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ABSTRACT

This paper presents the design of a gust load alleviation control law for a transport aircraft,
represented by a dynamic flexible model. The control law reduces the structural loads and thus
helps to decrease the aircraft’s structural weight. For the gust alleviation control, a linear full-order
state-space controller is designed based on the 𝐻∞ optimal control method. The control law design
uses an accelerometer on the wing tip as a sensor and controls the outboard ailerons to alleviate
the structural loads, in particular the wing root bending moment. The controller’s load reduction
performance is evaluated by simulating aircraft response to different vertical discrete gusts and the
robustness is assessed by considering the worst-case combination of gain and phase errors. Finally,
the load reduction performance is investigated for different actuator deflection rate limits, and the
complete strategy for load alleviation using sensors on the wing tips is assessed.

Keywords: Flight Control Law Design; Flexible Aircraft; Gust Load Alleviation; 𝐻∞ Control; Robust Control;
Optimal Control; Actuator limitations

Nomenclature

V𝑏 = Translational velocity of rigid body, body-fixed coordinates
𝛀𝑏 = Angular velocity of rigid body, body-fixed coordinates
u 𝑓 = Modal deformations
M 𝑓 𝑓 = Mass matrix
B 𝑓 𝑓 = Damping matrix
K 𝑓 𝑓 = Stiffness matrix
Pext
𝑔 = External loads

Paero
𝑔 = Aerodynamic loads

Pdist
𝑔 = Aerodynamic disturbance loads

Pprop
𝑔 = Propulsion loads

P𝑐 = Internal cut loads
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𝛿 = Control surface deflection
𝑀𝑥 = Wing bending moment
𝑀𝑦 = Wing torsion moment
𝑎 𝑓 = Vertical acceleration, sensor signal
𝑤gust = Gust velocity
𝐻 = Gust gradient
𝑈𝑑𝑠 = Gust amplitude
𝑠 = Laplace operator in frequency domain
𝜔0 = Natural frequency
𝜉 = Damping ratio
𝑃𝑀𝑥

= Total load reduction index, bending moment
Index 𝑔 = Structural grid coordinate
Index 𝑏 = Rigid modal coordinate
Index 𝑓 = Flexible modal coordinate
Index 𝑗 = Aerodynamic panels coordinate
Index wr = Wing root
Index wt = Wing tip

1 Introduction
In the design process of new aircraft, one of the major goals is to reduce the exhaust emissions.

Another economical goal is to reduce operational costs. Fuel consumption represents a large share of
direct operating costs. For example, for a medium range Airbus A330, fuel cost can represent up to 25%
of the direct operating costs depending on the fuel prices [1]. These goals can be achieved directly by
reducing aircraft weight. The aircraft experiences external structural loads from different sources during
flight as well as on the ground: engines’ thrust, aerodynamic lift & drag, gravity and ground (landing
gear) loads [2]. These result in external loads on the aircraft structure, and lead to, in general elastic,
elongation and compression of the aircraft structures [2]. For higher loads, which exceed the design
limits, the material can experience plastic deformation or even material failure. In order to withstand
these loads, mechanical stresses on the material need to be lower than the material strength limits. To
ensure this, critical locations on the aircraft, which are subject to high loads, need to be reinforced with
structural supports or to have a higher thickness.

In order to build a lighter aircraft’s structure there are, among others, two main approaches. The first
approach is to save structural weight by using lighter advanced materials like carbon fiber composites,
which have small density and can withstand relatively high structural stresses like metal alloys. The
second approach is to ensure that structural loads are limited within acceptable range using load control.
Unanticipated atmospheric disturbances, like discrete gusts, put strain on structures that interact the most
with airflow, such as wings and tailplane. The determinant factor which rule the structure mass, are the
critical load cases caused by gusts or flight maneuvers [3]. In [4], using the example of a 200-seater
aircraft, it is shown that gust loads can exceed maneuvering loads and create the most critical load cases.
The simulation result of this work shows that the wing root bending moment reaches a peak value equal
to 1.8 of the nominal value at normal cruise condition, due to a discrete gust.

By deflecting flight control surfaces, the aerodynamic forces and moments can be shaped. For
example, multiple ailerons can be used to change the lift distribution over the wing. Moreover, during
a vertical discrete gust, deflecting the ailerons symmetrically upward, reduces the lift forces locally and
concentrates them in the innermost part of the wings, which reduces the integrated loads at the wing root.
Another strategy for gust load alleviation is to keep the same angle of attack and reduce the influence
of wind by changing the aircraft attitude according to the atmospheric disturbance [5]. The use of gust
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load control enables a reduction in aircraft weight, resulting in lower fuel consumption. Furthermore,
mitigating wing root loads, makes it possible to increase the wing aspect ratio, which leads to less
induced drag, and thus less required thrust force and fuel. Due to the fast dynamics of some aerodynamic
disturbances, the effectiveness of a gust load alleviation system can be fundamentally constrained by
sensor and actuator bandwidths [6]. In other words, actuators and sensors need to have the ability to
respond quickly to high frequency gusts. With a cruising speed of 250 m/s aircraft passes through most
of the design-relevant gusts in less than 1 second.

The main contribution of this work lies in calculating how much total load reduction is achievable
given a specific deflection rate limit of the actuators. This work also demonstrates that the feedback
control strategy, using accelerometers on the wing tip, has inherent physical limitations, and expects
that the total load reduction with this strategy will not exceed 33%, regardless of the actuator speed.
Additionally, this paper presents a possible approach to tune and design a robust control law for gust load
alleviation using 𝐻∞ optimal control.

This paper is structured in five sections including the current introduction and a section for conclusion.
Section 1.1 explores previous works related to Gust Load Alleviation (GLA), section 2 presents the linear
flexible aircraft model utilized in this work. In Section 3, a brief introduction to the 𝐻∞ optimal control
theory is provided, the GLA optimization problem is defined, and the synthesis process is described.
Finally, the robust stability of the closed-loop system is assessed. In Section 4, the GLA controller’s
performance is evaluated concerning the defined design requirements. At the end, a parameter study is
conducted to investigate all possible load reduction potentials for different actuator limitations.

1.1 State of the Art
For gust load alleviation, different sensors and controller design approaches have been studied or

tested in flight in previous works. In this section, some of these sensors and design strategies are
discussed.

1.1.1 Sensors
There are mainly two different strategies which can be used for GLA. The first strategy focuses on

capturing the dynamics or movement of an aircraft’s response to a discrete gust or - in general - to an
aerodynamic disturbance. This approach is simple, widely used, and has been tested in flight many times
[7–10]. However, the disadvantage of this approach is that the controller cannot act before the structure
starts to move. As a result, the command signal is always reactive rather than proactive, which can pose a
challenge for the actuators, which need to respond quickly to limit the extra loads generated. The second
strategy aims to address the limitations of the first approach by detecting the aerodynamic disturbance
before it reaches the aircraft, thereby allowing the actuator sufficient time to respond. Acceleration
sensors or accelerometers belong to the first strategy and are the most commonly used sensors for gust
load alleviation. As the name indicates, accelerometers provide inertial acceleration components in the
three dimensional space. For GLA systems it can be mounted on the wing [7] or on the front part of
aircraft fuselage [11], in order to give the actuators adequate time to respond. Airbus A320 implemented
a GLA system using accelerometers located ahead of the wings along the fuselage, in order to compensate
the lag of the hydraulic actuators [11]. Since an aircraft wing has a free end, wing-accelerometers are
usually placed at the wing tip because the dynamics of the gust response are clearly visible at this point.

For the second strategy, a Light Detection And Ranging (LIDAR) sensor has been developed within
the European project AWIATOR to capture aerodynamic disturbance before it reaches the aircraft. The
airborne turbulence LIDAR sensor uses short-pulse ultraviolet waves and can measure air flow within
a range of 50 to 150 meters [12]. In 2004, the first flight test of the LIDAR system was performed
using the DLR ATTAS test aircraft [12]. Later, the system was successfully applied to an Airbus A340
and was able to measure vertical gust speed in front of the aircraft [13, 14]. Many GLA systems have
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used this - relatively new - LIDAR technology in the control law design process [5, 15]. Assuming a
perfect gust signal can be measured via the LIDAR sensor, an adaptive feedforward GLA system has
been developed and tested on a flight dynamics model for McDonnell Douglas F/A-18 Hornet aircraft
[16]. Air data sensors, which belong to the same strategy as LIDAR, use static pressure ports to detect
aerodynamic disturbances before they reach the aircraft’s wing. The sensors, however, are limited to
measuring gusts only at their specific installation location, in contrast to the more flexible measurement
capability of LIDAR. These pressure ports can detect gust perturbations from changes in the aircraft’s
angle of attack, and are often placed at the nose of the aircraft, in an attempt to compensate for time
delays of actuators[15]. Static air data sensors have been applied in several aircraft systems for gust load
alleviation. For example, the Boeing 787 uses these sensors to detect the onset of lateral and vertical
turbulence for a flying quality enhancement system [17]. The Northrop Grumman B-2 uses similar
sensors in its gust load alleviation system [17].

1.1.2 Control Law Design for Gust Load Alleviation
Depending on the used sensors, two different control strategies can be used for GLA.The first design

strategy is to use measurements from aircraft response to gust, and send a feedback control command, see
e.g. [18–20]. This design approach use mainly accelerometers and gyroscopes to measure vertical load
factor and pitch rate [5].This strategy allows designing of the closed loop poles, and ensuring stability
and robustness to system uncertainties, without the need to know the exact model of the aircraft. The
second strategy measures wind perturbation and sends a feedforward command, to prevent the aircraft
response before it starts to move [21]. The second approach uses - in most cases - LIDAR measurements
which can capture vertical and lateral gusts in front of the aircraft. In order to improve loads reduction,
a mixed feedback/feedforward control approach has been investigated in previous works [22, 23].

2 Aeroelastic Aircraft Model
The first step to design a GLA control law is to accurately model the aeroelastic aircraft’s dynamic

behavior and response to gusts. Although building such a model can be the sole objective of a separate
study [24], this section provides a brief overview of the utilized aeroelastic model, since the main focus
of present work is on designing the GLA control law. The model represents a generic commercial aircraft
derived using "Variable Loads Environment" (Varloads) framework [25].

2.1 Equations of Motion & Aerodynamics
The first simple idea to model an aircraft, is to treat it as a rigid body, neglecting its flexible properties

that arise from the elastic nature of its structure. Aircraft flexibility could be taken into consideration
by modeling it using a number of discrete mass points. These discrete mass points, or lumped masses,
can be constructed by reducing a Finite Element Model (FEM) of the aircraft [25], and allow for each
mass point to have additional six degrees of freedom. The mass points are located in the nodes of a
structure grid. The structure grid nodes, are connected to each other by stiffness & damping matrices [2].
These matrices represent the structure properties and determine the deformation shape resulting from
external forces. This approach results in a fully flexible structure, allowing for more accurate modeling
of aeroelasticity by using the deformed structure to calculate the aerodynamic loads.

The following equations of motion describe the dynamics of the flexible aircraft [26]:[
M𝑏

( ¤V𝑏 +𝛀𝑏 × Vb − T𝑏𝐸 · g𝐸
)

J𝑏 ¤𝛀𝑏 +𝛀𝑏 × (J𝑏 𝛀𝑏)

]
= 𝚽𝑇

𝑔𝑏 Pext
𝑔

M 𝑓 𝑓 ¥u 𝑓 + B 𝑓 𝑓 ¤u 𝑓 + K 𝑓 𝑓 u 𝑓 = 𝚽𝑇
𝑔 𝑓 Pext

𝑔 .

(1)
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The first equation represents the rigid body dynamics, which are described by the non-linear Newton-Euler
equations of motion. In this equation, V𝑏 = [𝑢𝑏 𝑣𝑏 𝑤𝑏] and 𝛀𝑏 = [𝑝𝑏 𝑞𝑏 𝑟𝑏] are the linear and angular
velocity components of the aircraft (i.e., the rigid body states). The index 𝑏 indicates a notation in the
body-fixed frame, which rotates with the aircraft’s center of mass. M𝑏 and J𝑏 are the mass and inertia
tensors of the aircraft in body coordinates. The vector g𝐸 = [0 0 − 𝑔]𝑇 denotes the gravity vector
in earth-fixed coordinates and Pext𝑔 denote the external forces, which consist of aerodynamic Paero

𝑔 and
propulsion loads Pprop

𝑔 . The second equation represents the flexible structural dynamics as a second-order
differential equation, where u 𝑓 represents the modal deformations (and its derivative, modal velocities,
and second derivative, modal accelerations. The modal structural dynamics are determined by the mass
M 𝑓 𝑓 , damping B 𝑓 𝑓 , and stiffness K 𝑓 𝑓 matrices in modal coordinates (index 𝑓 ). Again, Pext

𝑔 represents the
external loads applied on the nodes of the structural grid (index 𝑔). 𝚽𝑔𝑏 and 𝚽𝑔 𝑓 are the transformation
matrices from the (rigid and flexible) modal coordinates to the structural grid coordinates. To obtain
the internal loads [2], also known as cut loads P𝑐, the total nodal loads need to be transformed with a
transformation matrix into the cut-loads coordinate system (index 𝑐). The nodal loads can be calculated
from the external loads and the inertial loads. More details about the calculation of cut loads P𝑐 can be
found in [26, 27].

Fig. 1 Aircraft lifting surface split into finite number
of aerodynamic panels

While the Pprop
𝑔 is usually fixed at the defined

operating point, the aerodynamic loads Paero
𝑔 are

variable and depend on many variables, including
the shape of the deformed structure. To be able to
model this aeroelastic effect, the aircraft surface
is modeled using aerodynamic panels. These
panels can change their position and orientation,
depending on the movement and rotation of the
structure nodes. Figure 1 shows the aerodynamic
panels used to calculate the aerodynamic forces.
Using the Doublet Lattice Method (DLM), the
unsteady aerodynamic loads on the aerodynamic
panels can be calculated as follows [26]:

𝑃aero
𝑔 = 𝑞∞ 𝑇

𝑇
𝑘𝑔 𝑆𝑘 𝑗 Δ𝑐𝑝 𝑗 (𝑘) , (2)

where 𝑞∞ is the free-stream dynamic pressure, 𝑆𝑘 𝑗
is the area of each panel, 𝑗 is the panel index,
and Δ𝑐𝑝 𝑗 (𝑘) is the difference in pressure coefficients over each panel, which is a function of 𝑘 , the
reduced frequency [28]. To calculate the aerodynamic loads, the DLM requires the velocities 𝑤dist,j and
accelerations ¤𝑤dist,j of the wind disturbance at each panel [28]. For more detailed information about this
point, the reader is referred to [26, 28, 29].

2.2 Actuator Model
Given the high dynamics of gusts, the dynamics of the actuator play a crucial role in the design

of a GLA controller. The actuator dynamics vary based on the device, however, typical values for
transportation aircraft can be found in the literature [5]. The dynamics of the actuator can be modeled by
a second-order low-pass filter as follows:

𝐺 (𝑠) =
𝜔2

0

𝑠2 + 2 𝜉 𝜔0 𝑠 + 𝜔2
0
. (3)
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The cutoff frequency 𝜔0 represents the frequency at which the magnitude of an actuator’s output drops to
approximately 70% of the input signal’s amplitude. This corresponds to a gain of -3 dB in the frequency
response diagram. In other words, the cutoff frequency is the point at which an actuator begins to
attenuate an input signal. Although the linear model approximates the system’s dynamic behavior, it does
not account for nonlinear effects such as saturation. However, the controller synthesis must consider the
actuator’s capabilities and limitation, such as the maximum deflection angle and deflection rate. Table 1
shows the numerical values used for the actuator model and for the controller synthesis [5].

The linear model is now available for designing the control law and performing subsequent simulations.
For simplicity, we will refer to this model as the Flexible Aircraft Model (FAM) for the control law design.

Quantity Symbol Value
Actuator cutoff frequency 𝜔0 4 Hz
Actuator damping ratio 𝜉 0.85

Maximum deflection angle 𝛿max 30°
Maximum deflection rate ¤𝛿max 40°/s

Table 1 Numerical values of the actuator model[5]

2.3 Gust Model

Fig. 2 Example for a discrete gust

The simulations in this study focus on
the certification process of commercial aircraft.
Airworthiness authorities have established standard
wind disturbance models as a certification requirement
for large commercial aircraft to ensure their safety.
These models are specified in the European Aviation
Safety Agency Certification Specifications (EASA
CS-25) [30]. A discrete gust, as defined in CS-25.341,
can be described with the following equation:

𝑤𝑔𝑢𝑠𝑡 =
𝑈𝑑𝑠

2

(
1 − cos

(𝜋𝑥
𝐻

))
. (4)

The discrete gust is defined within the range of 0 ≤
𝑥 ≤ 2𝐻, where 𝑤𝑔𝑢𝑠𝑡 represents the wind velocity, 𝑈𝑑𝑠
represents the maximum amplitude of the gust and 𝐻 is
the gust gradient and represents half of the gust’s width.
Figure 2 shows an example of a vertical discrete gust
with 𝐻 = 80 m and 𝑈𝑑𝑠 = 16 m/s. Table 1 presents the numerical values of the gust model used for the
simulations. The gust gradient range is defined according to the certification requirements CS-25, while
the gust amplitude is fixed, deviating from CS-25.341.

Quantity Symbol Value
Gust amplitude 𝑈𝑑𝑠 15.598 m/s
Gust gradient 𝐻 [9 − 107] m

Table 2 Numerical values of the discrete gusts used in the simulations
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3 Control Law Design
Given the advantages of𝐻∞ control [31],𝐻∞ optimal control is used to synthesize the GLA controller,

based on the linear model defined in the previous section. In this section, a brief overview of the used
𝐻∞ control technique is given, the GLA optimization problem is defined, and the synthesis process is
described. Finally, the stability of the closed loop is investigated.

The design of the control law is performed at a single operating point, where the nonlinear model is
linearized. This operating point is defined by a Mach number of 0.85 and an altitude of 10,668 meters
and represents a typical cruise flight conditions. The design objectives of the control law are as follows:

• Minimize the additional bending moment load at the wing root caused by discrete vertical gusts.
This requirement is the primary goal of the system and of this work. Reducing bending moment
loads at the wing root represents the typical design goal for gust load alleviation systems [5].

• Ensure that the control signals fall within the defined range and limits of the actuator, as presented
in Table 1. These values represent the typical values for commercial aircraft, and have been used
to design a gust load alleviation controller in [5].

• Ensure closed-loop stability with a gain margin of 7 dB and a phase margin of 60◦. These values
are more conservative than standard stability margins requirements, since parametric uncertainty
is not considered in the model (standard: gain margin > 6dB, phase margin > 45◦ [32]).

The first step in designing a GLA controller is to choose the control surfaces and sensors used for
measuring feedback signals. The simplest approach to control law design is to use a Single Input Single
Output (SISO) system. To this end, a single accelerometer sensor is placed at each wing tip, where the
movement of the wing can be observed. The vertical component of the sensor signal 𝑎 𝑓 ,𝑤𝑡 is used as the
feedback signal. As for the control signal, the four outboard ailerons move together and symmetrically
on both sides, representing a single control signal 𝛿. These control surfaces are located away from the
wing root, can move in both directions, and typically have actuators with higher deflection rates than
other control surfaces. These properties are positively valued.

3.1 H∞ Optimal Control Theory
The 𝐻∞ optimal control theory aims to find the optimal control law by solving an optimization

problem. A general formulation of parameter optimization problems is given by [33]:

min
𝑥∈R

𝐽 (𝑥) . (5)

In this equation, 𝐽 (𝑥) is the cost function, also called objective function and 𝑥 represents the optimization
variable. The optimization problem is described as follows: find a value for the optimization variable
𝑥 ∈ R which minimizes the cost function 𝐽 (𝑥). The cost function output is a scalar value, and represents
the total penalty or cost, which needs to be minimized. The solution of the optimization problem is
denoted 𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . In 𝐻∞ optimal control theory, the controller 𝐾 is the optimization variable, and the
optimizer searches for the optimal controller 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 .

The general formulation of the control loop is illustrated in Figure 3, where 𝑃 is the generalized
plant, 𝐾 is the controller, 𝑢 is the control command, 𝑣 is the measured output, 𝑤 represents external
inputs, such as disturbances, and 𝑧 is the regulated output, or the error signal, which is minimized to
achieve the control objectives [31].

Applying this theory to the current GLA setup, 𝑃 is the FAM with weighting functions, 𝑢 represents
the control command 𝛿, 𝑣 represents the acceleration 𝑎 𝑓 ,𝑤𝑡 , 𝑤 represents the gust signal 𝑤𝑑𝑖𝑠𝑡 , and 𝑧
is a vector that includes 𝑀𝑥,𝑤𝑟 , the bending moment, and 𝛿, the control command. Equation 6 gives
the system behavior from disturbances to regulated outputs, where 𝐹𝑙 (𝑃, 𝐾) is the closed-loop transfer
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Fig. 3 General formulation of the 𝐻∞ optimal control

function from 𝑤 to 𝑧.
𝑧 = 𝐹𝑙 (𝑃, 𝐾) 𝑤 . (6)

The optimization problem to be solved is to find the stabilizing controller 𝐾 that minimizes |𝐹𝑙 (𝑃, 𝐾) |∞:

min
𝐾

∥𝐹𝑙 (𝑃, 𝐾)∥∞ (7)

∥𝐹𝑙 (𝑃, 𝐾)∥∞, the infinity norm of the closed loop 𝐹𝑙 (𝑃, 𝐾) from 𝑤 to 𝑧, has several performance
interpretations [31]. In the time domain, ∥𝐹𝑙 (𝑃, 𝐾)∥∞ is the maximum ratio of the 2-norm of the output
signal 𝑧(𝑡) to the 2-norm of the input signal 𝑤(𝑡) for non-zero 𝑤(𝑡) [31]:

∥𝐹𝑙 (𝑃, 𝐾)∥∞ = max
𝑤(𝑡)≠0

∥𝑧(𝑡)∥2
∥𝑤(𝑡)∥2

= max
∥𝑤(𝑡)∥2=1

∥𝑧(𝑡)∥2 (8)

where ∥𝑧(𝑡)∥2 =

√︃∫ ∞
0 Σ𝑖 |𝑧𝑖 (𝑡) |2 𝑑𝑡 is the 2-norm of the vector signal.

To understand the interpretation of ∥𝐹𝑙 (𝑃, 𝐾)∥∞ in the frequency domain, the frequency response
from 𝑤 to 𝑧 is considered. Let 𝑧(𝜔) denote the response of a system to a permanent sinusoidal input
𝑤(𝜔). Then 𝑧(𝜔) = 𝐺 ( 𝑗𝜔) 𝑤(𝜔), where 𝐺 ( 𝑗𝜔) = 𝐹𝑙 (𝑃, 𝐾) ( 𝑗𝜔) is frequency response from 𝑤 to 𝑧. In
the frequency domain, ∥𝐹𝑙 (𝑃, 𝐾)∥∞ is the maximum value of 𝜎(𝐹𝑙 (𝑃, 𝐾) ( 𝑗𝜔)) over all frequencies 𝜔
[31]:

∥𝐹𝑙 (𝑃, 𝐾) (𝑠)∥∞ = max
𝜔
𝜎(𝐹𝑙 (𝑃, 𝐾) ( 𝑗𝜔)) (9)

where 𝜎(𝐹𝑙 (𝑃, 𝐾) ( 𝑗𝜔)) is the maximum singular value of 𝐹𝑙 (𝑃, 𝐾) ( 𝑗𝜔). For a given frequency 𝜔, the
maximum singular value 𝜎(𝐺 ( 𝑗𝜔)) is defined as follows [31]:

𝜎(𝐺 ( 𝑗𝜔)) = max
𝑤(𝜔)≠0

∥𝑧(𝜔)∥2
∥𝑤(𝜔)∥2

∥𝑤(𝜔)∥2=1
= max

𝜔
∥𝑧(𝜔)∥2 . (10)

For a SISO system 𝐺 (𝑠), the singular values over all frequencies converted to decibel (dB) is identical to
the magnitude of the Bode diagram of 𝐺 (𝑠). Using the definition of 𝜎(𝐺 ( 𝑗𝜔)) in equation 9 yields:

∥𝐹𝑙 (𝑃, 𝐾) (𝑠)∥∞
∥𝑤(𝜔)∥2=1

= max
𝜔

∥𝑧(𝜔)∥2 (11)

where:
max
𝜔

max
𝜔

≡ max
𝜔

. (12)

Considering the two-dimensional vector ®𝑧(𝑠) = (𝑧1(𝑠), 𝑧2(𝑠)), the minimization problem in the frequency
domain, for a normalized sinusoidal disturbance input ∥𝑤∥2 = 1 with variable frequency and amplitude
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of one, is given by the following equation:

min
𝐾

max
𝜔

(√︃
|𝑧1( 𝑗𝜔) |2 + |𝑧2( 𝑗𝜔) |2

)
. (13)

The optimization problem searches for the optimal controller 𝐾 , which minimizes the maximum value
of the term under the root, over all input frequencies. Let 𝐺𝑧𝑖𝑤 denote the closed-loop transfer function
from 𝑤 to 𝑧𝑖. Here, |𝑧𝑖 ( 𝑗𝜔) |2 is the magnitude squared of the frequency response, and it is identical with
the squared magnitude of the Bode diagram of 𝐺𝑧𝑖𝑤.

The solution of the optimization delivers the optimal controller 𝐾𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . However, finding the
optimal controller can be computationally expensive, so a suboptimal solution 𝛾 > 𝛾𝑚𝑖𝑛 is often sufficient
to satisfy the optimization objectives:

∥𝐹𝑙 (𝑃, 𝐾)∥∞ < 𝛾 . (14)

This can be achieved by reducing 𝛾 iteratively. More details about the iterative minimization algorithm
can be found in [31, 34].

3.1.1 H∞ Controller Types and Model Reduction
The controller 𝐾 can be classified into two categories: full order state-space controllers and

controllers with a fixed control structure and variable parameters. The 𝐻∞ optimal control problem
can address both types of controllers.

In the structured 𝐻∞ control problem, the designer can select the controller structure and a
predetermined number of tunable gains and filters, such as a simple PID controller. The optimizer then
finds an optimal solution, determining the numerical values of these tunable parameters. This design
approach is straightforward and typically requires less computational power during flight, especially for
a few tunable variables [35]. However, the main drawback of the structured 𝐻∞ approach is that its
associated optimization problem is based on non-smooth, non-convex optimization [35]. Non-convex
optimization means that the problem has more than one minimum: a global minimum and at least one
local minimum [33, 36]. Non-convexity can result in the solution converging to a local minimum with
poor performance. Thus, the final solution is significantly influenced by the choice of the controller
structure, the number of tunable parameters, and their initial guesses. As a result, the structured 𝐻∞
approach is often plagued by the problem of non-repeatability [35]. On the other hand, classical 𝐻∞
optimal control uses a full-order state-space controller with the same number of states as the generalized
plant 𝑃 as optimization variables [31]. The optimizer searches for an optimal solution of the matrices’
elements 𝐴, 𝐵,𝐶, and 𝐷. The optimization problem can be formulated as a convex problem [37], leading
to a unique optimal solution. This solves the non-repeatability issue of the structured 𝐻∞ approach.
Another advantage of the state-space controllers is that there is no need to allocate specific sensor signals
to control signals or to define a specific control structure [5], as the optimal control allocation is directly
part of the optimization process. With more optimization variables and degrees of freedom, the full-order
state space controller makes the best use of the full frequency content of complex aeroelastic models [5].

Given these advantages, a full-order state space controller has been used in the current work. However,
the available aeroelastic model (FAM) introduced in the last section has 1600 states. A full-order state
space controller for the original model would be computationally expensive in the optimization process
as well as during flight. Therefore, a model reduction was conducted using MATLAB’s function "balred"
to create a reduced order model of the FAM with 160 states, which is used for controller synthesis [38].
Nevertheless, the full-order model has been used in the simulations and analysis.
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3.2 Control Synthesis
As a design requirement,the GLA controller must be able to mitigate bending moment loads at the

wing root while considering actuator limitations. To achieve this, the regulated output signal 𝑧 must
include the wing root bending moment 𝑀𝑥,𝑤𝑟 and the control signals 𝛿. The optimizer minimizes the
infinity norm of 𝑧, also known as the cost function [33], based on an external disturbance 𝑤 with a
variable frequency, where |𝑤 |2 = 1. Figure 4 shows the optimization setup for the GLA problem. 𝐺 (𝑠)
represents the reduced order FAM model, 𝐾 (𝑠) represents the state space controller to be optimized with
160 states, the same size as𝐺 (𝑠), and𝑊𝑤,𝑊𝛿, and𝑊𝛿 are weighting functions. As the disturbance signal
𝑤 is normalized (|𝑤 |2 = 1), the function 𝑊𝑤 scales the input signal with the expected gust amplitude
considered by the design:

𝑊𝑤 = 𝑈𝑑𝑠 . (15)

Fig. 4 Block diagram of the GLA synthesis setup.

Also, 𝑀𝑥,𝑤𝑟 and 𝛿 can
have significant differences in
their magnitude, so scaling them
by dividing each signal by its
maximum value puts them at the
same level and makes them of the
same weight in the cost function.
The importance of each signal
can then be varied with a second
weighting factor. The two other
weighting functions 𝑊𝛿 and 𝑊𝑀

are defined as follows:
𝑊𝛿 = 𝑓𝛿

1
𝛿max

𝑊𝑀 = 𝑓𝑀
1

𝑀𝑥,𝑤𝑟max
(16)

where 𝛿𝑚𝑎𝑥 and 𝑀𝑥,𝑤𝑟𝑚𝑎𝑥 are the maximum possible values of 𝛿 and 𝑀𝑥,𝑤𝑟 , respectively. 𝑓𝛿 and 𝑓𝑀 are
weighting factors that can be tuned by the designer to achieve the desired results, and usually have an
initial value of one. The regulated output signal 𝑧 now has the following form:

®𝑧 =
[

𝑊𝛿 𝛿

𝑊𝑀 𝑀𝑥,𝑤𝑟

]
. (17)

Using equation 13, the GLA optimization problem can be formulated as follows:

min
𝐾

∥𝐹𝑙 (𝑃, 𝐾) (𝑠)∥∞~w� ∥𝑤∥2 = 1

min
𝐾

max
𝜔

(√︃
|𝑊𝛿𝛿( 𝑗𝜔) |2 + |𝑊𝑀𝑀𝑥,𝑤𝑟 ( 𝑗𝜔) |2

)
.

(18)

Here, the infinity norm of ∥𝐹𝑙 (𝑃, 𝐾) (𝑠)∥∞ is defined as the sum of the squared weighted Bode
diagrams from 𝑤𝑔𝑢𝑠𝑡 to 𝑀𝑥,𝑤𝑟 and from 𝑤𝑔𝑢𝑠𝑡 to 𝛿. To obtain the optimal GLA controller, the maximum
value of this sum over all frequencies is minimized. Using the MATLAB function "hinfsyn" from the
Robust Control Toolbox, the optimization problem is solved and the sought state-space GLA controller
is calculated (A,B,C and D matrices).

The optimization problem defined in equation 18 aims to minimize both the control command 𝛿 and
the bending moment 𝑀𝑥,𝑤𝑟 . However, the physics of the GLA problem indicates that these are conflicting
objectives and reducing one value leads to an increase in the other. The inclusion of the control command
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𝛿 in the cost function serves two primary purposes. First, it reduces the workloads on the actuator, leading
to a longer lifetime and less maintenance needs. Second, it ensures that the control signals stay within
the actuator limitations to avoid actuator saturation.

Fig. 5 Controller design
workflow

In fact, a good definition of the actuator’s design requirements,
which consider the GLA workloads, allows for the full use of it to
alleviate gust loads. However, to ensure system stability, it is important
to guarantee that the actuator limits are not exceeded. This is because
the system stability analysis is based on the assumption that the system
is linear. When the actuator is saturated, this assumption is violated,
and the system is no longer linear.

Therefore, a better formulation of the objectives is to minimize the
weight on the actuation effort such that the maximum deflection rate is
reached to achieve the best load reduction of the bending moment. This
can be accomplished primarily by tuning the weighting factors 𝑓𝛿 and
𝑓𝑀 in an iterative process. Figure 5 shows the workflow of the GLA
controller design process. Weighting factors only change the relative
importance of each variable to the other, meaning that multiplying all
factors by a constant does not change the optimization solution [33].
The problem is only scaled, but the minimum value, and hence the
optimal solution, does not change in this case. Since the regulated
output 𝑧 has two components, changing only one weighting factor is
sufficient to alter the relative importance of the two variables to each
other. This simplifies the tuning process as only one weighting factor
needs to be adjusted. For the GLA control law design, the weighting
factor 𝑓𝛿 was tuned to achieve the optimization objective. The tuning
process was performed manually and is based on a root-finding numerical algorithm called the bisection
method [39, 40]. The final value found for 𝑓𝛿 was 1.15, with a maximum deflection rate of ¤𝛿max = 39.7◦/s.

3.3 Stability Analysis
In every modeling process, assumptions and simplifications are made, which can result in modeling

errors. These errors are typically represented in the system as gain and phase uncertainties. To account
for these errors in the stability analysis, it is important to have gain and phase margins to ensure the
stability of the controller. As illustrated in table 3, the phase and gain margins of the closed-loop system
are higher than the design requirements. In the Bode diagram of the open loop, the magnitude does not
cross the zero line, indicating that the closed loop has an infinite phase margin.

Stability margins Closed loop Requirements
Gain margin 17.7 dB 7 dB
Phase margin ∞ 60◦

Table 3 Stability margins of the closed loop

This stability analysis can be interpreted that the system can have a gain error of any value until 17.7
dB, and the system will always be stable, regardless of how much delay the system has. However, this
statement is not entirely accurate, since the definition of gain and phase margin is based on an individual
consideration of gain and phase errors. Which means the system will be stable with a gain error less
than 17.7 dB in case that the phase error is zero. However, if the phase error is not zero the real gain
margin of the system with the combined error can be much less than the classical gain margin value. To
address the limitations of this separate consideration of phase and gain margins, the stability of the system
regarding simultaneous uncertainties is evaluated using the Nichols diagram [41], as illustrated in Figure 6.
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Fig. 6 Nichols diagram of the open loop

To investigate the stability of the
closed-loop system further, simultaneous
uncertainties in gain and phase are added to
the system. In [5], the following uncertainties
are used: gain uncertainty: ±4 dB, Phase
uncertainty: ±30◦. Generally, in order to
assess the stability of the system in the
presence of these uncertainties, Monte-Carlo
simulations can be performed, where all
different combinations of gain and phase
errors are examined [42]. Alternatively, the
worst-case combination of gain and phase
errors can be considered using disk margins
[43, 44]. Since applying these methods
exceeds the defined time frame of this work,
a simpler approach is presented here for the
particular case represented in Figure 6.

Fig. 7 Nichols diagram of the open loop with uncertainties

As shown in Figure 6, the nearest critical
point to the open-loop curve, at which the
system becomes unstable, is the black point
on the left (-900,0). Gain errors represent
a vertical shift of the curve in the Nichols
diagram, while phase errors represent a
horizontal shift. The worst-case combination
of uncertainties (gain: ±4 dB, Phase: ±30◦)
is obtained at a positive gain error of 4 dB and
a negative phase error of -30◦ (green dashed
curve in Figure 7). These uncertainties
are applied to the system by multiplying
the open loop with the following transfer
function 𝐺 (𝑠)uncertain = 4𝑑𝐵 · 𝑒𝜋/180(−30◦)𝑖.
As illustrated in Figure 7, the system with
worst-case uncertainties is stable but has less
stability margin than the unperturbed system.
This demonstrates that the system is stable
for any combination of ±4 dB gain and ±30◦
phase of simultaneous errors, with a robust stability margin of 6 dB gain and 24◦ phase.

4 Simulation and Results
This section evaluates the designed GLA controller using closed-loop responses in the frequency and

time domain. The primary focus is to validate the GLA controller with respect to its design requirements.
The test cases consist of vertical discrete gusts with different gradients, as shown in Table 2. Additionally,
the effectiveness of the current control strategy is assessed. Simulations are performed using the linear
Flexible Aircraft Model (FAM) with a fixed time step of 0.005 seconds. The loads shown in this section
are normalized using their steady-state values at the operating point.
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4.1 Actuation Effort

Fig. 8 Control surface deflection rate for discrete gusts.

One objective of the design is to limit the
commanded control deflection and deflection
rate to the maximum rate which can be
achieved by the actuator. The limits of
the actuator model are presented in table
1. The simulation results have shown
that the deflection angle limit is not a
critical aspect compared to the deflection
rate limit (The maximum deflection angle is
3.27◦). Figure 8 shows the real deflection
rate of the control surfaces. It is clear
that the tuning process described in Figure
5 has successfully achieved the objective
of keeping the maximum deflection rate
(39.71◦/s) under the limit but very close to
it. The maximum deflection rate occurs due
to a discrete gust with H= 37 m, which is
not as critical with respect to the wing root
bending moment as the most critical discrete gust with H= 83 m. It would be advantageous in terms
of load reduction to have the maximum deflection rate occur at the critical gust and let the actuator
go into saturation for non-critical gusts, as the maximum deflection rate is the limiting factor for load
reduction performance. However, the system stability cannot be guaranteed in this scenario.Therefore, it
is necessary to tune the maximum deflection rate considering all relevant design cases.

4.2 Load Alleviation

Fig. 9 Bode diagram from gust velocity 𝑤𝑔𝑢𝑠𝑡 to wing
root bending moment 𝑀𝑥,𝑤𝑟

In this section, the performance of the
GLA controller is evaluated using closed-loop
responses in both the frequency and time
domains. To simplify the representation of
data, consistent rules are used in all figures
that illustrate data for multiple gust gradients.
The green color represents the response without
control, while the blue color represents the
response with active control. Each gust gradient
has a single marker for both responses (with
and without control), such as ’∗’ for H= 83 m.
Therefore, only the entries for active control are
displayed in the legend.

To evaluate the load reduction performance
in the frequency domain, the closed loop transfer
function from gust disturbance 𝑤gust to wing
root bending moment 𝑀𝑥,𝑤𝑟 is considered.
Figure 9 shows the Bode diagram of the closed
loop frequency response compared to the FAM
response without controller. The effect of 𝐻∞ optimal control design can be clearly seen in the reduced
magnitude near 10 rad/s. The peak at this frequency corresponds to the first bending mode of the wing,
and has been reduced from 173 dB (FAM) to 168 dB (Closed loop), indicating a reduction in wing root
load of the first bending mode.
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The Flexible Aircraft Model (FAM) response is simulated for all gust gradients defined in Table
2, and the wing root bending and torsion moment response are recorded. The same simulations are
performed for the FAM with the GLA controller, and both results are compared to each other. Figure 10
shows the wing root bending and torsion moments for various discrete gusts. The reduction in the torsion
moment load is only a positive physical consequence of reducing the bending moment load and was not
explicitly included as a design objective or in the optimization process. This can be explained by the fact
that the additional bending moment induced by the gust is physically linked to an accompanying torsion
moment, as both are produced by the same additional lift force resulting from the gust [45]. Therefore,
the reduction in lift force achieved by the GLA controller results in a reduction of both the bending and
torsion moments.

In the left plot it can be observed that, there is a slight load reduction in the maximum load of the
normalized bending moment, and the following load oscillations are significantly reduced with increased
damping. Load oscillations are generally unwanted, as load cycles increase the risk of having a fatigue
failure, even if the cycle amplitude does not exceed the ultimate strength of the material [2]. The controller
has a positive effect regarding this aspect. As structure design requires the consideration of the combined
load of bending and torsion moments [46], it is important to examine the reduction of the combined loads.
Figure 10b shows the boundary of the bending and torsion moments with and without GLA controller.
As illustrated, using the GLA controller, the area of the biggest boundary line has been reduced as well
as the maximum combined values.

(a) Bending moment (b) Bending and torsion moment

Fig. 10 Simulation results for different gust gradients with(blue) and without control(green)

To evaluate the performance of this GLA controller the ratio between the maximum additional wing
root bending moment without control Δ𝑀𝑥,𝑤𝑟=0.84 at H=83 m, and the new maximum additional load
with control are considered. The total load reduction index 𝑃𝑀𝑥

is defined as follows:

𝑃𝑀𝑥
= 100 · ©«1 −

max
∀𝐻

(
max

(��Δ𝑀𝑥,𝑤𝑟,𝐶𝑜𝑛𝑡

��) )
max
∀𝐻

(
max

(��Δ𝑀𝑥,𝑤𝑟

��) ) ª®¬ . (19)

Here, "max
∀𝐻

(
max

(��Δ𝑀𝑥,𝑤𝑟

��) )" denotes the maximum absolute difference between the wing root bending

moment of all gust gradients and the steady state value, while "max
∀𝐻

(
max

(��Δ𝑀𝑥,𝑤𝑟,𝐶𝑜𝑛𝑡

��) )" represents the
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same value with GLA control. The current GLA controller has a total load reduction performance of the
wing root bending moment of 𝑃𝑀𝑥

=3.42%.

4.3 Control Strategy Assessment
As seen in the last section the current GLA controller has a relative small load reduction performance,

with a total load reduction index of 𝑃𝑀𝑥
=3.42%. The main limiting factor for load reduction performance

was found to be the deflection rate limit of the actuator, which typically equals 40◦/s for transportation
aircraft actuators [5], as mentioned in Section 4.1.

New control technologies have been investigated to enhance actuator dynamics for flight control
[3, 11, 47–49]. In this section the potential load reduction performance is investigated, when having
better actuators with higher deflection rate limits. To this end, a parameter study is performed, to better
understand the relationship between load reduction performance and deflection rate limit. In this study,
the deflection rate limit requirement is relaxed in the optimization process, defined in Section 3.2, using
a relaxation factor 𝜆. Specifically, the actuation weighting function𝑊𝛿 is divided by the relaxation factor
𝜆 > 1, resulting in a relaxed weighting function𝑊𝛿 ,relaxed given by:

𝑊𝛿 ,relaxed =
𝑊𝛿

𝜆
. (20)

Fig. 11 𝑀𝑥,𝑤𝑟 with(blue) and without control(green),
maximum deflection rate < 90◦/𝑠

Setting 𝜆 > 1 reduces the weighting factor of
the actuator effort in the optimization process,
allowing for higher deflection rates. The choice of
the 𝜆 values is arbitrary since there is no concrete
actuator rate value for which the GLA controller
is designed. Using a relaxation factor of 𝜆 = 2,
the maximum new deflection rate limit reached in
this case is approximately 90◦/s. With the higher
deflection rate limit of 90◦/s, the GLA controller
is capable of reducing loads more effectively.
Figure 11 displays the results of the wing root
bending moment simulation obtained using this
GLA controller. The load reduction performance
is improved, with a total value of 𝑃𝑀𝑥

= 7.89%.

As expected, load reduction improves when
using an actuator with a higher deflection rate.
However, it is worth investigating whether there are
other limiting factors in addition to the deflection
rate. To explore this possibility, the relaxation
factor is set to a very high value (𝜆 = 103) to eliminate the deflection rate constraint. The simulation
results of this case, with a maximum deflection rate of ¤𝛿max = 3380◦/s, shows that the controller has
reached a total load reduction value of only 𝑃𝑀𝑥

= 30.57%, even with this unrealistic high deflection
rate.

To understand these surprising results, a parameter study was conducted, in which the total load
reduction was represented as a function of the maximum actuator deflection rate, using different values
for 𝜆 > 1. The study was performed using the following 𝜆 values: (1, 2, 5, 10, 20, 40, 1000). The
results for 𝜆=1 represent the initial GLA controller design. Figure 12 shows the total load reduction 𝑃𝑀𝑥

for wing root bending moment as a function of the maximum deflection rate ¤𝛿𝑚𝑎𝑥 . As shown in Figure
12, the potential benefits of increasing the deflection rate limit are high at the beginning (𝑃𝑀𝑥

= 16%
& 21% for ¤𝛿max = 171◦/s & 245◦/s ), but the curve converges to a boundary value at high deflection
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rates, indicating that the benefit is limited. This limit value can be predicted by fitting a rational curve,
as shown in Figure 12. The curve converges to a maximum value of the total load reduction, indicating
that even with an infinite deflection rate of the actuator, it is expected that the total load reduction will
not exceed 33%. This limitation can be attributed to the used control strategy, where the GLA controller
waits for the wing tip to move before attempting to counteract these movements, and this strategy has
inherent physical limitations.

Fig. 12 Predicted total load reduction 𝑃𝑀𝑥
limit

using a rational fitting curve

To assess the current control strategy, a
comparison to another control approach presented
in [5] is performed, to classify its load reduction
performance. The approach in [5] uses 𝐻∞
optimal control to design a GLA controller
for a commercial aircraft concept. Ailerons
and elevator are utilized as control surfaces,
while Lidar, gyroscopes, accelerometers, and
alpha-probe serve as sensors. Results in [5] reveal
that a non-robust controller can achieve a wing
root load reduction of up to 72%, 57% with the
same robustness as used here, and 22% without
Lidar. These results emphasize the importance
of the chosen control strategy and the ability to
predict wind gusts before they reach the aircraft
wing. They indicate that predicting disturbances
represents the second limiting factor in increasing
load reduction performance.

5 Conclusion
This work establishes a framework for designing a control law for gust load alleviation (GLA) of a

flexible aircraft equipped with acceleration sensors. The focus of the control law design is on alleviating
bending moment loads at the wing root using one accelerometer. A full-order state-space GLA controller
has been designed using classical 𝐻∞ optimal control. The optimization process seeks to minimize wing
root bending moment and actuator effort. A stability analysis has been performed, ensuring that the
system’s design stability margins are guaranteed (gain: 7 dB, phase: 60◦). To assess the controller’s
robustness, combined system uncertainties of 4 dB gain and 30 degrees phase have been considered. The
worst-case combination of these uncertainties results in a robust stability margin of 6 dB gain margin and
24 degrees phase margin.

The controller’s load alleviation performance was tested using vertical gusts with variable gust
gradients. The simulations demonstrate that the actuator deflection rate limit is the limiting factor for
performance. The results indicated a reduction in the maximum wing root bending moment of 3.4%,
with a maximum deflection rate of 40◦/s. By relaxing the actuator effort condition in the optimization
process, higher load reduction values can be achieved. For instance, a load reduction of 7.9% has been
attained using a maximum deflection rate of 90◦/s. A parameter study was conducted to investigate
the relationship between load reduction and deflection rate. The study showed that the load reduction
performance converges to a value of approximately 33% as the deflection rate increases towards infinity.
This is due to the fact that the feedback strategy with sensors on the wing has limited performance; it
waits until the wing moves, then sends a control signal to counteract the gust effect.

For future work, the control design framework can be easily extended to include additional sensor
types and control signals since it is based on a full-order state-space controller. The four outboard
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ailerons can be operated separately, in addition to the elevator, enabling the inclusion of more loads,
such as bending moment and shear force, in the optimization process [5]. The feedback signals can be
expanded to include more sensors to capture wind gusts before they reach the aircraft wing.
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