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ABSTRACT

This work addresses the benefits and limitations of reinforcement learning (RL) - based adaptive
control for the vertical landing of reusable launch vehicles. The RL algorithm selected is the
so-called Q-learning, that allows to learn the optimal controller directly from plant data. The
focus is on the development of an adaptive, model-free controller so that the launcher is able to
follow a nominal predefined trajectory, even when subjected to disturbances and uncertainty. The
main contribution of this work is the development of a cascaded control structure in which each
loop is composed of a RL controller. The robustness of the proposed approach is tested in several
scenarios and its performance is compared with that obtained with a Linear Quadratic Regulator
(LQR). The main challenge in learning-based control approaches to the problem of vertical landing
is the short trajectory duration, which limits the period for control adaptation. Another significant
challenge consists in training the inner loop and outer loop controllers, that must be done with
appropriate time-scales. By presenting the results obtained with the RL controller as well as its
analysis, the study allows understanding, evaluating, and comparing its operating limits with the
LQR control method in nonlinear simulations with parameter uncertainty.

Keywords: Reusable launch vehicles; Adaptive Control; Reinforcement Learning (RL); Q-learning; Linear
Quadratic Regulator (LQR); Cascade control

Nomenclature

𝜓, \, 𝜙 = Euler angles (heading, pitch, roll)
𝑢, 𝑣, 𝑤 = velocity Cartesian components
𝑝, 𝑞, 𝑟 = angular velocity components
𝐹 = force
𝑀 = moment
𝜔 = angular velocity vector
𝑚 = mass
thr = thrust force
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1 Introduction
Reusability has been a major goal in the rocket industry. Reusable rockets are now the main driver

in the new space economy since they allow companies to reduce cost, making space exploration more
accessible and affordable, while reducing the amount of space debris generated by launches 1 [1].

Reinforcement learning is a class of machine learning methods that has been used in several applica-
tions. In general, the use of reinforcement learning techniques in optimal control [2, 3] has widened the
horizon of the field and has overcome some of the limitations, such as the need for a full dynamic model
in most of the traditional optimal control methods, providing model-free solutions to optimal control
problems.

In this work, a reinforcement learning algorithm is adopted, driven by the fact that the reusability of
a launcher implies landing trajectories that start at points of high uncertainty, accounting for uncertain
launcher dynamics, significant wind disturbances, while, as a consequence of the ascent burn, the
performance of the actuators may be degraded. Given the high uncertainty and the need to follow a
reference trajectory accurately, classical control methods are challenged and adaptive control is thus
selected. The main difficulty in its implementation consists in the short length of the trajectory, thereby
reducing the period to train the controller.

The RL algorithm selected is Q learning, since the problem in question is a regulator problem,
the system dynamics is approximately linear and the cost is quadratic, allowing the parameters of an
approximation of the Q-function to be learn without knowing the system dynamics and developing an
online solution for discrete-time systems with infinite horizon.

The goal of this study is to develop and test in simulation a control system for landing manoeuvres
of reusable launch vehicles in highly uncertain environments, in order to compare adaptive control
algorithms based on models with local controllers designed with robust controllers with reinforcement
learning based adaptive controllers that adjust an initial robust controller, in the presence of uncertainties
and sudden changes in dynamics ([4]).

2 Theoretical background

2.1 LQR controller
The objective of the linear controllers is to stabilize the system around the different equilibrium

points. The reason for approximating the nonlinear system by a linear model is that, by so doing, one can
apply rather simple and systematic linear control design techniques.

In order to design a linear controller, first of all, the system to be controlled has to be linear. The
nomenclature considered for the discrete linear model is the following:

x(𝑘 + 1) = Ax(𝑘) + Bu(𝑘)
y(𝑘) = Cx(𝑘) + Du(𝑘).

There are several types of linear controllers, however, in this work the LQR controller, a full state
feedback controller, will be used due to the fact that it is an optimal controller that can provide not only
a good stability, but also the stability margin of a system is guaranteed and it provides a better optimal
energy compared to other linear controllers.

1R. Mike,The History Of Reusable Rockets, URL: https://cosmospnw.com/history-of-reusable-rockets/
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Linear quadratic regulator (LQR) is a method that optimizes the linear feedback gains of state
variables of a linear plant [5]. It is intended to minimize a cost function with the constraint imposed by
the system dynamics. The cost function is given by

𝐽 =
1
2

∞∑︁
𝑘=0

[x𝑇 (𝑘)Qx(𝑘) + Ru2(𝑘)], (1)

where Q (positive semi-definite) and R (positive definite) are state and input symmetric weighting
matrices, respectively. Minimising the cost function provides optimal feedback

u(𝑘) = −Kx(𝑘), (2)

which is a feedback of the state x with constant gain K.

The gain matrix, K, is calculated using the following expression:

K = (B𝑇SB + R)−1B𝑇SA (3)

where the matrix S is the solution of the Riccati equation. The gain matrix K is calculated using the
Matlab function: [K,S,E] = dlqr(A,B,Q,R).

It can be seen that as the value of R increases there are advantages and disadvantages. The advantages
are that the amplitude of u decreases and the sensitivity to high frequency noise and modelling errors is
reduced. The disadvantages are that the response of y to disturbances in the system increases and the
system becomes slower. For a smaller value of R, the cost of the control parcel is lower allowing y to be
smaller.

2.2 Reinforcement Learning Algorithms
Reinforcement learning is a machine learning algorithm in which the most important feature dis-

tinguishing it from other types of learning is that it refers to an actor or agent that interacts with its
environment and modifies its actions, or control policies, based on stimuli received in response to its
actions in order to maximize a reward or, equivalently, minimize a cost [6, 7]. In the optimal RL
algorithms, the interest is no longer the system dynamics but a performance index that quantifies how
close to optimality does the closed-loop control system operate. Thus, optimal behaviors are learned by
observing the response from the environment to non-optimal control policies.

The type of RL algorithms to apply to a specific problem depends on its characteristics. The problems
can have a finite or an infinite horizon. Although the construction of finite horizon problems is essentially
realistic, it may be still impractical in large scale real problems, due to the curse of dimensionality. Thus,
one simple solution to deal with these problems is to simply leave the terminal time unspecified and open.
Futhermore, the state and action space can be continuous or discrete. In this study a continuous state
space and action space will be considered, meaning that the states and possible actions are not confined
to a previously defined set.

2.2.1 Problem Definitions and Important Concepts
It is considered the class of systems defined by

𝑥𝑘+1 = 𝑓 (𝑥𝑘 ) + 𝑔(𝑥𝑘 )𝑢𝑘 , (4)

where 𝑥𝑘 ∈ 𝑅𝑛 is the state and 𝑢𝑘 ∈ 𝑅𝑚 the control input. A control policy is a function from the state
space to the control space, that for every state defines a control action. In reinforcement learning, the
control policy is learned in real time based on stimuli received from the environment [6]. The goal
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directed optimal behavior is captured defining the performance measure (cost function)

𝑉ℎ (𝑥𝑘 ) =
∞∑︁
𝑖=𝑘

𝛾𝑖−𝑘𝑟 (𝑥𝑖, 𝑢𝑖), (5)

with 0 < 𝛾 ≤ 1 the discount factor introduced such that the cost function remains bounded [6]. The
performance index measures the cost-to-go of the state x from the current time k to the infinite horizon
future with a defined feedback control policy. Here, the quadratic energy function

𝑟 (𝑥𝑘 , 𝑢𝑘 ) = 𝑥𝑇𝑘Q𝑥𝑘 + 𝑢𝑇𝑘R𝑢𝑘 , (6)

where Q and R are positive definite matrices.

The Bellman equation, of which𝑉ℎ (𝑥𝑘 ) is the unique solution, expresses a relationship between the
value of a state and the values of its successor states and is given by

𝑉ℎ (𝑥𝑘 ) = 𝑟 (𝑥𝑘 , ℎ(𝑥𝑘 )) + 𝛾𝑉ℎ (𝑥𝑘+1). (7)

The Bellman’s principle of optimality states: “An optimal policy has the property that, no matter
what the previous controls have been, the remaining decisions must constitute an optimal policy with
regard to the state resulting from those previous decisions” [6]. Accordingly,

𝑉∗(𝑥𝑘 ) = min
ℎ(.)

(𝑟 (𝑥𝑘 , ℎ(𝑥𝑘 )) + 𝛾𝑉∗(𝑥𝑘+1), (8)

which is the so-called Bellman optimality equation. The optimal policy is obtained from

ℎ∗(𝑥𝑘 ) = arg min
ℎ.

(𝑟 (𝑥𝑘 , ℎ(𝑥𝑘 )) + 𝛾𝑉∗(𝑥𝑘+1). (9)

This equation defines a backwards procedure to determinate the value function.

The Bellman equation and the optimal Bellman equation are fixed-point equations used to develop
forward-in-time methods. This means that, given an admissible policy 𝑢𝑘 = ℎ(𝑥𝑘 ), they have a unique
fixed point, 𝑉ℎ (𝑥𝑘 ) and 𝑉∗

ℎ
(𝑥𝑘 ) respectively. Starting with any value of 𝑉0(𝑥𝑘 ), it converges to 𝑉ℎ (𝑥𝑘 ) or

𝑉∗(𝑥𝑘 ) respectively. Using this property, there are two important algorithms: value iteration and policy
iteration. Both algorithms have two main steps: the first step corresponds to calculation of the value
function and the second step is responsible for the improvement. The main difference between both is
in the way the evaluation step is considered. While in policy iteration the value of the current policy is
determined using the Bellman equation, in the value iteration, the value of the states is updated using one
iteration of the Bellman equation.

The main idea of value function approximation is to construct a relatively low dimensionally
parameterised space for approximating the total cost functions. In this work, the value function is
approximated using a polynomial basis functions.

2.2.2 Q Learning
Using the value function has the drawback that it does not depend explicitly on the control variable,

implying that the plant model must be used. An alternative is Q learning, an algorithm that allows the
learning of the value function where the model parameters are not known nor needed to be estimated and
that explicitly depends on the control.
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The Q (quality) function associated with the policy 𝑢 = ℎ(𝑥) is defined as

𝑄ℎ (𝑥𝑘 , 𝑢𝑘 ) = 𝑟 (𝑥𝑘 , 𝑢𝑘 ) + 𝛾𝑉ℎ (𝑥𝑘+1), (10)

which is a function of both the state 𝑥𝑘 and the control 𝑢𝑘 at time k [6].

The optimal Q function is defined by

𝑄∗(𝑥𝑘 , 𝑢𝑘 ) = 𝑟 (𝑥𝑘 , 𝑢𝑘 ) + 𝛾𝑉∗(𝑥𝑘+1). (11)

The Bellman Optimality equation is terms of 𝑄∗ is given by

𝑉∗(𝑥𝑘 ) = min
𝑢
𝑄∗(𝑥𝑘 , 𝑢) (12)

and the optimal control is given by

ℎ∗(𝑥𝑘 ) = arg min
𝑢

(𝑄∗(𝑥𝑘 , 𝑢)). (13)

If there are no control constraints, the minimum value is obtained by

𝜕

𝜕𝑢
𝑄∗(𝑥𝑘 , 𝑢) = 0, (14)

which can be calculated without knowing the system dynamics [6].

LQR case
According to (10), the Q function for the LQR case is

𝑄𝐾 (𝑥𝑘 , 𝑢𝑘 ) = 𝑥𝑇𝑘Q𝑥𝑘 + 𝑢𝑇𝑘R𝑢𝑘 + 𝑥
𝑇
𝑘+1P𝑥𝑘+1, (15)

where P is the solution to the Lyapunov equation for the gain (or policy) K.

Assuming the parametric approximator of Q of the form

𝑄ℎ (𝑥, 𝑢) = W𝑇𝝋(𝑥, 𝑢) = W𝑇𝝋(𝑧) (16)

with 𝝋(𝑥, 𝑢) a basis set of activation functions. In the LQR, the basis functions are all the combinations
of products of two different entries of the state.

RLS or gradient-descent can be used to identify the Q function associated to a given policy K. These
methods are used to estimate the parameters W using data from the system.

In the LQR case,

𝑄𝐾 (𝑥𝑘 , 𝑢𝑘 ) = 𝑧𝑇𝑘H𝑧𝑘 =
[
𝑥𝑘

𝑢𝑘

]𝑇 [
H𝑥𝑥 H𝑥𝑢

H𝑢𝑥 H𝑢𝑢

] [
𝑥𝑘

𝑢𝑘

]
. (17)

Thus,
H𝑢𝑥𝑥𝑘 + H𝑢𝑢𝑢𝑘 = 0

𝑢𝑘 = −(H𝑢𝑢)−1H𝑢𝑥𝑥ℎ (18)

Since the quadratic kernel matrix H has been found using online reinforcement learning, the system
dynamics is not needed for this step.
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2.2.3 Q Learning Policy Iteration Algorithm
Initialization: Select any admissible (i.e., stabilizing) control policy ℎ0(𝑥𝑘 ).
Policy Evaluation Step: Determine the least-squares solution𝑊 𝑗+1 to

W𝑇
𝑗+1(𝝋(𝑧𝑘 ) − 𝛾𝝋(𝑧𝑘+1)) = 𝑟 (𝑥𝑘 , ℎ 𝑗 (𝑥𝑘 ))

Policy Improvement Step: Determine an improved policy using

ℎ 𝑗+1(𝑥𝑘 ) = arg min
ℎ(.)

(W𝑇
𝑗+1𝝋(𝑥𝑘 , 𝑢)) (19)

Since 𝑢𝑘 = −K𝑥𝑘 , 𝑢𝑘 depends on 𝑥𝑘 therefore, the persistence of excitation needed on (𝝋(𝑧𝑘 ) −
𝛾𝝋(𝑧𝑘+1)) doesn’t exist. Thus, one must add noise, 𝑢𝑘 = −K𝑥𝑘 + [𝑘 .

3 Methodology
For the development of the equations of motion of a vehicle in free flight, the following assumptions

were made: the vehicle is a rigid body with fixed mass distribution; the position of the center of gravity
is fixed and its position is the same as the one of the center of mass; the air is considered at rest relative
to the Earth and the Earth surface can be approximated as flat due to the short duration of the landing.

The mathematical model describing the behaviour of a vehicle in free flight, based on Newton’s and
Euler’s laws of a rigid-body motion, is represented by a continuous-time nonlinear state-space model [8].

The general structure is given by:{
¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)) 𝑥(0) = 𝑥0

𝑦(𝑡) = 𝑔(𝑥(𝑡))
(20)

where t is the time variable and the vectors 𝑥(𝑡), 𝑥0 and 𝑦(𝑡) represent the state variables, their initial
condition and the output variables, respectively. The system dynamics are governed by f and g, which
are nonlinear functions of the state variables and model parameters.

First, the equations defining the 6DoF system were determined and then the system was linearised
and discretized around the hover position. With the nominal trajectory defined, an LQR controller was
designed as well as an RL controller. It is stressed that the linearised model is only required by LQR, the
controller based on RL being model free. The nonlinear model was used for simulations of the controlled
vehicle.

The aerodynamic coefficients were provided by [9]. For stable flight, the center of gravity must be
above the center of pressure. In this work, its position is considered constant.

3.1 6DoF Landing Problem
For the development of the motion equations, which are needed to test the RL controller, the following

reference frames have been considered:

• Recovery Pad frame: centred on the landing point, it is an Up-East-North reference frame, with
the X axis pointing upwards and the Y (to east) and Z (to north) axes in the perpendicular plane.
The Recovery pad frame is the inertial frame considered since the rotation of the Earth is ignored.
This is a valid assumption because only the final phase of the landing is considered.
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• Body frame: follows the body motion, centred on the centre of mass and with the x-axis coincident
with the body symmetry axis with positive direction pointing downrange through the vehicle nose.
Axes y and z in the perpendicular plane and with the directions of the aerodynamic fins. In this
study, it can be assumed that Oxz and Oxy planes are planes of symmetry of the vehicle.

The figure 1 shows the angles in the axis system used.

Fig. 1 Propulsion force from the nozzle of the rocket [10].

Translational motion The Newton’s second law of motion can be written as

FI = ¤𝑚VI + 𝑚 ¤VI, (21)

where F are the forces applied on the body and VI is its velocity in the inertial frame. The forces applied
to the rocket are the thrust, the gravitational force, and the aerodynamic forces.

With regard to the change in mass, it follows that 𝑚 = 𝑚0 − 1
𝐼𝑠𝑝

∫ 𝑡
0 ∥F𝑝𝑟𝑒 𝑓 ∥2 𝑑𝑡 where F𝑝𝑟𝑒 𝑓 (N) is the

reference thrust, 𝐼𝑠𝑝 (s) is the specific impulse of propellant, 𝑚0 (kg) is the rocket mass at time zero and
t (s) is the simulated time.

Rotational motion For a rocket, the rotational motion can be described as

¤𝝎 = 𝐼−1 [M − 𝝎 × I · 𝝎], (22)

where I is the inertia tensor (which actually varies along the path because the mass decreases), 𝝎 is the
angular velocity, M is the sum of the torques and the operator × is the outer product. The tensor of inertia
is a matrix 3×3.

Kinematic equations The attitude of a vehicle in flight is defined as the angular orientation of the
body with respect to Earth-fixed axes. Since in this case nearly rectilinear trajectories are dealt with, it
is reasonable to express the kinematic equations using Euler angles [8]. In 6DoF simulations, the rocket
attitude is computed directly by integrating the set of equations that define Euler angle rates.


¤𝜙 = 𝑝 + (𝑞 sin 𝜙 + 𝑟 cos 𝜙) tan \
¤\ = 𝑞 cos 𝜙 − 𝑟 sin 𝜙
¤𝜓 =

(𝑞 sin 𝜙+𝑟 cos 𝜙)
cos \

. (23)
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3.2 Forces and moments acting on the body
Since the earth is assumed to be flat, the gravitational force always has the direction e𝑥𝐼 and a

negative sign. Near the surface of the earth, Fgrav = 𝑚𝑔e𝑋 with 𝑔(𝑥) = 𝑔0( 𝑅𝐸

𝑅𝐸+𝑥 )
2, where 𝑔0 is the

gravitational acceleration, 𝑅𝐸 = 6371km is the earth’s radius and x is the rockets altitude. Since the
altitudes considered in the problem are relatively low, this simplified model can be used.

Considering the thrust model, Fthr is the thrust force vector, 𝛾2 is the angle from 𝑥𝑏-axis projecting
the thrust vector Fthr on 𝑥𝑏𝑦𝑏-plane and 𝛾1 is the angle projecting thrust vector Fthr on 𝑥𝑏𝑦𝑏-plane to the
thrust vector Fthr. When the thrust force is not aligned with the x-axis of the body (𝛾1 ≠ 0 or 𝛾2 ≠ 0), it
produces momentum and the arm is given by the distance between the point of application of the force
(motor) and the centre of mass: 𝑙Thr.

The components of the propulsion force on the body frame are given by:
𝐹thr𝑥𝑏 = 𝐹thr cos 𝛾1 cos 𝛾2

𝐹thr𝑦𝑏 = 𝐹thr cos 𝛾1 sin 𝛾2

𝐹thr𝑧𝑏 = −𝐹thr sin 𝛾1

⇔


𝛾1 = arctan

𝐹thr𝑧𝑏√︃
𝐹2

thr𝑥𝑏
+𝐹2

thr𝑦𝑏

𝛾2 = arctan
𝐹thr𝑦𝑏
𝐹thr𝑥𝑏

(24)

Since rthr − rcm = (𝑟thr − 𝑟cm)e𝑥𝑏 = 𝑙thre𝑥𝑏 ,

MThr = 𝑙thre𝑥𝑏 × 𝐹thr

[
cos 𝛾1 cos 𝛾2 cos 𝛾1 sin 𝛾2 − sin 𝛾1

]𝑇
3.3 Guidance architecture
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Fig. 2 Nominal trajectory.

Although for landing there are several phases to be con-
sidered, in this study, only the powered descent and landing
phases are considered, where the engine is ignited, the thrust
force vector is used to control the translational motion of the
vehicle – attitude pitch and yaw motion is controlled by the
TVC system and the RCS provide roll control. Thus, the
trajectory is divided in two phases: an initial curve in which
the rocket starts with a non-zero attitude (yaw or pitch) and
the TVC system is used to reach zero attitude, and the ver-
tical trajectory which starts with zero attitude and the goal
is to allow to touch down on the targeted landing area with
accuracy and a sufficiently low velocity that can be absorbed
by the landing system.

The nominal trajectory is defined, without loss of generality, in the Oxy plane, since it facilitates the
process and represents the simplest possible trajectory. Using a rotation of reference frames, it allows
any type of 3D trajectory to be obtained. The nominal trajectory is represented in figure 2, which is not
optimal and lasts approximately for 180 seconds.

Thus, in the design of the linear controller, the following models are considered:

• Motion in the xy-plane, with the controller on the yaw angle through the deflection of the TVC 𝛾2

angle. 𝑥yaw =

[
𝑚 𝑥 𝑦 𝑢 𝑣 𝑟 𝜓

]𝑇
• Motion in xz-plane with the controller on the pitch angle through the deflection of the TVC 𝛾1

angle. 𝑥pitch =

[
𝑚 𝑥 𝑧 𝑢 𝑤 𝑞 \

]𝑇
8Except where otherwise noted, content of this paper is licensed under

a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



The mass is present in both models and is common to them, however, it is not a variable that can be
controlled. Besides this, the roll motion is not considered because it is considered that the control of this
variable is made separately (with aerodynamic fins for example) so that it is almost zero, by having a roll
controller that maintains a zero roll rate despite disturbances, the pitch and yaw motion can be separately
controlled.

3.4 Control architecture
The objective of the linear controllers is to stabilize the system around the different equilibrium

points. When designing the controller, the nominal system will be considered, and thus no disturbances,
such as aerodynamic forces, are considered.

Given that the coupling effects between the lateral and longitudinal dynamics are negligible, the two
modes can be decoupled.

Fig. 3 Control scheme.

First, the rocket is symmetri-
cal around the 𝑥𝑏 axis (vertical)
therefore, the inertia matrix is di-
agonal and the coupling effects be-
tween the movements in the planes
xy and xz are minimal. Further-
more, the fact that the control sur-
faces used are conventional, the
aerodynamic fins are mainly re-
sponsible for the roll control, the
magnitude of thrust force and 𝛾2
are responsible for the movement
in the xy plane and the magnitude
of thrust force and 𝛾1 are respon-
sible for the movement in the xz
plane. The last reason is that the
roll angle is practically zero since it is assumed that the roll control system is faster than the others.

Thus, in the design of the linear controller, the following models are considered: motion in the
xy-plane, with the controller on the yaw angle through the deflection of the TVC 𝛾2 angle and motion in
xz-plane with the controller on the pitch angle through the deflection of the TVC 𝛾1 angle.

After decoupling the yaw, pitch and roll motion, the linear states must be separated from the angular
states, since the attitude controller must be faster than the position controller. Therefore, a cascaded
controller will be used, where the inner loop (attitude controller) bandwidth must be wider than the outer
loop (position controller) bandwidth. By using the cascade controller, the disturbances of the inner loop
do not propagate to the outer loop. The outer loop is used to provide the desired attitude angle, and the
inner loop is used to track these angles to obtain the desired position and speed.

Due to pitch and yaw symmetry in geometry, mass distribution, and the identical actuating systems
for the gimbal angles, 𝛾1, 𝛾2 respectively, the feedback gains for both pitch and yaw loops can be the
same. Thus, the linear control architecture for yaw is studied in detail and the one for pitch is similar.

The nomenclature considered for the continuous-time linear model is the following:

¤𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢
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Yaw: linear state representation



¤𝑥
¤𝑦
¤𝑢
¤𝑣
¤𝑟
¤𝜓


=



0 0 𝑐𝜓0 −𝑠𝜓0 0 −𝑢0𝑠𝜓0 − 𝑣0𝑐𝜓0

0 0 𝑠𝜓0 𝑐𝜓0 0 𝑢0𝑐𝜓0 + 𝑣0𝑠𝜓0

0 0 0 𝑟0 𝑣0 𝑔𝑠𝜓0

0 0 −𝑟0 0 −𝑢0 𝑔𝑐𝜓0

0 0 0 0 0 0
0 0 0 0 1 0





𝑥

𝑦

𝑢

𝑣

𝑟

𝜓


+



0 0
0 0
𝑐𝛾20
𝑚

−𝐹thr0 𝑠𝛾20
𝑚

𝑠𝛾20
𝑚

𝐹thr0𝑐𝛾20
𝑚

𝑙thr𝑠𝛾20
𝐼𝑧𝑧

𝐹thr0 𝑙thr𝑐𝛾20
𝐼𝑧𝑧

0 0



[
𝐹thr

𝛾2

]
(25)

Linearizing around 𝑣0, 𝑟0, 𝜓0 = 0, 𝑢0 = 0 m/s, 𝛾20 = 0 rad and the equilibrium value for 𝐹thr (hover
state) with the initial mass value:

𝐴 =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 𝑔

0 0 0 0 0 0
0 0 0 0 1 0


𝐵 =



0 0
0 0
1
𝑚

0
0 𝐹thr0

𝑚

0 𝐹thr0 𝑙thr
𝐼𝑧𝑧

0 0


(26)

It can be seen that the vertical motion and the lateral motion are decoupled. The thrust force acts
only on the vertical motion while the gimbal angle is the actuator used for the lateral motion.

The yaw state space in discrete time is the following (sampling frequency 100Hz):

x(𝑘 + 1) =



𝑥(𝑘 + 1)
𝑦(𝑘 + 1)
𝑢(𝑘 + 1)
𝑣(𝑘 + 1)
𝑟 (𝑘 + 1)
𝜓(𝑘 + 1)


=



1 0 0.01 0 0 0
0 1 0 0.01 1.6350 × 10−6 4.9050 × 10−4

0 0 1 0 0 0
0 0 0 1 4.9050 × 10−4 0.0981
0 0 0 0 1 0
0 0 0 0 0.01 1





𝑥(𝑘)
𝑦(𝑘)
𝑢(𝑘)
𝑣(𝑘)
𝑟 (𝑘)
𝜓(𝑘)


+



4.7511 × 10−9 0
0 4.9048 × 10−4

9.5022 × 10−7 0
0 0.0981
0 −0.0442
0 −2.2077 × 10−4



[
Δ𝐹thr

Δ𝛾2

]
(27)
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Pitch: linear state representation



¤𝑥
¤𝑧
¤𝑢
¤𝑤
¤𝑞
¤\


=



0 0 𝑐\0 𝑠\0 0 −𝑢0𝑠\0 + 𝑤0𝑐\0

0 0 −𝑠\0 𝑐\0 0 −𝑢0𝑐\0 − 𝑤0𝑠\0

0 0 0 −𝑞0 −𝑤0 𝑔𝑠\0

0 0 𝑞0 0 𝑢0 −𝑔𝑐\0

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0





𝑥

𝑧

𝑢

𝑤

𝑞

\


+



0 0
0 0
𝑐𝛾10
𝑚

−𝐹thr0 𝑠𝛾10
𝑚

𝑠𝛾10
𝑚

𝐹thr0𝑐𝛾10
𝑚

𝑙thr𝑠𝛾10
𝐼𝑦𝑦

𝐹thr0 𝑙thr𝑐𝛾10
𝐼𝑦𝑦

0 0



[
𝐹thr

𝛾1

]
(28)

Analysis of poles and zeros of the discrete linear system The outer loop control is hard to design.
The poles and zeros of the lateral movement (considering y, v, 𝜓 and r and the inner loop control) are:
stable poles and the zero in 𝑧 = −1 from the inner loop controller; two poles in 𝑧 = 1; one zero inside
the unit circle (from the discretization process) and one non minimal phase zero (outside the unit circle).
Because of the two poles in 𝑧 = 1 and the zero outside the unit circle, the outer loop controller is more
complex than expected and a single feedback gain of y does not stabilize the system. Thus, all the state
variables need to have a feedback gain.

4 Results and Discussion

4.1 RL controller
The RL control algorithm was added to the control architecture. Therefore, a learning time (TLearn)

is defined for each controller. For time instants up to this value, the LQR controls the system, while
RL just learns the optimal gains. From that moment on, the gains used to control the system are those
calculated by RL.

The addition of dither is fundamental for parameter estimation. Thus, dither is added to the actuators’
input (𝛾 and thrust force) as well as to the reference angle (𝜓 or \) for the estimation of the parameters
of the external loop controller. The dither has two parameters to adjust: sampling time and noise power.
It is important to emphasise that the adjustment that is made to the dither parameters depends on the
operating/perturbation range that the controller is intended to have.

While in the case of the LQ controller it is possible to define an observer, this is not the case with
the RL controller. The main advantage of using the RL controller is that no knowledge about the system
dynamics is required. For the observer design, the system dynamics have to be known. It is thus assumed
that the state is accessible. However, when the state is not accessible, the output and its derivatives can
be used, typically only the first, which corresponds to a PD or PID controller if integral action is used.

The performance of the RL controller - learning time and closed loop system response - depends on
the values given to the parameters that can be adjusted, namely, the LQR parameters, the discount factor,
the estimation algorithms initialization parameters, the learning time of each controller and the dither.
When defining the dither sequence one must keep in mind that there is a compromise: the higher the
dither, the better and faster the estimation of the parameters is. However, the actuators have limitations and
the higher the dither, the more oscillations the system presents. Another possibility is to consider a dither
with variable power throughout the simulation. Simulations were made but the controller performance
does not change much. A disadvantage of this method consists in obtaining a dither sequence that only
presents good results for the seed considered in its definition.
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The designed controller has the following learning times: 20 s (attitude control), 40 s (lateral position
controller) and 50 s (vertical movement controller) which represent a small part of the trajectory.

4.2 Performance metrics
The performance metrics of the controlled system considered are:

• On landing (since a precise landing is important): lateral deviation of position and linear velocity
as well as angular deviation and rate of variation.

• Along the trajectory: average value of control signals; measurement of fuel consumed; mean
position error along the trajectory.

4.3 Bandwidth analysis - cascade controller
For a cascaded controller to work properly, the bandwidth of the outer loop controller must be lower

than that of the inner loop, which has to be faster.

When setting the parameters of the LQR controllers, in the nominal situation, this limitation was
met, however, it was found that the RL controller (starting at 40 s) of the inner loop learned different
gains from the theoretical ones, giving rise to a better system response (figure 4). The fact that the RL
controller has learnt different gains from the theoretical ones, does not mean that they are wrong, and this
situation exemplifies one of the great advantages of the RL controller: when considering the aerodynamic
forces, the actuators model and the dither, the dynamics of the system to be controlled is different from
the one considered when designing the LQR, so it is normal that the optimal gains are different. In figure
4, where 𝐾1 and 𝐾2 are the feedback gains, 𝛾2 = −𝐾1𝑟 − 𝐾2(𝜓 − 𝜓ref).
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(b) Angular controller gains.

Fig. 4 Inner loop controller - RL learning

Thus, the RL converged to gains corresponding to a bandwidth (0.5118 rad/s) smaller than the
bandwidth of the outer loop controller (0.7052 rad/s), so that it became impossible to stabilise the system.
As a consequence, the outer loop controller had to be changed in order to have an even smaller bandwidth.

4.4 Outer Loop controller
With the simulations performed, it was verified that in the outer loop, directional forgetting [2] could

not estimate correctly the parameters related to the state variables r and 𝜓. To estimate these parameters,
the LS batch was tested [2], however, the estimation problem remained. Therefore, it was decided to fix
these parameters values.
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The real and the estimated parameters using both estimation algorithms are represented in figure 5,

where, 𝜓ref = −K


𝑦

𝑣

𝑟

�̂�


= −

[
𝐾1 𝐾2 𝐾3 𝐾4

] 
𝑦

𝑣

𝑟

�̂�


(’̂’ indicates the output of the outer loop).

The parameters have a smooth evolution, unlike what happens with directional forgetting where they
have lots of peaks.

(a) RLS Directional forgetting. (b) LS Batch.

Fig. 5 Outer loop controller: Comparison of different estimation algorithms.

4.5 Controller sampling period analysis
Since the designed controllers are discrete, the sampling period is an important parameter to define.

However, given the complexity of this work, an analysis of the controller performance as a function of
the sampling period was not performed. Varying the sampling time implies changes in the discrete linear
model as well as in the LQR matrices R and Q and consequently in the RL controller parameters.

It can be said that the chosen sampling period was 0.01 seconds which is a reasonable value and it is
used in the literature. For a larger sampling period, the RL controller had more difficulty in learning the
parameters by having access to less data (verified in simulation for a sampling frequency of 30 Hz) and
the disturbance reaction time would be longer, for a larger sampling period, the estimation of the gains
is expected to improve but, with the actuators constraints, a big advantage in increasing the sampling
period is not expected - unless buffers are used to store intermediate data for example. Also, sufficiently
low sampling period leads to difficulties associated with non minimal phase effects.

4.6 Comparison of RL and LQR performances
In order to compare the performance of the LQR controller during the whole simulation with the

LQR controller at the beginning and the RL from the learning time on, the performance measures defined
in section 4.2 were used. Each performance value is obtained by performing several simulations with
distinct dither seeds.

To make the model as realistic as possible, the existence of wind in the atmosphere was considered.
In order to guarantee the functioning of the controller for different seeds values, the maximum wind
intensity at 6 m altitude would have to be 2 m/s.
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4.6.1 Disturbances
Besides the base wind, random wind gusts were considered. It was concluded from the analysis

performed that the RL algorithm guarantees the stability of the system for gusts with magnitude up to 2
m/s on each axis, and which can occur at any instant of the trajectory. However, it is observed that the
closer to the ground they occur the better is the response of the RL controlled system. In general, the
system controlled with LQR is more robust to gusts with higher amplitude.

Difference specific impulse of the propellant The different specific impulse of the propellant is a
measure of its efficiency. Decreasing 𝐼𝑠𝑝, the efficiency of the propellant is decreased - meaning that for
the same thrust force, the mass flow has to increase. The value for which the controller was designed is
282 s. The range of values considered in this study is between 235 and 282 s.

In landing, both the position error and the lateral speed error are always smaller with the RL controller.
For an Isp of 235 s, the LQ controller started to show signs of instability as can be seen in figure 6,
where it can be seen that the gains of the RL vertical controller tend towards different values than the
theoretical ones. The smaller the Isp value is, the greater the difference in vertical speed on landing with
the two controllers considered, with the RL controller presenting better results. It should be noted that
for the value used for the controller design, the LQR presents a better result, although the difference is
not significant. Regarding the angular metrics, the response of the two controllers is similar. The mean
position error along the trajectory is always higher for the LQR.

(a) Gimbal evolution.

0 20 40 60 80 100 120 140 160 180

Time (s)

-3

-2

-1

0

1

2

3

T
h
ru

s
t 
(N

)

10
5 Input evolution

LQ

RL

(b) Thrust evolution.

0 20 40 60 80 100 120 140 160 180

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

G
a
in

10
4 Gain estimation evolution - vertical

K1 real

K1 estimated

K2 real

K2 estimated

(c) Gain evolution: Vertical controller, 𝐹thr = −
[
𝐾1 𝐾2

] [𝑥
𝑢

]
.

Fig. 6 Control system: system response for an ISP of 235 s.

Step in Thrust force Step-shaped disturbances of 5×102 N were applied to the actuator input at differ-
ent time instants (30 s, 50 s, 70 s, 90 s, 110 s, 130 s, 150 s and 170 s). It can be concluded that the RL con-
trolled system performs better at the moment of landing in lateral speed and position and angular position
as seen in figure 7. In general, the average position error is about 2m lower with the RL controller and that
with the exception of the disturbance applied at 30 seconds, the error remains practically constant for the
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remaining instants of application of the disturbance. The thrust level has lower values for the system con-
trolled with RL and that the difference between RL and LQR decreases the later the disturbance is applied.
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Fig. 7 Angular position and velocity at landing - step distur-
bance in the thrust force.

The vertical speed at the moment of
landing remains lower with the LQR in-
dependently of the instant of application
of the disturbance.

Step in Gimbal angle In order to
analyse the effect of a perturbation at
the gimbal angle input, a step of 3 ◦

that can start at different simulation in-
stances was considered (the same as be-
fore). The maximum magnitude of the
step disturbance that can be guaranteed
to work for the various seeds and at var-
ious time instants is 3 ◦. Additionally,
no such perturbations should be applied
to the gimbal angle input before 30s as it affects the learning process of the inner loop gains and the
system may become unstable. Furthermore, perturbations of higher intensity can be applied at specific
time instants, but without guarantee of stabilisation.

Regardless of the instant at which the perturbation is applied, the RL controller performs better with
respect to the lateral speed at landing, the mean position error along the trajectory and the thrust power,
while the opposite is true for the vertical speed at landing (figure 8), the mean thrust value and the mean
gimbal angle value.
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Fig. 8 Vertical velocity at landing - step disturbance in the gimbal.

4.6.2 LQR based on the wrong model
Center of mass position It was established that the distance from the centre of mass to the thrust

application point is -4.6 m (the minus sign is due to the reference frame orientation). By changing this
distance, the linear model is also changed. The vertical and lateral impact velocity as well as thrust power
are lower with the RL controller for any CM position considered (range from -6.2 m to -3.8 m). The
average value of the gimbal angle is slightly higher with the RL controller. Regarding the lateral position
error and the mean position error along the trajectory it is found that when the CM is closer to the point
of thrust application point, the performance of the RL controller is worse than the LQR one. When the
CM is further away from the thrust application point, the trend is the inverse. This can be seen in the
graphs of figure 9.
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(a) CM further from the thrust application point. (b) CM closer to the thrust application point.

Fig. 9 Radar plot: nominal scenario with wind - comparison between RL and LQ controllers.

Initial mass Consider an initial mass increase of 30%, that corresponds to an increase of 3157,2
kg. For an initial mass bigger than the one considered, the RL controller has a smaller position and
lateral speed error on landing for any initial mass value considered as can be verified in figure 10.

Fig. 10 Lateral position and velocity at landing (zoom) - change
of the rocket initial mass.

Regarding the vertical speed at land-
ing, when the initial mass is 15% higher
than the considered one, the LQR per-
formance worsens, presenting a higher
modulus speed than the RL. The angular
position error also undergoes an inver-
sion at 15% mass, with RL presenting
a lower value. Again, it is verified that
the position error accumulated along the
trajectory for RL is always lower than for
LQR. Both thrust and gimbal angle are
similar for both controllers.

For a lower initial mass (until 15%),
the system controlled with LQR starts to instabilize presenting oscillations. This situation represents an
advantage of the RL controller: in this specific case it is more robust and adapts better.

4.6.3 Modification of actuator gains
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Fig. 11 Thrust metrics - modification of the thrust actuator’s
gain.

Thrust The RL controller is only
able to stabilize the system up to a gain
of 0.8. Again, it is found that for the po-
sition and lateral velocity error as well
as the mean position error along the tra-
jectory, the RL controller shows better
results. The vertical impact velocity is
lower with the RL controller when the
actuator gain is lower. Regarding the
angular motion, the performance of the
LQR controller is better than the RL one
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with exception of the 0.8 gain where the
trend reverses. The same is true for the
average thrust value (figure 11). The average gimbal angle is always lower with the LQR controller. For
a gain smaller than 0.8, the vertical motion controller cannot estimate the gains well making the system
unstable and the actuators saturate. By increasing the learning time of the vertical motion controller, the
RL controller stabilises the system. For a gain of 0.6, a learning time of 100 s stabilizes the system. This
is an example of how the short trajectory duration complicates the problem.

Gimbal Angle In the range of values considered (from 0.7 to 1), the value of the vertical speed at
ground contact is higher (in modulus) when controlling with RL (opposite to the trend seen so far). The
average gimbal angle (figure 12), the average thrust value and the angle position error at landing are lower
for the LQR. The remaining variables do not show a definite trend.
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Fig. 12 Gimbal metrics - modification of the gimbal actuator’s gain.

5 Conclusions
This study investigates the application of a reinforcement learning based adaptive controller, using

the Q learning algorithm, to the vertical landing of a rocket, by assessing the performance levels and
robusteness of the algorithm comparing with the ones obtained for the LQR controller.

In order to obtain a controller with RL, several parameters must be defined. The major difficulties
in estimating the controller gains consisted in the fact that the trajectory duration was very short, the
actuators have maximum changing rates and a cascade controller was used. In order to speed up the
estimation, the estimation algorithms should have a good parameter initialization - the initialization of
the covariance matrices and the initial vector of the gains is fundamental.

This study has shown that RL can outperform classical approaches, such as LQR, for the landing
problem of reusable launchers. However, this is done at the cost of a higher design effort, when compared
to classical LQR or to gain scheduling approaches, in which an LQR is designed for each linearization
point along the trajectory, leading to similar levels of performance of RL. Nevertheless, it is expected that
RL requires significantly less effort to adapt the design to another launcher, when compared to classical
approaches, thanks to its model-free nature.

In terms of future work, onboard optimization-based guidance is foreseen to be used together with
RL, in order to improve the overall robustness to exogenous disturbances and to the uncertainty in the
initial state. Another very relevant topic that requires further research is the numerical implementation
of the methods to compute the RL gains. In this work, a simplified approach using median filters to avoid
large gains variation was adopted to avoid numerical instability, being this a sub-optimal approach.
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