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ABSTRACT

This paper exhibits an instrumented flexible wing mockup demonstrating a wing shape estimation
technique for automatic structural/flight control of very flexible aircraft undergoing large and geo-
metrically nonlinear wing deflections. The proposed method exploits data fusion, using an extended
Kalman filter, between distributed rate gyros across the wing and a sighting device at the wing root,
and does not require knowledge of strain-displacement curves or specific aircraft dynamic models.
The experiment is conducted in a motion capture room for ground truth availability and shows, as
predicted in previous work, that the resulting estimation errors are bounded and have promising
frequency response.
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1 Introduction
A current trend in aircraft design emphasizes lightweight aircraft combined with high-aspect-ratio

wings for increased aerodynamic efficiency. The inherent flexibility in these modern designs interlaces
structural dynamics with flight dynamics, traditionally treated separately, and calls for autopilot systems
that account for the resulting aeroelastic coupling. Addressing these challenges, particularly for very
flexible aircraft (VFA), demands innovative estimation techniques that capture the structural states of
wings during flight in real time. Building upon previous theoretical work [1], this paper examines the
viability of the method for wing shape estimation given real-world data for VFA control.

If a precise structural model of the aircraft is available, strain measurements can be translated to
wing shape displacement estimates. For instance, Ref. [2] proposes using Fiber Bragg Gratings (FBG)
strain measurements to compute wing shape deformation. In VFA flight mechanics models, wing
shape determines aerodynamic behavior and is often preferred over strain variables. Additionally, strain
measurements are subject to weather and require complex calibration techniques.

An alternative to strain measuring is to employ photogrammetric or stereo-vision techniques. Ref-
erences [3, 4] describe the significance of these measurements in understanding aircraft aerodynamics
for moderately rigid aircraft (i.e., a Cessna Citation Sovereign and a Beechcraft Type 65 Queen Air).
Their technique tracks visual markers on the wing through stereo cameras in the cabin. An interesting
outcome of this work is the automatic calibration routines necessary to overcome distortions due to cabin
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deformation (and thus modification of the camera-window optical system characteristics) during alti-
tude changes. Furthermore, adverse turbulent conditions could induce vibrations that misplace camera
orientation. Reference [7] proposes a technique to auto-calibrate the extrinsic camera setup parameters
through Image Pattern Correlation Techniques (IPCT), while Ref. [8] pursues the same objective using
coded targets instead.

With the advent of small Unmanned Aerial Vehicles (UAVs), the challenges and nuances of wing
deformation measurements and techniques have evolved [5]. These include needing lightweight and
compact sensors, ensuring energy efficiency, and mitigating challenges posed by diverse operational
environments. Additionally, for VFA-like UAVs, the deformation information is required during flight
and adds critical real-time and bandwidth requirements. While post-flight photogrammetric analyses are
standard in flight testing in the industry, Ref. [6] innovates in proposing modifications in traditional Wind
Tunnel Videogrammetric Model Deformation (VMD) measurement techniques to allow for real-time
usage in an F/A-18 research aircraft. The pursuit of an online wing shape estimation technique is not
entirely new, and dates back to DeAngelis in Ref. [9], who attempted to obtain an analog electro-optical
solution to the problem.

An alternative approach to in-flight wing shape estimation uses extended Kalman Filter (EKF)
techniques, which attempt to improve estimation precision through data fusion of complementary sensors
and information about the system dynamics. In particular, Ref. [10] exploits strain sensor data and the
system dynamics model to estimate wing shape displacements dynamically. Additional studies [11–13]
propose using computer vision in tandem with strain measurement data. Alternatively, Refs. [11, 12]
suggest using Inertial Measurement Units (IMUs), computer vision, and the system dynamics model for
EKF-based data fusion. Similarly, Ref. [14] exploits accelerometers, Fiber Optic Strain Sensors (FOSS),
and plant information in a linear Kalman filter parametrized to small linear displacements. At the same
time, Ref. [15] uses rate gyros, accelerometers, strain gauges, and information on strain-displacement
mode shapes to perform flight path reconstruction with an aircraft modal amplitudes and velocities
extension. All the works mentioned above require a structural aeroelastic model, which is aircraft-
dependent and often challenging to accurately describe its uncertainties through the EKF covariances
model. To circumvent this issue, Ref. [17] proposes a standalone camera method that estimates plant
parameters amongst structural modal amplitude states through an EKF. The Machine Learning (ML)
community is also contributing to this problem. In particular, Ref. [16] compares EKF against Neural
Network approaches for wing estimation data fusion.

Finally, the literature is starting to see the first works exploring wing shape estimators in a closed
control loop. In particular, Ref. [18] explores the traditional Linear Quadratic Gaussian method of
coupling linear optimal control with optimal estimation. The method’s robustness is questioned in
the paper and calls for Loop Recovery techniques. In this context, Ref. [1] proposes an EKF-based
method that exploits rate gyro and computer vision data to estimate large and geometrically nonlinear
wing deflections without requiring knowledge of strain-displacement curves or specific aircraft dynamic
models, capable of running in real-time with high bandwidth frequency response. The present work
continues exploring this technique through real-world data in a controlled experiment in a motion capture
room with a mockup wing.

This paper is structured as follows. Section 2 presents the proposed hardware avionics and ex-
perimental setup for assessing the technique’s viability given real-world data. Section 3 revisits the
algorithm and describes its implementation in this work’s flexible wing mockup. Section 4 displays the
experimental results with our experience feedback and recommendations. We close the paper with our
main findings on Sec. 5.
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2 Wing Shape Estimator Avionics
We manufactured a flexible wing mockup, including its structure and electronics, to study the wing

shape estimation algorithm theoretically presented in Ref. [1]. The setup consists of a high-aspect-ratio
mockup wing, i.e., a highly flexible beam (see Fig. 1a), with a square-rod handle at the tip for applying
point loads. This wing contains two electronic pods, each featuring a mockup airfoil with a chord length
of 14 cm and an IMU. Each station’s leading and trailing edges have two Light-Emitting Diodes (LEDs)
as visual markers for Computer Vision feature tracking purposes. Additionally, a tiltable sighting device
at the wing root points toward the visual markers. Finally, this experiment was conducted in a motion
capture (mocap) room for ground truth availability.
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(a) Flexible wing mockup diagram.
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(b) Mockup electronics modules interrelationship.

Although the IMUs, namely Micro Electro-Mechanical System (MEMS) BNO055 modules, provide
angular velocity, specific force, and magnetic field measurements at 100Hz, our current algorithm exploits
solely the rate gyro outputs (see Sec. 3). Table 1 specifies the sensor chosen rate gyro configuration.

Parameters Value
Power Mode NORMAL

Range 2000◦s−1

Bandwidth 32 Hz
Resolution 16 bits

Sampling Rate 100 Hz
Table 1 Rate Gyro Sensor Configuration.

As a first investigation, we target offline wing shape computation in this work, but our long-term
research goal is to obtain a real-time system. Therefore, the control design requirement of real-time
estimation imposes low-latency computer vision tracking calculations. In this context, we installed the
Nvidia Jetson Nano Single Board Computer (SBC), which includes a Graphics Processing Unit (GPU) that
allows for parallel computation and is suitable for low-latency computer vision applications. Furthermore,
the suite of available Nvidia CUDA software for target tracking already answers our requirements. It can
be readily integrated into our code, with minor overhead due to CPU/GPU memory buffer exchanges.

Each node is equipped with a Printed Circuit Board (PCB) integrated with an IMU sensor and an
L7805 linear voltage regulator. Figure 1b provides a schematic representation of the logical connections
between the electronic components. Notice that a CSI-interface camera was chosen to avoid the buffering
latencies in USB 2.0 interfaces. While USB 3.0 is available in our SBC and provides similar performance
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compared to CSI, we avoided that option since our group had previous difficulties with Global Navigation
Satellite System (GNSS) receivers interference from USB 3.0 devices.

Finally, our I2C bus for IMUs/SBC communications is temporary. The flyable version of this system
includes a CAN bus instead since I2C is unreliable in noisy environments (e.g., an aircraft with electrical
motors) for the typical distances of a drone wingspan (we target 6 m).

3 Methodology
This section summarizes previous theoretical work [1] that supports the present flexible wing mockup

experiment and applies it to the current setup containing two rate gyro sensors and one camera.

3.1 Wing Deformation Parametrization
Consider an aircraft equipped with 𝑀 rate gyros distributed along its right wing (see Fig. 2). The

structural deflection is modeled by defining a Deformation Reference Line (DRL) fixed to the wing
structure (see Fig. 2) passing through all inertial sensors (we assume they’re aligned). The application of
a vertical load at the wing tip produces a deformation with local anhedral angle (𝜙(𝑠, 𝑡)) with respect to
the aircraft body coordinate frame as depicted in Fig. 3. Therefore, we parametrize bending deformations
through 𝜙(𝑠, 𝑡), allowing for significant and geometrically nonlinear deformations.
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Fig. 2 Rate gyros placement and deformation reference line 𝑠 definition. (Adapted from Ref. [1].)

Furthermore, we approximate the infinite-dimensional description 𝜙(𝑠, 𝑡) through a finite sum of
𝑁 < +∞ mode shapes 𝜙𝑖 (𝑠) according to

𝜙(𝑠, 𝑡) =
𝑁∑︁
𝑖=1

𝜙𝑖 (𝑠)𝜙𝑖 (𝑡) (1)

where 𝜙𝑖 (𝑡) are the respective mode amplitudes. The proposed estimator problem is to estimate 𝜙𝑖 (𝑡)
for 1 ≤ 𝑖 ≤ 𝑁 through rate gyro and camera data. A similar description applies to the twist deformation
𝜃 (𝑠, 𝑡).

𝑠

𝜙(𝑠 𝑗 , 𝑡)
𝜙(𝑠𝑖, 𝑡) 𝜙(𝑠 𝑗 , 𝑡) = 0 𝜙(𝑠𝑖, 𝑡) 𝜙(𝑠 𝑗 , 𝑡) 𝜙(𝑠𝑖, 𝑡)

Fig. 3 Deformation examples. (Adapted from Ref. [1].)
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3.2 Standalone Rate Gyro Wing Shape Estimation (RG-WSE)
The previously developed technique [1] approaches the problem through the lens of inertial naviga-

tion, where a standalone inertial-sensor-based algorithm produces a high-bandwidth estimation solution
while its resulting long-term estimation error divergence is settled through additional aiding sensors. This
section revisits the standalone inertial algorithm component and fits it to the parameters of the proposed
wing mockup.

Application of Eq. 1 to our wing mockup parameters yields

𝜙(𝑠 𝑗 , 𝑡) = 𝜙1(𝑠 𝑗 )𝜙1(𝑡) for 𝑗 = 1, 2 (2)

and
𝜃 (𝑠 𝑗 , 𝑡) = 𝜃1(𝑠 𝑗 )𝜃1(𝑡) for 𝑗 = 1, 2 (3)

where 𝑠1 and 𝑠2 are the arclength locations of the two rate gyros, and, since this is the first attempt to
apply this particular technique in an experimental setup, we decided to simplify our description to one
mode shape for each degree of freedom (e.g., bending and twist).

Accordingly, rate gyro local angular velocities translate to local angle derivatives according to

𝜕

𝜕𝑡

(
𝜙(𝑠 𝑗 , 𝑡)
𝜃 (𝑠 𝑗 , 𝑡)

)
= =

[
1 sin 𝜙(𝑠 𝑗 , 𝑡) tan 𝜃 (𝑠 𝑗 , 𝑡) cos 𝜙(𝑠 𝑗 , 𝑡) tan 𝜃 (𝑠 𝑗 , 𝑡)
0 cos 𝜙(𝑠 𝑗 , 𝑡) − sin 𝜙(𝑠 𝑗 , 𝑡)

]
︸                                                                ︷︷                                                                ︸

𝐻
(
𝜙(𝑠 𝑗 ,𝑡),𝜃 (𝑠 𝑗 ,𝑡)

)
©«
𝑃 𝑗 (𝑡)
𝑄 𝑗 (𝑡)
𝑅 𝑗 (𝑡)

ª®®¬ (4)

where each rate gyro angular velocity output is modeled by

©«
�̂� 𝑗

�̂� 𝑗

�̂� 𝑗

ª®®¬ =
©«
𝑃 𝑗

𝑄 𝑗

𝑅 𝑗

ª®®¬ + 𝜺 𝑗 + 𝒘 (𝑔)
𝑗

(5)

where 𝜺 𝑗 and 𝒘 (𝑔)
𝑗

are, respectively, 𝑗 th rate gyro’s drift and noise. Additionally, 𝝎 𝑗 =
(
𝑃 𝑗 , 𝑄 𝑗 , 𝑅 𝑗

)𝑇 and

�̂� 𝑗 =

(
�̂� 𝑗 , �̂� 𝑗 , �̂� 𝑗

)𝑇
denote, ground truth and measured angular velocities described in the 𝑗 𝑡ℎ rate gyro

local frame {�̂�(𝑠), �̂�(𝑠), 𝒛(𝑠)}, respectively. Although the technique allows for rate gyro drift estimation,
we will consider in this work 𝜺 𝑗 = 0.

If we denote the first and second rows of 𝐻 in Eq. 4 by 𝑯𝜙 (𝑠 𝑗 , 𝑡) and 𝑯𝜃 (𝑠 𝑗 , 𝑡), respectively, and
differentiate Eqs. 2 and 3, we write(

𝑯𝑇
𝜙
(𝑠1, 𝑡)𝝎1

𝑯𝑇
𝜙
(𝑠2, 𝑡)𝝎2

)
=

[
𝜙1(𝑠1)
𝜙1(𝑠2)

]
︸    ︷︷    ︸

Φ

¤𝜙1 and

(
𝑯𝑇
𝜃
(𝑠1, 𝑡)𝝎1

𝑯𝑇
𝜃
(𝑠2, 𝑡)𝝎2

)
=

[
𝜃1(𝑠1)
𝜃1(𝑠2)

]
︸    ︷︷    ︸

Θ

¤𝜃1. (6)

The Standalone Rate Gyro Wing Shape Estimation (RG-WSE) algorithm is then obtained through
integration of the least squares solutions of the above equations. That is,

¤𝜙1 = (Φ𝑇Φ)−1Φ𝑇

(
𝐻𝑇
𝜙
(𝑠1, 𝑡)𝝎1

𝐻𝑇
𝜙
(𝑠2, 𝑡)𝝎2

)
and ¤𝜃1 = (Θ𝑇Θ)−1Θ𝑇

(
𝐻𝑇
𝜃
(𝑠1, 𝑡)𝝎1

𝐻𝑇
𝜃
(𝑠2, 𝑡)𝝎2

)
. (7)
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Additionally, in state-space representation, Eq. 7 can be written as ¤𝒙 = 𝜑(𝒙, 𝒖), where 𝒙 = (𝜙1, 𝜃1)
and 𝒖 = (𝝎1,𝝎2). Figure 4 illustrates the algorithm schematically.

𝜑(·)
Eq. 7

�̂�1(𝑡)

�̂�2(𝑡)

𝜕
𝜕𝑡
𝜙1

𝜕
𝜕𝑡
𝜃1

∫
d𝑡

𝜙1(𝑡)

𝜃1(𝑡)
𝒙(𝑡)

Fig. 4 Schematic of the RG-WSE algorithm. (Adapted from Ref. [1]).

3.3 An RG-WSE Error Model for the EKF
The following describes the RG-WSE error model that implements the Extended Kalman Filter

(EKF) Prediction Phase in the following section. Accordingly, the EKF state vector is defined as

𝒙EKF =

(
𝛿𝜙1 𝛿𝜃1

)𝑇
(8)

where 𝛿𝜃1, 𝛿𝜙1 represent the error states, given by the difference between true and estimated states. The
dynamics of 𝒙EKF is derived by linearizing Eq. 8, such that

¤𝒙EKF = 𝜑(𝒙, 𝒖) − 𝜑(�̂�, �̂�) ≈
[
𝜕𝜑

𝜕𝜙1

𝜕𝜑

𝜕𝜃1

𝜕𝜑

𝜕𝒖

]
︸              ︷︷              ︸

𝐴

𝒙EKF +
𝜕𝜑

𝜕𝒖︸︷︷︸
𝐺

𝒘 (𝑔) (9)

where 𝒘 (𝑔) aggregates all the sensor noise vectors, i.e., 𝒘 (𝑔) = (𝒘 (𝑔)
1 , 𝒘 (𝑔)

2 ), and all the Jacobians are
evaluated at (�̂�, �̂�), obtained in practice during the experiment numerically through the Complex Step
linearization technique.

3.4 Camera-Aided Rate Gyro Wing Shape Estimation (CRG-WSE)
In this section, we bound the RG-WSE estimation errors by adding camera measurements through

an EKF. To implement the discrete-time EKF, the continuous-time model is discretized through finite
differences to yield

𝒙𝐸𝐾𝐹 (𝑡𝑘 ) ≈ 𝒙𝐸𝐾𝐹 (𝑡𝑘−1) + ¤𝒙𝐸𝐾𝐹Δ𝑡 = = (𝐴Δ𝑡 + 𝐼)︸     ︷︷     ︸
𝐹𝑘

𝒙𝐸𝐾𝐹 (𝑡𝑘−1) + 𝐺𝑘𝜕𝒘
(𝑔) (10)

where 𝜕𝒘 (𝑔) is the discrete-time white noise equivalent of 𝒘 (𝑔) . The statistics of 𝜕𝒘 (𝑔) should conform
to rate gyro manufacturer specifications.

3.4.1 Prediction Step (RG-WSE)
The state prediction �̂�𝑘 |𝑘−1 and error covariance prediction 𝑃𝑘 |𝑘−1 are given by

�̂�𝑘 |𝑘−1 = 𝐹𝑘 �̂�𝑘−1|𝑘−1

𝑃𝑘 |𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹
𝑇
𝑘 + 𝐺𝑘𝑄𝑘𝐺

𝑇
𝑘

(11)

where 𝑄𝑘 , 𝑃𝑘 |𝑘 and 𝑃𝑘 |𝑘−1 are the covariance of the rate gyros noise, the a posteriori error covariance
matrix, and the a priori error covariance, respectively.
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3.4.2 Update Step (Computer Vision)
The proposed rate gyro and sighting device data fusion technique is based on tracking fixed visual

markers 𝑀𝑘 on the wing; each with a priori known wing location (𝑠𝑘 , 𝑥𝑘 , 𝑧𝑘 ). For each marker 𝑀𝑘 ,
𝑘 = 1..6, its position with respect to the wing root camera 𝐶, denoted by 𝒑𝑘/𝑐 ∈ R3, is described in the
𝐶 camera coordinate frame as

𝒑𝑘/𝑐 = −𝐷 𝑓
𝑐 𝒓

𝐶
𝑓 + 𝐷

𝑓
𝑐 𝒓 𝑓 (𝑠𝑘 , 𝑡) + 𝐷 𝑓

𝑐𝐷 (𝜙(𝑠𝑘 , 𝑡), 𝜃 (𝑠𝑘 , 𝑡), 𝜓(𝑠𝑘 , 𝑡))𝑇
©«
𝑥𝑘

0
𝑧𝑘

ª®®¬ (12)

where 𝐷 𝑓
𝑐 and 𝒓𝐶

𝑓
, denote the direction cosine matrix from body frame to camera 𝐶 frame, and camera

position with respect to wing root in body frame, respectively (see Fig. 5). The camera is assumed fixed
in body frame and thus 𝐷 𝑓

𝑐 is constant. Hence the camera measurement 𝒛𝑘/𝑐 ∈ R2 in pixels is given by

𝒛𝑘/𝑐 = Π
𝑓 𝒑𝑘/𝑐[

1 0 0
]
𝒑𝑘/𝑐

where Π =

[
0 1 0
0 0 1

]
(13)

and 𝑓 ∈ R is the focal length in pixels.

a) Camera axis definition and symbols.

𝑠

�̂�CAM
𝒛CAM

𝐶

×𝑀𝑘
𝒑𝑘/𝑐

b) Camera view.

�̂�CAM

𝒛CAM

×𝑀𝑘

𝒛𝑘/𝑐

Fig. 5 Camera-related symbols and frame definitions. (Adapted from Ref. [1].)

Given these assumptions, 𝒛𝑘/𝑐 depends exclusively on modal amplitudes 𝜙1 and 𝜃1. Therefore, 𝒛𝑘/𝑐
linearization yields

𝒛𝑘/𝑐 (𝜙1, 𝜃1) − 𝒛𝑘/𝑐 (𝜙1, 𝜃1)︸                            ︷︷                            ︸
≜Δ𝒛𝑘/𝑐

=
𝜕𝒛

𝜕𝜙1

𝑘/𝑐
𝛿𝜙1 +

𝜕𝒛

𝜕𝜃1

𝑘/𝑐
𝛿𝜃1 (14)

Consequently, an appropriate model for an observation equation is given by

Δ𝒛𝑘/𝑐 =
[
𝜕𝒛
𝜕𝜙1

𝑘/𝑐 𝜕𝒛
𝜕𝜃1

𝑘/𝑐
]

︸               ︷︷               ︸
𝐻𝑘/𝑐

𝒙𝐸𝐾𝐹 + 𝒘𝑘/𝑐
𝐶𝐴𝑀

(15)

where 𝒘𝑘/𝑐
𝐶𝐴𝑀

∈ R2 is additive white Gaussian noise with statistics depending on camera quality, tracking
algorithm performance and marker–camera positioning. The Kalman gain, updated state, and updated
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error covariance are computed through the classical Kalman filter formulae :

𝒚𝑘 = Δ𝒛𝑘/𝑐 − 𝐻𝑘/𝑐 �̂�𝑘 |𝑘−1

𝑆𝑘 = 𝐻
𝑘/𝑐𝑃𝑘 |𝑘−1(𝐻𝑘/𝑐)𝑇 + 𝑅𝑘

𝐾𝑘 = 𝑃𝑘 |𝑘−1(𝐻𝑘/𝑐)𝑇𝑆−1
𝑘

�̂�𝑘 |𝑘 = �̂�𝑘 |𝑘−1 + 𝐾𝑘 𝒚𝑘
𝑃𝑘𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘/𝑐)𝑃𝑘 |𝑘−1

(16)

where 𝑅𝑘 = 𝐸 [𝒘𝑘/𝑐
𝐶𝐴𝑀

(𝒘𝑘/𝑐
𝐶𝐴𝑀

)𝑇 ] is the measurement noise covariance, and the mean of the measurement
noise is assumed to be zero. Figure 6 illustrates the entire algorithm.

RG-WSE

𝝎1(𝑡)

𝝎2(𝑡)

𝜙1(𝑡)

𝜃1(𝑡) Extended
Kalman
Filter

Rate
gyros

𝛿𝜙1(𝑡), 𝛿𝜃1(𝑡) (correction)

Aiding
Sensors

Fig. 6 Aided inertial wing shape estimator overall architecture. (Adapted from Ref. [1].)

3.5 Computer Vision Tracking
For Computer Vision purposes, we exploit OpenCV, a popular opensource project containing a li-

brary of eight tracking algorithms (namely, BOOSTING, MIL, KCF, TLD, MEDIANFLOW, GOTURN,
MOSSE, and CSRT) which were assessed according to the following quantitative and qualitative perfor-
mance criteria: computational tracking time, achievable frames per second (FPS), occlusion robustness,
out-of-view markers tracking recovery, marker agile motion tracking and invariance to illumination
changes (see Table 2). After analysis, we chose the Kernalized Correlation Filter (KCF) and the Chan-
nel and Spatial Reliability Tracker (CSRT) [19] for our experiments. While CSRT and KCF fill all
requirements, CSRT displayed more robustness in scenarios where regions of interest (ROIs) are subject
to high-frequency and indeterministic motion. Hence, the CSRT algorithm will be employed for the
camera-aided component of the state estimation procedure, even if KCF shows higher FPS. This tradeoff
will have to be further investigated for future real-time experiments.

3.6 Intrinsic and Extrinsic Camera Parameters Calibration
The EKF camera model relies on knowledge of the following intrinsic/extrinsic camera setup pa-

rameters: the position of the camera with respect to the wing root 𝒓𝐶
𝑓
, the camera tilt angle 𝜃𝑐, and

the camera focal length 𝑓 . While the extrinsic parameters can be directly measured using rulers and
protractors, the intrinsic focal length calls for a camera calibration procedure, which has been conducted
through standard OpenCV camera calibration routines. In particular, a 6x8 chessboard image in various
configurations within the camera’s field of view were processed to yield the intrinsic camera matrix and
the distortion coefficients, including the focal length.

However, while validating the EKF camera model by projecting the known mocap markers’ positions
on the predicted camera plane using the camera estimated parameters, we had discrepant results between
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Algorithm FPS Occlusion Out-of-view Agile Motion Illumination Changes
BOOSTING 15 NO NO NO NO

MIL 4 NO YES NO NO
KCF 50 YES YES YES YES
TLD 6 NO NO YES NO

MEDIANFLOW 50 YES NO YES NO
GOTURN 150 NO NO NO NO
MOSSE 300 NO NO YES NO
CSRT 10 YES YES YES YES

Table 2 Computer Vision tracking algorithms comparison.

the predicted and actual markers’ positions on the video frame. This signaled that the precision of our
camera parameters needed improvement.

Therefore, an auto-calibration optimization algorithm was developed to improve the camera param-
eters’ precision. In particular, the developed tool minimizes a cost function that adds up all distances
between predicted and actual markers’ positions in the image frame (i.e., in pixels) for one chosen instant
of time by looking into the space of possible 𝒓𝐶

𝑓
, 𝜃𝑐 and 𝑓 . We found that while the tilt orientation saw a

substantial re-adjustment, there was no visible change in the camera coordinates 𝒓𝐶
𝑓
.

3.7 Determination of Mode Shapes
The CRG-WSE algorithm requires the definition of first wing mode shapes 𝜙1(𝑠) and 𝜃1(𝑠). These

were computed using a snapshot of the wing mockup subjected to a point load at the tip (see Fig. 7), in
contrast to the commonplace eigenvector computation of a linearized structural dynamics model. This
choice is justified by the fact that our experiment is conducted under quasi-static conditions over a large
wing deflection envelope instead of small disturbances in the neighborhood of a trimmed condition.

Fig. 7 Computation of selected mode shape 𝜙(𝑠) = 0.3776 · 𝑠.

4 Experiment and Results
The experiment is conducted in a motion capture facility, which logs at 50 Hz the position of ten

installed markers (see Sec. 2) up to millimetric precision and thus is used as ground truth. We apply
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Fig. 8 Experimental setup and manual loads application method.
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Fig. 9 Motion capture markers estimated position errors in the camera frame |Δ𝒓 (𝑡) | for the RG-WSE and
CRG-WSE algorithms. Figure 10 illustrates the visual outcome of selected time instants 𝑡𝑖 , 𝑖 = 1..4, for a
visual interpretation of the magnitudes of the performance index |Δ𝒓 (𝑡) |.

large and small amplitude pure-bending deflections at various frequencies through a string fastened at
the center of the square-rod handle at the beam tip (see Fig. 8). During the experiment, the SBC records
the wing root camera stream and simultaneously logs the rate-gyro angular rates in the local DRL frame
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(a) Camera output at 𝑡1. (b) Camera output at 𝑡2.

(c) Camera output at 𝑡3. (d) Camera output at 𝑡4.

Fig. 10 Illustration of the visual outcome of selected time instants 𝑡𝑖 , 𝑖 = 1..4, for a visual interpretation
of the magnitudes of the performance index |Δ𝒓 (𝑡) |. See Fig. 9 for the performance indexes outcome in
time. Blue squares denote the output of the computer vision tracking algorithm, while white circles denote
RG-WSE standalone IMU algorithm output, and red circles denote the CRG-WSE EKF-based algorithm
outcome.

of reference from the two IMUs. All RG-WSE and CRG-WSE computations are performed offline (after
calibration of intrinsic and extrinsic camera parameters according to Sec. 3.6) and compared against the
mocap ground truth.

We define the figure of merit for the error Δ𝑟 (𝑡) as

Δ𝑟 (𝑡) =
∑︁

visible markers

|𝒓𝑖 (𝑡) − 𝒓∗
𝑖
(𝑡) |

𝑁visible markers
(17)

where 𝒓 𝒊 (𝑡) is the estimated marker position from either the RG-WSE or the CRG-WSE algorithms
projected in the camera plane and 𝒓∗

𝑖
(𝑡) the true marker position as measured by the motion capture

facility, also projected in the camera frame. This error is used as a performance index to compare
the results between the above two methodologies. These results are depicted in Fig. 9, and show that
standalone IMU estimation yields error divergence, as predicted by previous work [1]. Additionally,
incorporating the camera data reduces and bounds the errors.
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The experiment consisted of a frequency sweep in bending, which is visible in Fig. 9 through the
increasing frequency of the error signal in the Standalone IMU (RG-WSE) curve. Additionally, the
increase in frequency (inside the bandwidth tested in this experiment) does not worsen the estimation
in both methods. In particular, the CRG-WSE method yields a constant error bound throughout the
frequency sweep. On the other hand, the RG-WSE shows a constant error rate independent of vibration
frequency. Finally, while we did not see error amplification in CRG-WSE in our test frequency band, we
plan to reproduce this exercise in higher frequencies to estimate better the filter bandwidth and associated
trade-offs (e.g., noise disturbance and robustness in a control loop).

In time instant 𝑡1, during initialization of the system, when the wing is at rest, we have our best
performance indexes |Δ𝒓 (𝑡) |, which are reflected in Fig. 10 by the observed superposition of mocap
markers (i.e., solid gray spherical features at each black rod ends) and RG-WSE and CRG-WSE predictions
of the position of same markers, respectively given by the white and red circles. During consequent
time instants, we observe RG-WSE error divergence through the increasing mismatch between mocap
markers’ positions and their respective RG-WSE predictions (white circles). On the other hand, we
observe CRG-WSE error boundness through the comparatively minor position mismatches, which are
not increasing with time.

5 Conclusion
This paper exemplifies a wing shape estimation methodology through an experimental mockup.

We confirmed previous theoretical predictions of rapidly unstable errors if only IMUs are employed
and stable estimation if camera data is added. Large, geometrically nonlinear, and varying-frequency
deflections were tested, and the results show encouraging results for upcoming work on the real-time
implementation. We are confident that computer vision should not be a problem given our obtained FPS.
On the other hand, the fact that the angle-based deformation description requires an integration process
at every sample time instant to obtain wing displacements should be further investigated.
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