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ABSTRACT

This paper describes the design, real-time implementation, and flight testing of a model predic-
tive flight controller for the longitudinal and lateral-directional control of a slightly flexible 25kg
unmanned aircraft. The controller is responsible for stabilization of the aircraft and tracking of
reference commands. Reduced-order linear prediction models are derived from a high-fidelity
nonlinear model of the flexible aircraft at different points in the flight envelope. To allow for
the consideration of aeroelastic effects throughout the control design process, relevant structural
modes are included in these models. From the set of prediction models, multiple linear model
predictive controllers are designed off-line, applying the MPC formulation using a velocity-form
model for offset-free tracking. During on-line operation, they are scheduled similar to classi-
cal gain-scheduling. The number of decision variables is effectively reduced by approximating
the incremental control trajectory with Laguerre functions. An observer is designed to estimate
non-measureable states. The predictive flight controller is finally validated in multiple flight test
experiments with predefined tracking scenarios. The controller is shown to provide very good
tracking performance even in the presence of wind and gust disturbances.
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Nomenclature

𝐴, 𝐵, 𝐶, 𝐷 = System state-space matrices
�̄�, �̄�, �̄� = Augmented state-space matrices
𝐴𝐿 = Laguerre state transition matrix
𝑎 = Laguerre pole
𝑐 = Constant
𝑐𝑚 = Laguerre coefficient of the 𝑚th Laguerre function
𝑑 = Vector of translational strip deformations, m
𝑑𝑖 = Elastic translational deformation vector of mass element of a strip, m
𝑑𝑚𝑖 = Mass element of a strip
𝑒 = Tracking error
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𝐹𝑒𝑥𝑡 , 𝑀𝑒𝑥𝑡 = Vector of external forces and moments, N and N·m
𝐺 = Gravitation acceleration vector, m/s2

𝐺𝑢, 𝐺
𝐿
𝑢 = Selector matrix of input constraints in original and Laguerre formulation

𝐺Δ𝑥 = Selector matrix of incremental state constraints
𝑔 = Linear cost term
𝐻 = Hessian matrix
ℎ𝑢 = Vector of control input limits
𝐼𝑛×𝑛 = Unit matrix with dimension 𝑛 × 𝑛
𝐽 = Inertia tensor, kg·m2

𝐽𝑘 = Cost function
𝐾𝑘 = Kalman gain
𝐿𝑖 = Vector/matrix of Laguerre functions evaluated at time step 𝑖
𝑙𝑚 = 𝑚th Laguerre function
𝑚 = Aircraft mass, kg
𝑁, 𝑁𝑐 = Prediction and input constraint horizon
𝑁𝐿 = Number of Laguerre functions
𝑛𝑠, 𝑛𝑎, 𝑛 𝑓 = Number of strips, ailerons, flaperons
𝑛𝑢, 𝑛𝑥 , 𝑛𝑦 = Number of inputs, states, outputs
𝑛𝑧 = Load factor
𝑛𝜌 = Number of scheduling parameters
𝑂𝐵𝑅 , 𝑂 𝐼 = Body reference frame and inertial frame
𝑃 = Terminal penalty
P = Compact subset of admissible values for scheduling parameters
𝑝𝑖 = Position of mass element of a strip relative to 𝑂𝐵𝑅 , m
𝑄1, 𝑄2 = Incremental state and tracking error weighting matrices
𝑄𝜂 = Generalized force, N·m
�̃�, �̃� = Horizon weighting matrices
𝑅 = Input weighting matrix
𝑅𝐿 = Weighting matrix of Laguerre coefficients
𝑟 = Reference vector
𝑟𝑖 = Position vector of mass element of a strip, m
𝑟0 = Position vector of the origin of 𝑂𝐵𝑅 , m
𝑠𝑖 = Undeformed position vector of mass element of a strip relative to 𝑂𝐵𝑅 , m
𝑇𝐵𝑅 𝐼 = Transformation matrix from 𝑂 𝐼 to 𝑂𝐵𝑅

𝑇𝑠 = Sampling time, s
U = Input constraint set
Δ𝑈 = Incremental control trajectory vector
𝑢 = Control input vector
Δ𝑢 = Incremental control input vector
𝑉 = Translational velocity vector, m/s
𝑉𝐴 = Airspeed, m/s
𝑤 = Sink rate in 𝑂 𝐼 , m/s
𝑋𝑎 = Augmented state trajectory vector
𝑥 = State vector
𝑥𝑎 = Augmented state vector
𝑥𝐵𝑅 , 𝑦𝐵𝑅 , 𝑧𝐵𝑅 = Coordinates of body reference frame, m
𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼 = Coordinates of inertial frame, m
𝑥, �̄�, �̄� = Trim condition vectors
Δ𝑥 = Incremental state vector
Δ𝑥 = Estimated incremental state vector
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𝑦 = Output vector
𝛽 = Angle of sideslip, rad
𝛿𝑒, 𝛿𝑎, 𝛿 𝑓 , 𝛿𝑟 , 𝛿𝑡 = Deflections (elevator, aileron, flaperon, rudder) and throttle position, rad or %
𝛾 = Vector of Laguerre coefficients
𝜂 = Modal coordinate
𝜇 = Generalized mass, kg·m2

Ω𝐿 = Matrix of Laguerre functions
𝜔 = Angular velocity vector, rad/s
𝜔𝑛 = Undamped natural frequency, rad/s
𝜌 = Scheduling parameter vector
𝜉 = Modal damping ratio
Φ, Γ = Prediction matrices
Φ 𝑗 = Mode shapes
𝜙 = Bank angle, rad
0𝑛×𝑚 = Zero matrix with dimension 𝑛 × 𝑚
(·) |𝐵𝑅 = (·) expressed in 𝑂𝐵𝑅

1 Introduction
The efforts to enhance aircraft efficiency by reducing structural weight and improving the aero-

dynamic performance have led to consider aircraft with lighter structures and high aspect ratio wings.
These wing structures are usually subject to larger loads. They are also more flexible which causes larger
in-flight deformations and decreases the separation of the rigid-body and aeroelastic dynamics in the
frequency domain. From a flight control perspective, this poses various challenges since undesired cou-
pling of rigid-body dynamics and elastic deformation can occur through aerodynamic forces and control
systems, and render the traditional strategy of treating rigid-body and aeroelastic dynamics separately
during control design obsolete [1, 2]. Therefore, new control approaches are needed that are capable of
integrating multiple requirements such as stabilization, maneuver demand, and load control.

One promising method for this task is model predictive control (MPC), also known as receding
horizon control (RHC). By performing a constrained optimization over a finite horizon each sampling
time interval, the control inputs are calculated based on the predictions of a known model of the system.
Its ability to control multi-input multi-output (MIMO) systems, capability to explicitly handle pointwise-
in-time constraints, as well as its advantageous performance with nonlinear systems makes it particularly
interesting for flight control applications. The use of model predictive control in flight control has been
previously studied, e.g. in [3–10]. Many of these works consider fault-tolerant systems by reconfiguration
of the controller in case of actuator fault or failure [5–7], while others focus on path planning problems
[9]. A popular approach has also been to use MPC in systems for envelope protection, maneuver limiting,
or load alleviation, as these type of problems can suitably be formulated as constrained control problems.
Two main control architectures have proven effective for these applications: reference governors [11–
13], where the MPC alters the reference input of inner loop controllers such that the system output
remains within certain limits, and integrated MPC concepts [14–19], where the MPC is responsible for
both command tracking and enforcing secondary control objectives such as load alleviation. In [11], the
authors use a model-predictive-control-like scheme to design a reference governor for enforcing maneuver
limits of a fighter aircraft. In [12, 13], a linear MPC-based reference governor is proposed for maneuver
load alleviation (MLA) of a flexible aircraft. Load constraints are enforced by adapting the inner loop
controller’s reference commands while also manipulating additional control surfaces specifically assigned
to perform MLA. A well-known application of linear MPC for integrated flight control is presented in
[14], where the authors address the gust load alleviation (GLA) of very flexible aircraft. Aeroservoelastic
effects are accounted for throughout the control design process by incorporating flexible modes in the
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linearized state-space representation of the aircraft. The work was later extended in [15] to enhance
the controller’s performance and robustness by introducing an additional feedback loop in the model
prediction. Other examples of integrated MPC concepts for gust load alleviation of flexible aircraft
include [16, 17] in combination with light detection and ranging (LIDAR), [18] applying linear MPC in
comparison to an equivalent linear quadratic regulator (LQR), and [19] comparing linear and nonlinear
MPC. Although existing research has demonstrated that model predictive control can improve the closed-
loop performance in different flight control applications, one of the main challenges remains real-time
implementation [20]. It results from the high computational load that is required to repeatedly solve a
constrained optimization problem each sampling time interval. Concerning flexible aircraft, additional
challenges are posed by the high orders of aircraft models and long prediction horizons that are needed to
sufficiently capture rigid-body and aeroelastic dynamics. Different methods to reduce the computational
complexity have been proposed, such as in [13] by applying move blocking of inputs to reduce the number
of decision variables or in [21] by aggregating constraints using Kreisselmeier-Steinhauser (KS) function.
However, most of the existing works are sole simulation studies and only few experimental results, e.g.
[22], or even in-flight demonstrations, e.g. [23, 24], are available.

In view of the potential and challenges of MPC in flight control applications, the objective of this work
is the design, real-time implementation, and flight testing of a model predictive flight controller for the
longitudinal and lateral-directional control of a slightly flexible 25kg unmanned aircraft. The controller
is responsible for the stabilization of the aircraft and tracking of reference commands. Aeroelastic effects
are taken into account in the predictions by including relevant structural modes in the prediction models.
To achieve a reduction of computation time and thus enable the real-time implementation of the controller,
an approach to approximate the control trajectory with Laguerre functions [25, 26] is employed. They
provide a flexible framework to model control trajectories with a limited number of functions. In this
way, the number of decision variables of the optimization problem is significantly reduced. Successful
demonstration of the controller in flight was achieved in September 2023 using the G-Flights Dimona
aircraft. The paper is organised as follows. First, the test aircraft, nonlinear model, and linear prediction
models are introduced in Section 2, followed by the design of the controller in Section 3. Finally, the
tuning, real-time implementation, and flight testing of the controller is presented in Section 4.

2 Test Aircraft and Model Formulations
The aircraft used for flight testing of the controller is the slightly flexible G-Flights Dimona, depicted

in Figure 1. It is a 25kg unmanned replica of the HK36 Super Dimona at a scale of 1:3. An electric motor
drives the aircraft with a maximum power of 4kW. Battery capacity allows for flight times between 20
and 30 minutes. It has a length of 2.4m and features custom spar, rib, and foil manufactured wings with
increased span and flexibility. With a total span of 5.4m and a total surface area of 1.68m2, the wing aspect
ratio results to 17.35. At 2g, the wing tip deflection reaches approx. 10% of the half span. The aircraft
is equipped with multiple trailing edge control surfaces on the wings. Each wing comprises two ailerons
and two flaperons. They are designed as multi-functional control surfaces, providing lateral-directional
control, high lift control, and future load control. The aircraft is further equipped with a rudder for
lateral-directional control and two elevators for longitudinal control and future load control.

The aircraft can either be controlled by a safety-pilot via remote control or by a real-time capable
flight control computer. A safety switch ensures that the pilot can take over control at any time. The
flight control computer, a MicroAutoBox II from dSpace, serves as the central component for hosting
guidance, navigation, and control (GNC) applications and for processing measurements. Further, it issues
control outputs to the control surface servo actuators during automatic flight. The on-board avionics
are completed by several sensors, radio equipment, and a separate computer for data recording. An
industry-grade high-precision inertial navigation platform (INS), supported by dual-antennas, is used to
measure GPS position, heading, attitude, velocities, and accelerations. An increased position accuracy is
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Fig. 1 G-Flights Dimona

achieved with a third antenna on ground providing Differential GPS (DGPS) correction. Airdata such as
airspeed, angle of attack, angle of sideslip, static air pressure, and air temperature is measured by three
in-house developed five-hole-probes [27] located at the left wing, right wing, and vertical tail. Additional
inertial measurement units (IMUs) and strain gauges for shear, bending, and torsion are integrated into
the aircraft structure to measure structural dynamics and loads. They are distributed at relevant stations
along the fuselage, empennage, and wings. Data distribution between the sensors and computers is
handled via Controller Area Network (CAN) and Ethernet. A telemetry link enables a flight test engineer
on ground to control and monitor the aircraft during flight experiments. The overall concept and main
parts of the aircraft instrumentation are described in detail in [28, 29].

2.1 Nonlinear Flexible Aircraft Model
For model-based development of flight control laws, a high-fidelity nonlinear full-flexible flight

dynamics model of the G-Flights Dimona was developed in a previous work using system identification
techniques [29]. The model formulation combines linear structural dynamics with distributed quasi-
steady strip aerodynamics. Decoupled nonlinear equations of motion are developed with the choice of
the body reference frame to satisfy the linearized mean axes constraints [30] and by representing the
elastic deformation of the strips in terms of free vibration modes. The body reference frame 𝑂𝐵𝑅 is
located at the instantaneous center of mass of the aircraft, see Figure 2. The position 𝑟𝑖 of a mass element

mass element d𝑚𝑖

instantaneous center of mass

𝑂 𝐼

𝑥𝐼
𝑦𝐼

𝑧𝐼

𝑂𝐵𝑅

𝑥𝐵𝑅

𝑦𝐵𝑅

𝑧𝐵𝑅

𝜔

𝑟0 𝑟𝑖

𝑝𝑖

𝑠𝑖 𝑑𝑖

Fig. 2 Elastic strip deformation and definition of reference frames

d𝑚𝑖 of an arbitrary strip of the flexible aircraft in an inertial reference frame𝑂 𝐼 can be expressed in terms
of the relative position 𝑝𝑖 to this body reference frame and the position 𝑟0 of the origin of 𝑂𝐵𝑅 .
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With the free vibration modes, the elastic deformation of the strips can be written as a summation of
mode shapes Φ 𝑗 multiplied by their respective modal coordinates 𝜂 𝑗

𝑑 =


𝑑1
...

𝑑𝑛𝑠

 =
∑︁
𝑗

Φ 𝑗𝜂 𝑗 , (1)

where 𝑑𝑖 are the elastic translational deformation vectors of the 𝑖 = 1, . . . , 𝑛𝑠 strips. Then, the position
𝑝𝑖 of the mass element can be separated into its undeformed part 𝑠𝑖 and its deformation part 𝑑𝑖. Using
𝑂𝐵𝑅 to derive the equations of motion of the flexible aircraft and only assuming small deformations, the
decoupled equations of motion are given as follows:

¤𝑉 |𝐵𝑅 = −𝜔|𝐵𝑅 ×𝑉 |𝐵𝑅 + 𝑇𝐵𝑅 𝐼𝐺 |𝐼 + 1
𝑚
𝐹𝑒𝑥𝑡 |𝐵𝑅 (2)

¤𝜔|𝐵𝑅 = −𝐽−1(𝜔|𝐵𝑅 × (𝐽𝜔|𝐵𝑅 )) + 𝐽−1𝑀𝑒𝑥𝑡 |𝐵𝑅 (3)

¥𝜂 𝑗 = −2𝜉 𝑗𝜔𝑛, 𝑗 ¤𝜂 𝑗 − 𝜔2
𝑛, 𝑗𝜂 𝑗 +

1
𝜇 𝑗
𝑄𝜂 𝑗 . (4)

The first two equations are the nonlinear equations for the rigid-body translational and rotational degrees
of freedom. Therein, 𝑉 |𝐵𝑅 and 𝜔|𝐵𝑅 denote the translational and angular velocity vectors of the body
reference axes, respectively, 𝐺 |𝐼 is the gravity vector, 𝑇𝐵𝑅 𝐼 is the transformation matrix from 𝑂 𝐼 to 𝑂𝐵𝑅 ,
𝑚 is the aircraft mass, and 𝐽 the inertia tensor (constant assuming only small deformations). The vectors
𝐹𝑒𝑥𝑡 |𝐵𝑅 and 𝑀𝑒𝑥𝑡 |𝐵𝑅 represent the sum of external forces and moments, respectively. The last equation
(4) represents the linear differential equations for the aeroelastic dynamics in modal coordinates. Within
these equations, 𝜂 𝑗 is the modal coordinate, 𝜔𝑛, 𝑗 the undamped natural frequency, 𝜉 𝑗 the modal damping
ratio, 𝜇 𝑗 the generalized mass, and 𝑄𝜂 𝑗 the generalized force of each mode. The aerodynamic strip
forces and moments are modeled using quasi-steady stability and control derivatives. A total number
of 48 wing strips, 8 horizontal tail strips, and 5 vertical tail strips are considered. The aircraft model
is implemented in MATLAB/Simulink with additional models of the propulsion system, actuator and
control surface dynamics, earth and atmosphere, wind and turbulence, sensors, and filters. For model
identification, several test activities were performed. Seven structural modes and the corresponding
mode shapes were identified from a modal analysis based on ground vibration test (GVT) data and a
finite element (FE) model. Initial distributions for the stability and control derivatives were derived
from three-dimensional vortex-lattice-method steady-flow calculations. They were subsequently adapted
during parameter estimation based on flight test data obtained from an extensive flight test campaign.
Details on the modeling framework, model identification, and results are presented in [29].

2.2 Linear Prediction Models
The model predictive flight controller designed in this work is based on linear models. Thus,

linearization of the nonlinear model is necessary. Since the aircraft dynamics and control surface
effectiveness vary substantially across the flight envelope, the nonlinear aircraft model is trimmed and
linearized in straight level flight and coordinated turn for different values of the airspeed𝑉𝐴 ∈ [18, 34]m/s
in steps of 2m/s and bank angle 𝜙 ∈ [−40, 40]° in steps of 10° or 15°. First-order Taylor approximation
of the nonlinear model with respect to the different trim conditions yields a set of linear time-invariant
(LTI) models. A single LTI model with respect to the trim condition (𝑥, �̄�, �̄�) is obtained as

¤𝑥(𝑡) = 𝐴(𝑥(𝑡) − 𝑥) + 𝐵(𝑢(𝑡) − �̄�)
𝑦(𝑡) = 𝐶 (𝑥(𝑡) − 𝑥) + 𝐷 (𝑢(𝑡) − �̄�) + �̄�, (5)
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where 𝑥 ∈ R𝑛𝑥 is the state, 𝑢 ∈ R𝑛𝑢 the input, and 𝑦 ∈ R𝑛𝑦 the output vector. Each LTI model consists
of 58 states comprising 22 actuator states, 14 modal amplitudes and rates of the structural dynamics,
12 states of the rigid-body flight dynamics, and five states due to first order Padé approximation of five
internal downwash delays. The inputs include the 11 control surfaces of the aircraft and the throttle.
The outputs consist of typical flight dynamic parameters and the control surface deflections. For the
design of the controller, the inputs are reduced to the control surfaces. Further, the left and right elevator
are preallocated as one input to achieve a synchronised movement. The outputs are selected to contain
the controlled outputs load factor, bank angle, and angle of sideslip. In addition, the control surface
deflections of ailerons and flaperons are selected as auxiliary outputs. Model order reduction is performed
for all LTI models by means of classical truncation and residualization [31]. A consistent state space
is preserved for all models. Only one state per actuator is retained, effectively reducing the actuator
dynamics to first order. Further, the rigid-body flight dynamics are reduced to the states capturing the
relevant dynamics of the controlled output. From the structural modes, only the first symmetric wing
bending mode is considered in the prediction models as its natural frequency of 3.97Hz is below the
maximum servo actuator bandwidth of 6.74Hz [29]. The resulting reduced-order linear prediction models
consist of 24 states each. The models are finally converted to discrete-time using Euler’s method for
simplicity, such that 𝐴𝑑 = 𝐼 + 𝑇𝑠 𝐴𝑟 , 𝐵𝑑 = 𝑇𝑠 𝐵𝑟 , 𝐶𝑑 = 𝐶𝑟 , and 𝐷𝑑 = 𝐷𝑟 , where 𝑇𝑠 is the controller
sampling time and (𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟) are the reduced-order system state space matrices.

3 Model Predictive Flight Control Design

3.1 Problem Formulation
From the set of reduced-order prediction models, multiple linear model predictive controllers are

designed for the different points in the flight envelope. The control architecture in this work uses the MPC
for longitudinal and lateral-directional control of the aircraft. That is, it is responsible for stabilization of
the aircraft and tracking of reference commands by computing optimal control inputs for the elevators 𝛿𝑒,
ailerons 𝛿𝑎, flaperons 𝛿 𝑓 , and rudder 𝛿𝑟 based on the predictions of rigid-body and aeroelastic dynamics.
The reference commands are given in terms of piece-wise constant reference signals for the controlled
output load factor 𝑟𝑛𝑧 , bank angle 𝑟𝜙, and angle of sideslip 𝑟𝛽. The load factor reference is computed by
an outer control loop comprising a gain-scheduled P controller to track a sink rate reference 𝑟𝑤 and a turn
compensation. The control architecture is completed by an observer for the estimation of non-measurable
states and a gain-scheduled PI controller to track the airspeed reference 𝑟𝑉𝐴 via the throttle 𝛿𝑡 . Figure 3
displays the overall control architecture.

AircraftMPC

Observer

PI

P

TC

𝑦

Δ𝑥

𝑟𝜙, 𝑟𝛽
𝑟𝑤

𝑟𝑉𝐴

𝑟𝑛𝑧
𝛿𝑒, 𝛿𝑎,
𝛿 𝑓 , 𝛿𝑟

𝛿𝑡

Fig. 3 Flight control architecture

Given the reference signals for the controlled output and choosing a reference for the auxiliary output,
the MPC reference vector 𝑟 is assembled. A zero reference is chosen for the auxiliary output such that
ailerons and flaperons return back to neutral position in steady-state in order to minimize drag. Thus, the
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reference vector is defined as
𝑟 =

[
𝑟𝑛𝑧 𝑟𝜙 𝑟𝛽 01×(𝑛𝑎+𝑛 𝑓 )

]T
, (6)

where 𝑛𝑎 and 𝑛 𝑓 denote the number of ailerons and flaperons, respectively. To achieve offset-free tracking
of the controller, the MPC formulation using a velocity-form model is employed [32]. For each point
in the flight envelope, the velocity-form model is obtained by augmenting the respective discrete-time
linear prediction model as follows. To simplify the notation, 𝑢𝑘 , 𝑥𝑘 , and 𝑦𝑘 are used to describe the
input, state, and output of the reduced-order prediction models at time step 𝑘 . Let Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 and
Δ𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1. Further, define the new augmented state vector

𝑥𝑎𝑘 =
[
Δ𝑥T

𝑘 𝑒T
𝑘

]T
(7)

where 𝑒𝑘 = 𝑦𝑘 − 𝑟 is the tracking error. Then, the velocity-form model is given as

[
Δ𝑥𝑘+1

𝑒𝑘+1

]
=

�̄�︷              ︸︸              ︷[
𝐴𝑑 0𝑛𝑥×𝑛𝑦
𝐶𝑑𝐴𝑑 𝐼𝑛𝑦×𝑛𝑦

] 𝑥𝑎𝑘︷︸︸︷[
Δ𝑥𝑘
𝑒𝑘

]
+

�̄�︷           ︸︸           ︷[
𝐵𝑑

𝐶𝑑𝐵𝑑 + 𝐷𝑑

]
Δ𝑢𝑘

𝑒𝑘 =
[
0𝑛𝑦×𝑛𝑥 𝐼𝑛𝑦×𝑛𝑦

]
︸               ︷︷               ︸

�̄�

[
Δ𝑥𝑘
𝑒𝑘

]
.

(8)

This augmentation of the original discrete-time models leads to a natural embedding of integrators and,
under reasonable assumptions, ensures zero steady-state error even in case of a mismatch between the
prediction model and the actual system 1. The predictive control law is computed by minimizing the
quadratic cost function

𝐽𝑘 =
𝑁−1∑︁
𝑖=1

(
∥Δ𝑥𝑘+𝑖∥2

𝑄1
+ ∥𝑒𝑘+𝑖∥2

𝑄2

)
+ ∥𝑒𝑘+𝑁 ∥2

𝑃 +
𝑁−1∑︁
𝑖=0

(
∥Δ𝑢𝑘+𝑖∥2

𝑅

)
(9)

according to the RHC principle, where 𝑁 denotes the prediction horizon, 𝑄2, 𝑅, and 𝑃 = 𝑐𝑄2 with
𝑐 > 0 are positive definite weighting matrices and 𝑄1 is a positive semi-definite weighting matrix. The
weighting matrices can be chosen individually for each point in the flight envelope to tune closed-loop
performance and control effort. Note that in this formulation of the cost function, the prediction horizon
equals the control horizon. The optimization problem to be solved at each time step 𝑘 is given by

min
Δ𝑈𝑘

𝐽𝑘 (10a)

s.t. 𝑥𝑎𝑘+𝑖+1 = �̄�𝑥𝑎𝑘+𝑖 + �̄�Δ𝑢𝑘+𝑖 (10b)
𝑢𝑘+𝑖 = 𝑢𝑘−1 +

∑𝑖
𝑗=0 Δ𝑢𝑘+ 𝑗 ∈ U, 𝑖 ∈ [0 𝑁 − 1] (10c)

Δ𝑥𝑘+𝑁 = 0 (10d)

with the vector of future incremental control inputs Δ𝑈𝑘 =
[
Δ𝑢T

𝑘 . . .Δ𝑢
T
𝑘+𝑁−1

]T as the decision variables
and the input constraint set U. Only input constraints are considered in this work. Stability is addressed
in terms of the terminal equality constraint (10d) and the terminal penalty 𝑃 on the final tracking error
in equation (9). The advantage of using the terminal equality constraint is that all equilibria are mapped
to the origin of the incremental states Δ𝑥 = 0. Hence, the predicted terminal state is not required to
reach a certain terminal region in the state space but only a steady state, and Δ𝑢 = 0 can be used to

1Including 𝐷𝑑 in �̄� leads to a small approximation error with regard to Δ𝑢𝑘 , since Δ𝑢𝑘+1 is not known at time step 𝑘 .
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guarantee stability even for unreachable reference commands, provided any equilibrium is reachable
within the prediction horizon [33]. A proof of stability with respect to the more general case of linear
parameter-varying (LPV) systems is given in [34].

Using Δ𝑈𝑘 and the vector of the predicted states 𝑋𝑎𝑘 =
[
𝑥𝑎𝑘+1

T . . . 𝑥𝑎𝑘+𝑁
T]T, cost function (9) can be

written in vector form as
𝐽𝑘 = (𝑋𝑎𝑘 )T�̃�(𝑋𝑎𝑘 ) + Δ𝑈T

𝑘 �̃�Δ𝑈𝑘 , (11)

where

�̃� =

[
diag𝑁−1(𝑄1, 𝑄2)

diag1(𝑄1, 𝑃)

]
, �̃� = diag𝑁 (𝑅) (12)

are the weighting matrices over the horizon. Further, the predicted state trajectory 𝑋𝑎𝑘 can be expressed
as a function of the control trajectory Δ𝑈𝑘 , i.e,

𝑋𝑎𝑘 = Φ𝑥𝑎𝑘 + ΓΔ𝑈𝑘 (13)

with the prediction matrices

Φ =



�̄�

�̄�2

�̄�3

...

�̄�𝑁


, Γ =



�̄� 0 0 . . . 0
�̄��̄� �̄� 0 . . . 0
�̄�2�̄� �̄��̄� �̄� . . . 0
...

...
...

. . .
...

�̄�𝑁−1�̄� �̄�𝑁−2�̄� �̄�𝑁−3�̄� . . . �̄�


. (14)

Inserting expression (13) of 𝑋𝑎𝑘 into the cost function (11) effectively eliminates constraint (10b) and one
obtains the dense formulation. The resulting optimization problem is given by

min
Δ𝑈𝑘

1
2
Δ𝑈T

𝑘𝐻Δ𝑈𝑘 + 𝑔TΔ𝑈𝑘 (15a)

s.t. 𝐺𝑢Δ𝑈𝑘 ≤ ℎ𝑢 (15b)
𝐺Δ𝑥ΓΔ𝑈𝑘 = −𝐺Δ𝑥Φ𝑥

𝑎
𝑘 , (15c)

where 𝐺𝑢 and 𝐺Δ𝑥 are selector matrices of the input and terminal equality constraints, respectively, and
ℎ𝑢 contains the upper and lower limits of the control input. The Hessian 𝐻 and linear cost term 𝑔 are
given by

𝐻 = ΓT�̃�Γ + �̃�, 𝑔 = ΓT�̃�Φ𝑥𝑎𝑘 . (16)

Problem (15) is a quadratic programming (QP) problem and can be solved efficiently using fast QP
solvers. Note that in order for problem (15) to be set up, the initial condition 𝑥𝑎𝑘 has to be known. From
the vector of future incremental control inputs Δ𝑈𝑘 , only the first element Δ𝑢𝑘 is implemented to obtain
the current control input according to 𝑢𝑘 = 𝑢𝑘−1 + Δ𝑢𝑘 , given the previous input 𝑢𝑘−1.

3.2 Laguerre Functions
Using MPC in aircraft flight control often requires long prediction horizons because typical sampling

times are short compared the time constants of the governing dynamics. This leads to a high number of
decision variables and significantly complicates real-time implementation of the controller. In order to
reduce the number of decision variables, in this work, the incremental control trajectory is approximated
by a set of Laguerre functions [26]. Laguerre functions are orthonormal functions that can be suitably
described in discrete-time using only two parameters. They are also exponentially decaying functions,
such that by using these functions to describe Δ𝑈𝑘 , it is assumed that the incremental control trajectory
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within the moving horizon window behaves like the impulse response of a stable system, that is, exponen-
tially decays after some initial time period [25]. With this design methodology, the problem of finding
the incremental control trajectory Δ𝑈𝑘 is converted into a problem of finding coefficients for the set of
Laguerre functions. Typically, a significant reduction of decision variables can be achieved [35].

Consider the single-input case for simplicity. The incremental control trajectory can be approximated
by 𝑁𝐿 discrete-time Laguerre functions as

Δ𝑢𝑘+𝑖 ≈
𝑁𝐿∑︁
𝑚=1

𝑙𝑚,𝑖 𝑐𝑚,𝑘 = 𝐿
T
𝑖 𝛾𝑘 , 𝑖 ∈ [0 𝑁 − 1] , (17)

where 𝑙𝑚,𝑖 are the 𝑚 = 1, . . . , 𝑁𝐿 discrete-time Laguerre functions evaluated at future time step 𝑖 of the
moving horizon window starting from the current time step 𝑘 , and 𝑐𝑚,𝑘 are the corresponding coefficients.
Note that the coefficients are constant over the prediction horizon. The vectors 𝐿T

𝑖 = [𝑙1,𝑖 . . . 𝑙𝑁𝐿 ,𝑖] and
𝛾𝑘 = [𝑐1,𝑘 . . . 𝑐𝑁𝐿 ,𝑘 ]T summarize the Laguerre functions and coefficients in vector form, respectively.
The discrete-time Laguerre functions can be described with the state space realization

𝐿𝑖+1 = 𝐴𝐿𝐿𝑖, (18)

where

𝐴𝐿 =



𝑎 0 0 . . . 0 0
𝜖 𝑎 0 . . . 0 0

−𝑎𝜖 𝜖 𝑎 . . . 0 0
...

...
...

. . . 𝑎 0
(−1)𝑁𝐿−2𝑎𝑁𝐿−2𝜖 (−1)𝑁𝐿−3𝑎𝑁𝐿−3𝜖 (−1)𝑁𝐿−4𝑎𝑁𝐿−4𝜖 𝜖 𝑎


(19)

with 𝜖 = 1 − 𝑎2 and initial condition

𝐿T
0 =

√
𝜖
[
1 −𝑎 𝑎2 −𝑎3 . . . (−1)𝑁𝐿−1𝑎𝑁𝐿−1

]
. (20)

The pole 𝑎, also called scaling factor, and the number of Laguerre functions 𝑁𝐿 can be used as additional
tuning knobs in the design. With 𝑎, the exponential decay rate of the functions is set. It is used to tune
the control horizon. For 𝑎 = 0, the Laguerre functions become a set of pulses and the description of
the incremental control trajectory becomes equivalent to the original approach. With 𝑁𝐿 , the number of
Laguerre functions to approximate the incremental control trajectory and hence the number of decision
variables is determined. It is used to control the complexity of the incremental control trajectory.

Let the incremental control trajectory be described by the set of Laguerre functions. Expressed in vector
form, Δ𝑈𝑘 is given as

Δ𝑈𝑘 =
[
𝐿0 𝐿1 . . . 𝐿𝑁−1

]T
𝛾𝑘 = Ω𝐿𝛾𝑘 . (21)

Extending this to the multi-input case, each input 𝑗 = 1, . . . , 𝑛𝑢 is described by a separate set of Laguerre
functions 𝑁𝐿, 𝑗 with pole 𝑎 𝑗 , i.e.

Δ𝑢𝑘+𝑖, 𝑗 = 𝐿T
𝑖, 𝑗 𝛾𝑘, 𝑗 , (22)

and the description of the incremental control trajectory in equation (21) is modified such that

𝐿𝑖 =


𝐿𝑖,1 0 . . . 0

0 𝐿𝑖,2
...

...
. . . 0

0 . . . 0 𝐿𝑖,𝑛𝑢


, 𝛾𝑘 =


𝛾𝑘,1

𝛾𝑘,2
...

𝛾𝑘,𝑛𝑢


. (23)
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The pole and number of Laguerre functions can be chosen individually for each input. Thus, the total
number of decision variables results in 𝑁𝐿 =

∑𝑛𝑢
𝑗=1 𝑁𝐿, 𝑗 . Inserting expression (21) of Δ𝑈𝑘 into problem

(15), the optimization problem is rewritten as

min
𝛾𝑘

1
2
𝛾T
𝑘𝐻𝛾𝑘 + 𝑔T𝛾𝑘 (24a)

s.t. 𝐺𝐿
𝑢 𝛾𝑘 ≤ ℎ𝑢 (24b)

𝐺Δ𝑥ΓΩ𝐿𝛾𝑘 = −𝐺Δ𝑥Φ𝑥
𝑎
𝑘 , (24c)

with
𝐻 = ΩT

𝐿Γ
T�̃�ΓΩ𝐿 + 𝑅𝐿 , 𝑔 = ΩT

𝐿Γ
T�̃�Φ𝑥𝑎𝑘 , (25)

where 𝑅𝐿 ∈ R𝑁𝐿×𝑁𝐿 is the weighting matrix of the Laguerre coefficients. The input constraints are
expressed in terms of the Laguerre coefficient vector 𝛾𝑘 . Noting that 𝑢𝑘+𝑖 = 𝑢𝑘−1 + ∑𝑖

𝑗=0 Δ𝑢𝑘+ 𝑗 , the
constraint matrix becomes

𝐺𝐿
𝑢 =

[
𝐿∑,0 𝐿∑,1 . . . 𝐿∑,𝑁𝑐

]T
(26)

with

𝐿∑,𝑖 =


∑𝑖
𝑗=0 𝐿 𝑗 ,1 0 . . . 0

0
∑𝑖
𝑗=0 𝐿 𝑗 ,2

...
...

. . . 0
0 . . . 0

∑𝑖
𝑗=0 𝐿 𝑗 ,𝑛𝑢


. (27)

Input constraints are enforced on the first 𝑁𝑐 ≤ 𝑁 elements of the incremental control trajectory.
By describing Δ𝑈𝑘 using exponentially decaying Laguerre functions, the number of constraints can
potentially be reduced, since the incremental control input is ensured to converge to zero after some time
period. Thus, it is often sufficient to impose the constraints only on the transient period of the trajectory
[25]. Based on the RHC principle, the applied input at each time step is 𝑢𝑘 = 𝑢𝑘−1 + 𝐿T

0𝛾𝑘 . Note that
once the Laguerre parameters are selected in the control design, the matrix Ω𝐿 and initial condition 𝐿0 do
not change. This approach of using Laguerre functions to describe Δ𝑈𝑘 effectively reduces the number
of decision variables and thus on-line computation time. Moreover, the number of decision variables
becomes independent of the prediction horizon such that sufficiently long horizons can be realized.

3.3 Observer Design
The construction of the optimization problem requires the knowledge of the initial augmented state

vector 𝑥𝑎𝑘 . The majority of the augmented states can be either be measured by the on-board instrumentation
of the aircraft (rigid-body flight dynamics states) or calculated on-line from the control input and models
of the actuator and control surface dynamics (actuator states). However, the states related to the structural
dynamics and downwash delays are not measurable and thus have to be estimated using an observer. In
this work, a linear parameter-varying Kalman filter is designed. To this end, a grid-based LPV model is
constructed from the set of LTI models in Equation 5. Model reduction is performed to remove all states
associated with the slow rigid-body flight dynamics. Further, rigid-body accelerations, velocities, and
airspeed are selected as the model outputs. Lastly, the models are discretized using Euler’s method with
sampling time 𝑇𝑠 to obtain the discrete-time observer state space matrices 𝐴𝑂𝑑 , 𝐵

𝑂
𝑑 , 𝐶

𝑂
𝑑 , and 𝐷𝑂𝑑 . The

Kalman filter is designed to estimate the incremental state vector. Hence, the equation for the prediction
step is

Δ𝑥𝑘 |𝑘−1 = 𝐴𝑂𝑑 (𝜌𝑘−1)Δ𝑥𝑘−1|𝑘−1 + 𝐵𝑂𝑑 (𝜌𝑘−1)Δ𝑢𝑘−1, (28)

where Δ𝑥𝑘 |𝑘−1 denotes the a priori estimate of the incremental state vector and 𝜌 : R→ P with P ⊂ R𝑛𝜌
is the vector of time-varying scheduling parameters. Airspeed is chosen as the only scheduling parameter.
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The equation for the correction step is given by

Δ𝑥𝑘 |𝑘 = Δ𝑥𝑘 |𝑘−1 + 𝐾𝑘 (𝜌𝑘 )
(
Δ𝑦𝑘 − 𝐶𝑂𝑑 (𝜌𝑘 )Δ𝑥𝑘 |𝑘−1 − 𝐷𝑂𝑑 (𝜌𝑘 )Δ𝑢𝑘

)
, (29)

where Δ𝑥𝑘 |𝑘 is the a posteriori estimate of the incremental state vector 2. The Kalman gain 𝐾𝑘 is deter-
mined from the solution of the discrete Riccati equation for each linear model of the LPV interpolation
grid. The process and measurement noise covariances are chosen based on the measurement noise
characteristics and the LPV model uncertainty.

4 Real-Time Implementation and Flight Testing
The presented MPC formulation using Laguerre functions to describe the incremental control trajec-

tory provides a powerful framework for designing model predictive flight control for large scale systems
such as flexible aircraft. In particular, the reduction of decision variables effectively reduces on-line
computation time such that real-time implementation of the controller is feasible. The model predictive
flight controller is finally tested in flight test experiments under real world conditions using the G-Flights
Dimona. In the following, the tuning, real-time implementation, and flight test results are discussed.

4.1 Tuning and Real-Time Implementation
From the set of linear prediction models, 42 linear model predictive controllers covering the entire

flight envelope are designed off-line. For each controller, the sampling time is set to 𝑇𝑠 = 0.04s.
First, closed-loop performance and control effort are initially tuned by selecting the weighting matrices
𝑄1 = 0𝑛𝑥×𝑛𝑥 , 𝑄2 = 𝐼𝑛𝑦×𝑛𝑦 , 𝑃 = 50 · 𝑄2, and 𝑅𝐿 = 𝐼𝑁𝐿×𝑁𝐿 . Next, the number of Laguerre functions to
describe the incremental control trajectory of each input is chosen to 𝑁𝐿, 𝑗 = 5. Thus, the total number of
decision variables results to 𝑁𝐿 = 50 (compared to 700 decision variables without the use of Laguerre
functions). The corresponding Laguerre poles are set to 𝑎 = 0.88 based on an estimate of the dominant
eigenvalues of the closed-loop system [26]. Subsequently, the prediction horizon is fixed to 𝑁 = 70
steps. This means, the controllers predict the aircraft response for 2.8s ahead of the current time step to
determine the optimal control inputs. With this choice of Laguerre parameters and prediction horizon,
sufficiently complex incremental control trajectories can be modeled that stabilize the aircraft within the
prediction horizon. Further, the incremental control trajectory decays to zero at the end of the prediction
horizon. In a last step, closed-loop performance and control effort are further tuned in nonlinear closed-
loop simulations by adjusting the weighting matrices𝑄1,𝑄2, and 𝑅𝐿 as a function of airspeed to account
for the varying dynamics and control surface effectiveness. The auxiliary outputs of aileron and flaperon
deflections are assigned low weights in order to not affect the transient response of the control trajectory.
Input constraints are enforced on the first 𝑁𝑐 = 18 samples, capturing the transient maxima of the
control trajectory. Given the horizon weight, prediction, Laguerre, and constraint matrices for the set of
controllers, the quadratic programs are constructed. The resulting Hessian, linear cost term (except for
𝑥𝑎𝑘 ), and terminal equality constraint matrices are stored as 4-dimensional matrices representing the grid
of airspeed and bank angle. In this way, the construction of the QP matrices is performed off-line which
reduces computation time. However, more on-line memory is required. The input constraint matrix 𝐺𝐿

𝑢

and initial condition 𝐿0 are stored as constant matrices. Lastly, the LPV Kalman filter is constructed
off-line based on the process and measurement noise covariance matrices. The resulting Kalman gains
and LPV model system matrices are stored as 3-dimensional matrices representing the grid of airspeed.

Next, the controller is integrated into the real-time application of the flight control computer in
MATLAB/Simulink among the existing applications for measurement processing, guidance, navigation,

2Including 𝐷𝑑 in (29) generally causes an algebraic loop, since the calculation of Δ𝑢𝑘 is based on Δ𝑥𝑘 |𝑘 itself. However,
in this case, Δ𝑢𝑘 is taken from the low-level control output of the flight control computer which introduces a small delay.
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and control. During on-line operation, the stored Hessian, linear cost term, and equality constraint
matrices are interpolated based on the current measurements of airspeed 𝑉𝐴,𝑘 and bank angle 𝜙𝑘 , and
the QP assembled given the initial augmented state vector 𝑥𝑎𝑘 . The input constraints are set up based on
the previous control input 𝑢𝑘−1. The resulting QP is solved using the interior-point (IP) solver qpSWIFT
[36]. The maximum number of iterations is limited to five. This early termination potentially produces
suboptimal solutions since the QPs are not solved to full accuracy. However, it is found that the solver
already provides good solutions that satisfy the constraints after this number of iterations. Further,
considering the predictive control law is computed according to the RHC principle, the quality of control
obtained still is high [37]. Given the solution vector of the Laguerre coefficients 𝛾𝑘 , the control input is
computed. After code generation, the overall maximum computation time of the controller on the flight
control computer, including all other applications running in parallel, results to 0.036s.

4.2 Flight Test Results
The controller is eventually tested in flight test experiments with four different tracking scenarios.

Each scenario consists of a predefined reference maneuver in terms of sink rate 𝑟𝑤, bank angle 𝑟𝜙, angle
of sideslip 𝑟𝛽, and airspeed 𝑟𝑉𝐴 commands. Scenario 1 is a sink rate doublet, scenario 2 a bank angle
doublet, scenario 3 a simultaneous sink rate and bank angle pulse command, and scenario 4 an airspeed
pulse command. In September 2023, a total of 60 maneuvers were successfully performed at different
airspeeds. On the flight test day, wind and gust speeds between 2-5m/s were measured. Figure 4 shows
the flight test result of tracking scenario 1-4 executed at medium airspeed reference commands between
22m/s and 28m/s for the controlled output and input. In the plots, the measurements of load factor and
airspeed are filtered at 15Hz cut-off frequency to enhance visibility. The control surfaces are denoted
according to their position on the aircraft, that is, subscript "𝑙" is used for left, "𝑟" for right, "out" for outer,
and "in" for inner position. The measurements show a very good tracking performance of the model
predictive flight controller. In particular, the tracking of bank angle is excellent with steady tracking
errors not exceeding ±1°. The controller effectively minimizes the strong coupling of roll and yaw motion
characteristic of this aircraft, thus allowing for an accurate tracking of bank angle while keeping angles of
sideslip small. This is achieved by computing optimal control inputs for ailerons, flaperons, and rudder
based on the prediction of the aircraft response. A maximum transient tracking error of −6.8° for the
angle of sideslip is observed at the 60° bank angle step change. However, considering the wind and gust
conditions on the flight test day, this is deemed acceptable. Sink rate is tracked well with steady tracking
errors predominantly within ±1m/s and a transient maximum error of −2.2m/s during the 60° bank angle
step change. A similar result is achieved for the tracking of load factor, where the maximum tracking
error of 0.46 is also observed during the 60° bank angle step change but otherwise stays within ±0.2. The
tracking of airspeed is acceptable although the airspeed controller could be tuned more dynamically in
the future. Wind and gust disturbances are most visible in the tracking of load factor and angle of sideslip,
leading to continuous control action of elevators and rudder throughout the maneuvers. Looking at the
wing control surface deflections, ailerons and flaperons are primarily used for roll control with the control
effort distributed among the control surfaces based their roll moment effectiveness. That is, outer left
and right ailerons deflect the most. Opposite pairs do not necessarily deflect in a synchronised fashion,
as they are manipulated individually by the controller. After a transient response during control action,
ailerons and flaperons return back to neutral position in steady-state. This confirms that the inclusion of
the auxiliary output in the design of the controller works as intended. From all control surfaces, only the
rudder approaches its limit during the transient response to the 60° bank angle step change. However,
no constraints are violated. A small positive offset in the rudder deflection is observed throughout all
maneuvers. This indicates a possible offset in the angle of sideslip measurement.

In order to evaluate the performance of the controller across the entire flight envelope, additional
plots of the flight test result for tracking scenario 1-4 executed at low (below 22m/s) and high airspeed
reference commands (above 28m/s) are presented in the appendix in Figure 5 and Figure 6, respectively.
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Fig. 4 Flight test results for tracking scenarios 1-4 at medium airspeed reference commands (reference:
dotted, measured: solid, constraints: dash-dotted, maneuver separation: dashed)

As expected, less control effort is required at higher airspeeds due to the increase of control surface
effectiveness. At lower airspeeds, the damping of rigid-body modes decreases such that a higher
damping was targeted during controller tuning, resulting in slightly slower response times. However,
overall, similar tracking performances are achieved. These results confirm that the scheduling of multiple
linear model predictive controllers designed at different points in the flight envelope is an effective method
for achieving good tracking performance across the entire flight envelope. Across all airspeed, no strong
excitation of the first symmetric wing bending mode is observed during the maneuvers. This indicates
that the contribution of this structural mode in the predictions of the maneuvers alone is small compared
to the rigid-body modes. However, in a subsequent work the controller will be extended with maneuver
and gust load alleviation functions where fast actuator response times are needed. Moreover, nonlinear
simulations of various gust interactions in preparation of the flight tests have shown a significant excitation
of the structural mode with considerable effect on the wing loads.
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5 Conclusion
A model predictive flight controller for the longitudinal and lateral-directional control of a slightly

flexible 25kg unmanned aircraft is proposed, implemented in real-time, and validated in flight test
experiments. The controller is responsible for the stabilization of the aircraft and tracking of reference
commands by computing optimal control inputs for the 11 control surfaces of the aircraft. Reduced-order
linear prediction models are derived from a high-fidelity nonlinear model of the aircraft at different
points in the flight envelope. Aeroelastic effects are accounted for in the predictions by including relevant
structural modes in the reduced-order models. From the set of prediction models, multiple linear model
predictive controllers are first designed off-line, applying the MPC formulation using a velocity-form
model for offset-free tracking, and later scheduled during on-line operation. To achieve a reduction
of computation time and thus enable real-time implementation of the controller, orthonormal Laguerre
functions are used to approximate the incremental control trajectory. This approach proves effective in
significantly reducing the number of decision variables and constraints of the optimization problem. The
controller is successfully validated in various flight test experiments at different airspeeds comprising
four different tracking scenarios. The results show a very good tracking performance of the controller
even in the presence of wind and gust disturbances. In particular, the tracking of the bank angle using
multiple wing control surfaces is very accurate. Overall, the scheduling of multiple linear controllers
designed at different points in the flight envelope proves effective in achieving good tracking performance
across the entire flight envelope. Future work will consider the augmentation of the controller with load
control functions to design an integrated flight and loads controller.
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Fig. 5 Flight test results for tracking scenarios 1-4 at low airspeed reference commmands (reference:
dotted, measured: solid, constraints: dash-dotted, maneuver separation: dashed)
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Fig. 6 Flight test results for tracking scenarios 1-4 at high airspeed reference commands (reference: dotted,
measured: solid, constraints: dash-dotted, maneuver separation: dashed)
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