com
mailto:emre.koyuncu@itu.edu.tr
mailto:ozkol@itu.edu.tr


𝐵𝑖,𝑛 = basis functions
𝑢 = knot parameter
𝑛 = degree of the Bézier curve

1 Introduction
The significance of timed and angled coordinated attacks cannot be overstated in both traditional

and unconventional combat scenarios, as they elevate potency and operational efficiency. These tactics
enable an array of projectiles, missiles, or combat units to strike a target nearly simultaneously but from
various vectors. This coordinated strike can incapacitate enemy defensive measures by giving them a
narrow reaction time frame. Yet, executing such attacks presents immense challenges. Achieving the
level of timing and synchronization needed among different units is a complex feat, often contingent upon
split-second or minute angular adjustments. Additionally, real-time computational assessments must be
made, considering numerous variables such as velocity, range, and even unpredictable target movements.
Given the multifaceted nature of these variables, developing an effective strategy for such attacks remains
an area of ongoing research.

The work [1] derived an impact time guidance law by decomposing the acceleration into two parts.
This approach reduces the miss distance and achieves the required trajectory lengths. Although the
performance of this guidance law is satisfactory, the time-to-go assumption in the proposed work is not
desired. Several other works are solving the impact time problem while suffering from the same 𝑡𝑔𝑜
estimation, i.e., [2], [3], and [4] which are using nonlinear control methods, Lyapunov formulation and
modified version of pure proportional navigation respectively. In the literature, impact time guidance
laws which do not utilize 𝑡𝑔𝑜 estimation are also present [5], [6], [7], [8], and [9]. The works [5] and [6]
have the same monotonically decreasing look angle magnitudes. At the same time, the first one solves
the impact time problem using the Lyapunov formulation, and the second uses time-varying navigation
gain for Proportional Navigation. The works [7], [8], and [6] solved the impact time problem using
polynomial shaping methods for guidance variables such as range and look angle. Range is shaped as
4𝑡ℎ order polynomial in [7] and the general form of range polynomial is presented in closed loop form
in [8]. This work deals with constraints in the look angle value as well as application domain problems
such as autopilot lag and measurement noises. The work [6] solves the impact time problem in a similar
manner yet shapes the look angle as a polynomial.

The guidance variables are not only shaped using analytical polynomials. Bézier curves, parametric
polynomials, for shaping the range polynomial is used in [10] to obtain an open loop guidance law
capable of ensuring impact time and angle constraints. The work utilizes the Feedback Linearization
method and a numerical root-finding algorithm to completely shape the curve. The impact time and angle
problem is solved using Bézier curves in [11]. This work proposes a four-stage guidance law. The first
and second stages adjust the impact angle and heading angle, respectively. The third stage is responsible
for tracking two segment trajectories. The terminal stage is the well-known PNG for reducing the miss
distance. Bézier spirals and Differential Flatness are used in [12] to deal with impact time and angle
problems. Trajectory length is formulated as a function of curvature to track the reference trajectory using
differential flatness. The [13] investigates the impact time and angle problem by utilizing 𝑡𝑔𝑜 estimation.
The method in this paper consists of two stages. The first stage, the deployment stage, reduces the
expected time to go error from the terminal stage, which is in the form of biased proportional navigation.
The impact time and angle problem is solved in [14] by shaping the line of sight as 4𝑡ℎ order polynomial
using Bézier curves. The complete shape of the LOS polynomial is obtained by an offline procedure. An
optimization-based impact time guidance law with the help of the Bézier curve is proposed in [15]. The
method shapes the range as a Bézier curve being at least 7𝑡ℎ degree. The reasoning behind this is the
degree of freedom needed for the constraints. The method proposes three objective functions: the first
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one is the total control effort, the second one is maximum acceleration, and the last one is the maximum
look angle value. After the offline optimization finds a solution the open loop guidance command is
created for impact time control.

This study aims to address the intricate problem of impact time control in missile guidance by
leveraging the capabilities of Bézier curves with the motivation of finding stand-alone guidance laws
rather than numerical routines, which may not be desirable for application purposes. The primary reason
behind the selection of the Bézier curve is twofold: Bézier curves offer unparalleled control over the
trajectory while providing a streamlined design and implementation process. The unique contribution
of this research lies in elucidating the simplicity and effectiveness of employing Bézier curves in the
design phases of any guidance law. To substantiate this, we derive an impact time guidance law
for stationary targets along with its generalized form. Remarkably, our proposed guidance law and
its broader application align closely with the state-of-the-art guidance laws as delineated in existing
literature, specifically referenced [8]. By demonstrating this alignment, we aim to significantly advance
the field, providing a more facile yet robust approach to tackling the complexities of impact time and
angle control in missile systems.

The rest of the paper is organized as follows: The next section defines the planar engagement
dynamics and formulates the impact time problem. Then Bézier formulation and its properties that will
be used in this work are given. Guidance law design is divided into two sections. The latter one is for
generalized range polynomials. Before the conclusion part, simulations are prepared to show the results
of the proposed methodology as well as the comparison study with [15].

2 Methodology
For scenarios in which the target is assumed to be stationary, the planar engagement geometry is as

shown in Fig. 1. Where 𝑀 is the missile, 𝑉 is the missile velocity, 𝑎 is the normal acceleration of the

Fig. 1 2D engagement geometry when the target is stationary

missile, 𝑟 is the range between the missile and the target, 𝜎 is the look angle, and 𝜆 is the line of sight
(LOS) angle. The target is shown as 𝑇 , and in this case, it is assumed to be stationary. The dynamic
equations representing this geometry are as given in Eqs. (1) and (2).

¤𝑟 = −𝑉 cos(𝜎)

¤𝜆 = −𝑉
𝑟

sin(𝜎)
(1)

𝛾 = 𝜆 + 𝜎 (2)

Obtaining the guidance command ¤𝛾 = 𝑎/𝑉 is called guidance law design. Designing guidance
commands with different steps can give useful capabilities to the guidance law in addition to capturing
the target. The particular impact time constraint for a guidance law can be described as completing the
engagement within the prescribed time frame.
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In other words, the missile should hit the target with a specified impact time, 𝑡𝑑𝑒𝑠. Additionally, for
the stationary target, the look angle value at the terminal instant, 𝜎 𝑓 , should be converging to zero in
order to obtain zero miss distance.

To obtain an impact time guidance law, the first derivative of the range curve given in Eq. (1) is taken
to get Eq. (3).

¥𝑟 = 𝑉 sin𝜎 · ¤𝜎

¤𝜎 =
¥𝑟

𝑉 sin𝜎
(3)

This function gives the rate of change of look angle 𝜎. Using the derivative of Eq. (2) and combining it
with the expression Eq. (3), guidance command is obtained for stationary targets as Eq. (4).

¤𝜎 =
¥𝑟

− ¤𝜆 · 𝑟
¤𝛾 = ¤𝜆 + ¤𝜎

¤𝛾 = ¤𝜆 − ¥𝑟
¤𝜆𝑟

(4)

This guidance law depends on the second derivative of the range curve and is capable of adjusting the
terminal time constraints in a very wide range if the range polynomial is shaped as a function of time.
The proceeding subsections will propose a suitable approach for range shaping.

2.1 Bézier Curve Integration
Bézier curves are mathematical representations characterized by parametric polynomials. They

enable the shaping of a curve through the manipulation of so-called control points using their linear
combinations, a process dependent on the curve’s degree. Beyond the starting and ending points that the
curve traverses, it relies on intermediate control points and their associated basis functions to construct
the entire polynomial curve. The mathematical expression for a Bézier curve of degree 𝑛 is detailed in
Eq. (5). Further insights and details can be explored in the source reference [16].

𝐶 (𝑢) =
𝑛∑︁
𝑖=0

𝐵𝑖,𝑛 (𝑢)𝑃𝑖 0 ≤ 𝑢 ≤ 1 (5)

In Eq. (5), 𝑛 represents the degree of the curve, 𝑃𝑖 corresponds to the 𝑖𝑡ℎ control point out of a total
of 𝑛+1 control points, 𝐵𝑖,𝑛 denotes the basis function, specifically the Bernstein Polynomial, associated
with the 𝑖𝑡ℎ control point 𝑃𝑖, and 𝑢 serves as the knot parameter. The computation of the basis function
mentioned in Eq. (5) is determined using the formula outlined in Eq. (6).

𝐵𝑖,𝑛 (𝑢) =
𝑛!

𝑖!(𝑛 − 𝑖)!𝑢
𝑖 (1 − 𝑢)𝑛−𝑖 (6)

Here, 𝑛 represents the degree, and 𝑖 signifies the index of each control point, similar to the previous
equation. The primary role of basis functions is to determine the influence of each control point on
the Bézier curves of degree 𝑛. As basis functions are dependent on the parameter 𝑢 for a given 𝑛, the
contributions from different sets of control points remain the same for a specified degree and knot value.
Fig. 2 illustrates how the Bézier curve varies when using the same degree but different control points.
Blue and red circles in Fig. 2 represent the set of control points, and similarly, blue and red curves are the
corresponding curves determined from this set of control points. By observing Fig. 2 and examining the
equation governing the basis functions, it becomes evident that Bézier curves cannot be modified locally
because all basis functions have nonzero values at all knot positions.
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Fig. 2 4th degree Bézier curve and the effect of control point location

The derivative of any Bézier curve can be expressed using the control points of the original curve and
basis functions of degree 𝑛-1. The relation for derivative curve control points and original curve control
points, as well as the parametric equation for the derivative curve, are given in Eq. (7). For higher-order
derivatives, you can iterate Eq. (7) up to the (𝑛 − 1)𝑡ℎ derivative, treating the derived curve as a new
original curve, and so forth.

𝑄𝑖 = 𝑛(𝑃𝑖+1 − 𝑃𝑖)

𝐶′(𝑢) =
𝑛−1∑︁
𝑖=0

𝐵𝑖,𝑛−1(𝑢)𝑄𝑖

(7)

where 𝐶′(𝑢) represents the derivative of the original curve with respect to 𝑢, 𝑛 is the degree of original
Bézier curve, 𝑄𝑖 denotes the control points of the derivative curve, and 𝑃𝑖 signifies the control points of
the original curve

In this study, initially, a fourth-degree Bézier curve and its second derivative have been employed.
The previously mentioned observation that basis functions remain consistent for all potential curves of a
given degree led to the formulation of Eqs. (8) and (9), which describe the fourth-degree Bézier curve and
its corresponding second derivative, respectively. The general form of a Bézier curve in the polynomial
form is given in section 4.2.

𝐶 (𝑢) = (1 − 𝑢)4𝑃0 + 4(1 − 𝑢)3𝑢𝑃1 + 6(1 − 𝑢)2𝑢2𝑃2 + 4(1 − 𝑢)𝑢3𝑃3 + 𝑢4𝑃4 (8)

𝑑2𝐶 (𝑢)
𝑑𝑢2 = 12(1 − 𝑢)2 (𝑃0 − 2𝑃1 + 𝑃2) + 24(1 − 𝑢)𝑢 (𝑃1 − 2𝑃2 + 𝑃3) + 12𝑢2 (𝑃2 − 2𝑃3 + 𝑃4) (9)

2.2 Fourth Degree Range Polynomials
The range polynomial has at least two boundary conditions. Initial and final ¤𝑟 values are needed to

shape the curve. Additional ¥𝑟 at the final time is optional but preferred in order to achieve less change
in the range polynomial at the final part of the engagement. For these reasons, 4𝑡ℎ degree Bézier curve
is chosen as the polynomial shaping method. The boundary conditions determine the complete curve by
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determining the locations of the control points 𝑃𝑖 and derivative curve control points 𝑄𝑖 in Eq. (10).

𝑃0 = 𝑟0

𝑃4 = 𝑃 𝑓 = 0
𝑄0 = ¤𝑟0 = −𝑉 cos (𝜎0)
𝑄2 = ¤𝑟 𝑓 = −𝑉 cos

(
𝜎 𝑓

)
= −𝑉

𝑄3 = 𝑄2 = −𝑉

(10)

The equality of𝑄3 = 𝑄2 comes from the ¥𝑟 𝑓 = 0 condition. The initial and final conditions dictate the
first and last control points 𝑃0 and 𝑃4 of the Bézier curve in Eq. (10). The remaining control points are
determined by using the derivative control points 𝑄0, 𝑄2, and 𝑄3 coming from Eq. (10) using Eq. (13).
Before diving into the determination of the remaining control points, the time parameterizing function
borrowed from [10] is introduced in Eq. (11).

𝑡 =
𝑢

𝜇
, 𝑡 ∈ [0, 𝑡𝑔𝑜] (11)

where, 𝜇 = 1/𝑡𝑔𝑜 and 𝑡𝑔𝑜 is the time to go term. Throughout the engagement, the remaining flight time
decreases. Thus, as suggested in [8], the remaining time to go should be represented as the difference
between designated impact time 𝑡 𝑓 and elapsed time 𝑡 as in Eq.(12).

𝑡𝑔𝑜 = 𝑡 𝑓 − 𝑡 (12)

Designated impact time is fixed throughout the flight, whereas the time-to-go value changes with
time. The following equations exploit the use of 𝑡𝑔𝑜, which is not estimated but found using Eq.(12).

𝑃1 = 𝑃0 +
(
𝑡𝑔𝑜

𝑛

)
𝑄0

𝑃2 = 𝑃3 −
(
𝑡𝑔𝑜

𝑛

)
𝑄2

𝑃3 = 𝑃 𝑓 −
(
𝑡𝑔𝑜

𝑛

)
𝑄3

(13)

The guidance command in Eq. (4) requires the ¥𝑟0 value at each time step. This value can be found
using the following Eq. (14).

¥𝑟0 =
𝑛

𝑡𝑔𝑜
(𝑄1 −𝑄0) (14)

The expression 𝑄1 is found using the following Eq. (15).

𝑄1 =
𝑛

𝑡𝑔𝑜
(𝑃2 − 𝑃1) (15)

Additionally, there is an analytical expression that can be obtained for the guidance law presented.
The derivation steps for closed-form guidance law start with Eq. (9).

¥𝑟 (0)𝑡2𝑔𝑜 =12(1 − 0)2 (𝑃0 − 2𝑃1 + 𝑃2) + 24(1 − 0)0 (𝑃1 − 2𝑃2 + 𝑃3)
+ 12(02) (𝑃2 − 2𝑃3 + 𝑃4)

(16)
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Then, simply substitute all the control points into the Eq. (16) to obtain the final expression.

¥𝑟 (0)𝑡2𝑔𝑜 = 12
(
𝑃0 − 2

(
𝑃0 +

(
𝑡𝑔𝑜

4

)
𝑄0

)
+
(
𝑃3 −

(
𝑡𝑔𝑜

4

)
𝑄2

))
(17)

¥𝑟 (0)𝑡2𝑔𝑜 = 12
(
𝑟0 − 2

(
𝑟0 +

(
𝑡𝑔𝑜

4

)
¤𝑟0

)
+
((
𝑟 𝑓 −

(
𝑡𝑔𝑜

4

)
¤𝑟3

)
−
(
𝑡𝑔𝑜

4

)
¤𝑟2

))
(18)

Substituting the derivative control points yields the following equation,

¥𝑟 (0)𝑡2𝑔𝑜 =12
(
𝑟0 − 2

(
𝑟0 +

(
𝑡𝑔𝑜

4

)
(−𝑉 cos (𝜎0))

))
+ 12

((
0 +

(
𝑡𝑔𝑜

4

)
𝑉

)
+
(
𝑡𝑔𝑜

4

)
𝑉

) (19)

Rearranging the Eq. (19) and substituting the control point 𝑃0 gives the Eq. (20)

¥𝑟 (0)𝑡2𝑔𝑜 = −12𝑟0 + 6𝑉𝑡𝑔𝑜 cos (𝜎0) + 6𝑉𝑡𝑔𝑜 (20)

¥𝑟 (0) =
−12𝑟0 + 6𝑉𝑡𝑔𝑜 cos (𝜎0) + 6𝑉𝑡𝑔𝑜

𝑡2𝑔𝑜
(21)

The guidance law can be derived using the analytical form of ¥𝑟 in Eq. (21). The Eq. (23) is the
impact time control guidance law obtained using Bézier curve approach.

¤𝛾 = ¤𝜆 − ¥𝑟
¤𝜆𝑟

¤𝛾 = ¤𝜆 +
−12𝑟0 + 6𝑉𝑡𝑔𝑜 cos (𝜎0) + 6𝑉𝑡𝑔𝑜

𝑉 sin (𝜎0) 𝑡2𝑔𝑜

(22)

The transition between 𝑟0 to 𝑟 is possible since the current value of the range can be thought of as
the initial range value for the designed Bézier curve. The same applies to 𝜎 as well.

¤𝛾 = ¤𝜆 +
−12𝑟 + 6𝑉𝑡𝑔𝑜 (1 + cos (𝜎))

𝑉 sin (𝜎) 𝑡2𝑔𝑜
(23)

The 𝑡 𝑓 expression in Eq. (23) represents the remaining time to go for each time step. Note that the
Eq. (23) is the same as the equation 20 in [7]. The reason behind this result is the same initial and final
constraints for the same polynomial degree. This result demonstrates the possible usage of Bézier curves
as proper guidance law derivation tools.

2.3 Generalized Range Polynomials
Let’s give 𝑛𝑡ℎ degree Bézier curve formulation.

𝑟𝑛 (𝑢) = (1 − 𝑢)𝑛𝑃0 + 𝑛𝑢(1 − 𝑢)𝑛−1𝑃1 + . . . + 𝑛𝑢𝑛−1(1 − 𝑢)𝑃𝑛−1 + 𝑢𝑛𝑃𝑛 (24)

Note that the control points 𝑃𝑖 and derivative curve control points 𝑄𝑖 have a relation for Bézier curves as
in the following equation,

𝑃𝑖 = 𝑃𝑖−1 +
𝑡𝑔𝑜

𝑛
𝑄𝑖−1 (25)
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Keeping this relation in mind and assigning 𝑄 (𝑛−1,𝑛−2,𝑛−3...,2) = −𝑉𝑐𝑜𝑠(𝜎 𝑓 ) = −𝑉 should define the
complete 𝑛𝑡ℎ degree Bézier curve. The guidance command derived in Eq. (4) use the ¥𝑟 (0) value. Thus,
the second derivative of the curve in Eq. (24) is simplified as in Eq. (26)

¥𝑟𝑛 (0)𝑡2𝑔𝑜 = 𝑛(𝑛 − 1) (𝑃0 − 2𝑃1 + 𝑃2) (26)

The value of the control point 𝑃0 is the range value for each step. 𝑃1 and 𝑃2 can be found using
boundary conditions and the 𝑡𝑔𝑜 is the remaining time to go term. The equations defining the 𝑃1 and 𝑃2
is given in Eqs. (27) and (28) respectively.

𝑃1 = 𝑃0 +
𝑡𝑔𝑜

𝑛
𝑄0 (27)

where 𝑄0 is the same as in Eq. (10). The calculation of 𝑃2 involves some repetitive calculation solving
from the last control point to 𝑃2.

𝑃𝑛−1 = 𝑃𝑛 −
𝑡𝑔𝑜

𝑛
𝑄𝑛−1

𝑃𝑛−1 = 𝑃𝑛 +
𝑡𝑔𝑜

𝑛
𝑉

𝑃𝑛−2 = 𝑃𝑛−1 −
𝑡𝑔𝑜

𝑛
𝑄𝑛−2

𝑃𝑛−2 = 𝑃𝑛−1 +
𝑡𝑔𝑜

𝑛
𝑉

𝑃𝑛−2 = 𝑃𝑛 + 2
𝑡𝑔𝑜

𝑛
𝑉

...

𝑃𝑛−𝑚 = 𝑃𝑛 + 𝑚
𝑡𝑔𝑜

𝑛
𝑉

...

𝑃2 = 𝑃𝑛 + (𝑛 − 2)
𝑡𝑔𝑜

𝑛
𝑉

(28)

Then the last part is to combine the Eqs. (26), (27), and (28) and substitute the resulting equation into
the guidance law.

¥𝑟𝑛 (0)𝑡2𝑔𝑜 = 𝑛(𝑛 − 1) (𝑃0 − 2(𝑃0 −
𝑡𝑔𝑜

𝑛
𝑉𝑐𝑜𝑠(𝜎0) + (𝑃𝑛 + (𝑛 − 2)

𝑡𝑔𝑜

𝑛
𝑉))

¥𝑟𝑛 (0)𝑡2𝑔𝑜 = 𝑛(𝑛 − 1) (−𝑃0 + 2
𝑡𝑔𝑜

𝑛
𝑉𝑐𝑜𝑠(𝜎0) + (𝑛 − 2)

𝑡𝑔𝑜

𝑛
𝑉)

(29)

The resulting guidance law is given in Eq. (30)

¤𝛾 = ¤𝜆 −

𝑛(𝑛 − 1) (−𝑃0 + 2 𝑡𝑔𝑜
𝑛
𝑉𝑐𝑜𝑠(𝜎0) + (𝑛 − 2) 𝑡𝑔𝑜

𝑛
𝑉)

𝑡2𝑔𝑜
¤𝜆𝑟

(30)

Rearranging the guidance law obtained for 𝑛𝑡ℎ degree range polynomial gives the following Eq. (31).
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¤𝛾 = ¤𝜆 +
𝑛(𝑛 − 1) (−𝑃0 + 2 𝑡𝑔𝑜

𝑛
𝑉𝑐𝑜𝑠(𝜎0) + (𝑛 − 2) 𝑡𝑔𝑜

𝑛
𝑉)

𝑉𝑠𝑖𝑛(𝜎0)𝑡2𝑔𝑜

¤𝛾 = ¤𝜆 +
(𝑛 − 1) (−𝑛𝑃0 + (𝑛 − 2 + 2𝑐𝑜𝑠(𝜎0))𝑡𝑔𝑜𝑉)

𝑉𝑠𝑖𝑛(𝜎0)𝑡2𝑔𝑜

(31)

For a closed loop guidance law, the obtained guidance law in Eq. (32)

¤𝛾 = ¤𝜆 + 2
𝑉𝑠𝑖𝑛(𝜎)Δ (32)

where Δ is,
Δ =

𝑛 − 1
2𝑡2𝑔𝑜

(−𝑛𝑟 + (2𝑐𝑜𝑠(𝜎) + 𝑛 − 2)𝑡𝑔𝑜𝑉) (33)

The resulting guidance law in Eq. (32) is the same as in [8]. Additionally, taking the polynomial degree
𝑛 as 4 leads to Eq. (23) as expected. Since there is 𝑠𝑖𝑛(𝜎) term in the denominator part of the Eq. (32)
and Eq. (23), it will result in singularity when zero look angle is reached. This is indeed a typical
case for stationary targets. The avoidance of this singularity is discussed in [8] for application purposes.
However, it is not included in this study for the sake of simplicity. Slowly moving targets can be captured
by a predicted impact point approach if the target has a constant known speed. The characteristic of the
seeker is another issue to be addressed. Higher 𝑡 𝑓 and 𝑛 values will result in higher maximum look angle
values in the engagements. Thus, if there is a field of view limitation for the seeker, some of the 𝑛 and 𝑡 𝑓

combinations may not be feasible.

3 Simulation and Comparison
In this section, the application of the guidance law described in this study is presented for 2 different

scenarios. One of these scenarios is given with the same parameters as in [8] (Scenario 1), where the
same guidance law is obtained, so that the results obtained can be validated. In the other scenario, an
air-to-ground engagement is simulated using a different set of engagement parameters. In this scenario,
different desired impact times have also been investigated. Results are given for 𝑛 = 4, 5, and 6 in both
scenarios. For all simulations, when the miss distance dropped below 5m, the target was considered to
have been captured and the simulation was terminated. The parameters in the mentioned scenarios are
provided in Table 1.

Table 1 Parameters of different scenarios

Parameters Scenario 1 Scenario 2
𝑉 (𝑚/𝑠) 200 300
𝑡 𝑓 (𝑠) 35 25, 30, 60, 90

𝜎0(𝑑𝑒𝑔) 15 30
𝑃𝑀𝑖𝑠𝑠𝑖𝑙𝑒 (𝑚) [0, 0] [0, 2000]
𝑃𝑇𝑎𝑟𝑔𝑒𝑡 (𝑚) [5000, 0] [6000, 0]

Fig. 3 illustrates the implementation of scenario 1. In this figure, in addition to the reference paper
[8], an application for 𝑛 = 6 is also given, and an autopilot modeling as first-order lag with a time
constant of 1𝑠 for this value is also added to the results, as well as 𝑛 = 4 and 5. When the graphs in the
figure are examined individually, looking at the Range and attitude-downrange graphs, it is seen that in
all simulations, the missile reaches the target at the desired impact time. In the look angle graph, it can
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be observed that the maximum look angle of the missile increases with the increase in 𝑛, while the case
with autopilot has the maximum look angle. If the seeker’s limit is 60 deg, then the only option is 𝑛 = 4
for this scenario. When the acceleration graph is considered, it is clear that in the case where 𝑛 = 4, the
acceleration is not 0 at the end of the time the missile reaches the target, while in the other 3 cases, it
reaches 0. It is also concluded that as 𝑛 increases, the magnitude of the acceleration at the beginning of
the flight also increases.

Fig. 3 Implementation of the scenario in the [8] for different values of n and autopilot effect for n=6

Fig. 4 Implementation of scenario 2 for different 𝑛 values

Fig. 4 represents the implementation of scenario 2 for 𝑛 = 4, 5, and 6. Looking at the range and
attitude-downrange graphs in the figure, it is observed that for all 𝑛 values, the target is impacted in the
desired time. Looking at the look angle graph, similar to the previous scenario, it can be seen that the
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maximum look angle of the missile increases with increasing 𝑛. However, at the end of the simulation
for all cases, it is clear that the look angle is 0. Considering the guidance command graph, again, it is
observed that for 𝑛 = 4, the acceleration value of the missile at the moment of impact with the target is
not 0. For the other two simulations, these values reach 0 at the end of the time. However, as 𝑛 increases,
the acceleration value at the beginning of the simulation increases.

Fig. 5 Comparison of scenario 2 with different impact times 𝑡 𝑓

Fig. 5 presents the plots analyzing different impact times using the parameters in scenario 2 and
taking 𝑛 = 5. In the range-time plot, it is clear that the target is successfully reached at the desired impact
times. In the look angle-time plot, the maximum look angle of the missile increases with increasing
impact time. The results are satisfactory for a simulation, but due to the field of view limits of the seeker,
the higher impact times are not feasible in real-world scenarios. In the guidance command plot, the
final acceleration reached 0 at impact instant for all time values. The initial acceleration increased with
increasing 𝑡 𝑓 value.

Fig. 6 Comparison of the proposed method and method presented in [15].

The proposed impact time guidance law is compared with the [15], stated as CM in Fig. 6, using
their engagement conditions. The ground-to-ground engagement for stationary targets using two different
Bézier curve degrees and the result of CM is given in Fig. 6. Both methods are capable of achieving
desired impact time values, with trajectories being slightly different for each solution. The proposed
method, stated as PM in Fig.6, demands more acceleration in the beginning due to the design choices
made in the Bézier curve. This is due to the derivatives of range up to 𝑛 − 2 being -V in the proposed
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method. Although this has a positive result as the final acceleration demands are smaller and converge
zero faster as the Bézier curve degree increases, it necessitates more acceleration demand at the beginning
of the engagement. This results in a total control effort of 𝐽 = 0.02035 for 𝑛 = 5 and 𝐽 = 0.04265 for
𝑛 = 7 while comparing 𝐽 = 0.010435 for the CM. If the maximum ¤𝛾 is limited to 10𝑑𝑒𝑔/𝑠, which is
the maximum acceleration command of the CM, the cost of the PM for 𝑛 = 5 drops to 𝐽 = 0.01064,
which is similar to the CM. Additionally, the offline algorithm presented in the CM can be affected more
by the disturbance and the uncertainties since it does not have feedback to correct the deviations. Also,
the lower terminal acceleration commands are welcomed in most scenarios to reduce the probability of
missing the target.

4 Conclusion
In summary, this research introduces an impact time guidance law that leverages the potential of

Bézier curves to shape the missile’s range as a parametric function. Notably, our derived guidance
law aligns seamlessly with one of the recognized state-of-the-art guidance laws from recent scholarly
contributions, thereby underscoring the efficacy and versatility of Bézier curves as a tool for guidance
law design. The successful implementation and alignment of our proposed model reinforce the promise
of Bézier curves in this domain. Since the proposed method is an online analytical method and does not
involve optimization, its feasibility is higher than offline methods or algorithms that include optimization.
Although the given guidance law has satisfactory performance and can be used in a real system, it has some
limitations and drawbacks. Two dimensional engagement dynamics and the stationary target assumption
can be a limitation for some of the operations. The speed of the missile in a realistic scenario may not
be constant and continuously changing due to the gravitational acceleration and drag force. Looking
ahead, future studies will concentrate on these issues and the derivation of more intricate but not complex
stand-alone guidance laws. Possible modifications to this guidance law may encompass both impact time
and angle control, as well as collaborative guidance schemes for three-dimensional engagements under
varying velocities. These advanced frameworks will also be grounded in Bézier curve formulations,
extending the applicability and utility of this approach in addressing complex challenges in missile
guidance and control.
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