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ABSTRACT

This paper introduces an approach to address the challenge of wind disturbances in the context
of fixed-wing UAV formation control. It presents a robust adaptive controller that explicitly
accounts for the time-varying nature of wind speed, offering a practical solution for real-world
scenarios characterized by parametric uncertainties and external disturbances. By considering
the dynamic behavior of wind, including phenomena like wind shear and gusts, the design of the
controller becomes more realistic, and its analysis gains rigor, enhancing the system robustness.
The effectiveness of the proposed controller is demonstrated by simulations.
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1 Introduction
Small fixed-wing Unmanned Aerial Vehicles (UAVs) that is, with wingspans less than 2 meters and

payload smaller than 2 kg are gaining growing interest because of their low cost, high maneuverability
and simple maintenance [1]. These UAVs find application in a broad spectrum of military and civilian
missions [2–8]. Employing small UAVs in a formation can yield several advantages, such as reduced
task completion times, enhanced overall performance, and the ability to undertake diverse missions in
complex or constrained environments. This concept is well-supported by [9], [10], and [11].

Research in mobile robotics has significantly influenced the development of UAV formation control.
The leader-follower architecture is as one of the most widely adopted methods for achieving formation
control. In this framework, a designated leader, or a virtual leader, follows a predefined trajectory, while
the followers maintain desired relative positions with respect to it through the implementation of specific
control techniques, as explained by [12]. However, as a special type of robot, fixed-wing UAVs have
some particular properties owing to their special dynamics [13] which constrain the problem. Firstly, a
fixed-wing UAV is an under-actuated system, and its kinematics on the horizontal plane can be simplified
to a unicycle system [14]. Secondly, the aircraft must maintain a positive forward minimum airspeed
above the stall speed [15].

Several methods for linear control have been proposed to achieve leader-follower formation control
for fixed-wing UAVs. One approach is based on Linear Quadratic (LQ) control, which utilizes linearizsd
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equations of motion [16]. Another method involves PID control for UAV formation, with results presented
in study [17]. More advanced approaches have also been applied. A design based on feedback linearisa-
tion was presented in [18], ensuring global stability for the entire system. Reference [19] introduced an
adaptive approach for UAV formation control, addressing unknown leader commands and vortex forces
in velocity and heading angle dynamics. Second order sliding mode techniques were seen to achieve
perfect UAV formation tracking affected by unknown bounded disturbances in [20]. The research of [21]
proposed a fuzzy controller for achieving three-dimensional formation control of fixed-wing UAVs with
unknown nonlinear dynamics. Reference [22] developed a seeker-based formation control formulation
that eliminates the necessity of communication networks by applying an integral sliding mode controller
to account for uncertainties in follower speeds measurements. For addressing dynamic uncertainty and
unknown external disturbances in UAV formation, a Model Reference Adaptive Control scheme was
developed by [23]. More details can be found in the recent literature reviews on UAV formation control
[24, 25] and in references therein.

A significant limitation of small fixed-wing UAVs lies in their extreme sensitivity to wind due to
their relatively low speeds. In practice, wind speeds often range from 20% to 60% of the desired airspeed
for these UAVs [26]. If a formation controller does not account for wind, it can reduce the trajectory-
tracking capabilities of the follower UAVs. Moreover, in scenarios where the wind speed can rapidly
change, the UAVs may need to operate at considerable distances from one another, making it crucial
for the formulation of the formation control problem to consider varying wind speeds affecting each
UAV individually. Another challenge arises from the difficulty of maintaining a constant airspeed for
small UAVs, especially in the presence of wind. Consequently, there is a need to develop formation
control methods explicitly designed to withstand wind disturbances. However, the previously described
approaches often neglect the explicit consideration of wind impact on UAV formation control. The only
known approach that addresses formation control of fixed-wing UAVs in windy conditions is presented
in [27]. This solution is based on vector field guidance [26]. The main drawback of this method is
its assumption of constant wind speed, which does not align with real-world conditions where wind
velocities are variable and can change rapidly [28].

A solution to this challenge can be provided through the use of L1 adaptive control [29]. The
benefit of L1 adaptive control is its capacity for fast and robust adaptation that leads to desired transient
performance for both system signals, input and output. These characteristics make it suitable for systems
subject to external time-varying disturbances, such as small UAVs motion in wind. The L1 adaptive
control has been applied for various autonomous flight control systems of fixed-wing UAVs [28, 30–36],
to cite a few.

The main concept of this work is formulating formation control for fixed-wing UAVs as a control
design for systems with parametric uncertainties and external disturbances. The proposed solution
is built upon the Multi-Input, Multi-Output (MIMO) L1 adaptive controller, specifically designed for
disturbances with unknown bounds [37]. While the L1 adaptive control has found application in
cooperative and formation control of multiple UAVs [38] and [39], it is important to note that both of
these prior approaches did not address the issue of wind. In contrast, the approach proposed in this
research explicitly tackles the challenge of fixed-wing UAV formation control in the presence of wind,
effectively relaxing the assumption that wind speed remains constant.

The rest of this article is organized as follows. Section II describes the formulation of the problem
of UAV formation control. Section III presents the L1 adaptive formation control. Section IV presents
the simulation results. Finally, Section V presents conclusions.
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2 Problem Formulation
In practice, the two most commonly used paths for UAVs are straight-lines and circular paths [40].

Both types of paths are usually defined on the horizontal plane with constant altitude and speed. Under
these assumptions, the UAV kinematics can be written as follows

©­­«
¤𝑋
¤𝑌
¤𝜓

ª®®¬ =
©­­«
𝑉𝑎 cos𝜓 +𝑊𝑥

𝑉𝑎 sin𝜓 +𝑊𝑦

𝑤

ª®®¬ , (1)

where 𝑋 and 𝑌 are respectively the North and East positions of the UAV, 𝑉𝑎 is the airspeed, 𝜓 is the
heading angle relative to the north, 𝑤 is the heading rate, and𝑊𝑥 and𝑊𝑦 are wind speeds in the inertial
frame.

This model is derived under the assumption that the UAV is in steady level flight. In this case, the
airspeed vector is aligned with the 𝑥-direction of the body frame, which means that the sideslip angle 𝛽
is zero.

Assuming a bank to turn strategy, the heading rate of the UAV can be expressed as

𝑤 =
𝑔

𝑉𝑎
tan 𝜙, (2)

where 𝜙 is the roll angle and 𝑔 is the gravity acceleration.

If we consider a leader-follower UAV formation, the leader is denoted 𝑙 and each follower is denoted
𝑖, then the kinematic model of the leader UAV can be written from Fig. 1 as
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and the kinematics of the 𝑖th follower, for 𝑖 = 1...𝑁 , are given by
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Fig. 1 Leader-Follower formation
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The objective is to compute the commanded airspeeds 𝑉 𝑖𝑎 and roll angles 𝜙𝑖 of the followers that
maintain them on the desired paths, despite the presence of wind.The following assumptions are made.

Assumption 1. Each UAV is equipped with a low-level controller that is robust external disturbances.

Assumption 2. The dynamics of the roll are much faster than the heading, hence the inner-loop
dynamics can be ignored.

Assumption 3. The leader UAV is equipped with a path-following controller that is robust against
wind.

Assumption 4. The state of each UAV is measurable.

Assumption 5. The leader can communicate with the follower UAVs.

Remark 1. In this paper the time dependence is omitted except if it is not clear from the context.

Remark 2. At this point it is important to note that the UAVs might operate at relatively far distances.
Furthermore, wind speed can change very quickly. Consequently, it is more realistic to assume that values
of wind speed acting on each UAV are different.

The position error of each follower UAV relative to the leader in the global frame can be defined by

©­­«
𝑃𝑖𝑥

𝑃𝑖𝑦
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ª®®¬ , (5)

where (𝑋 𝑖
𝑑
, 𝑌 𝑖
𝑑
) are the desired positions of each follower UAV relative to the leader. The previous error

can be expressed in the local coordinate frame by
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Assuming that 𝑋𝑑
𝑖

and 𝑌 𝑑
𝑖

are constant, the dynamics of the position error can be written as follows
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, the system can be written as
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The system in (9) is a standard formulation of a nonlinear control system in the presence of external
time-varying disturbances defined by

¤𝑥𝑖 = 𝑓 (𝑥𝑖, 𝑢𝑖) + 𝑑𝑖 (𝑡)
𝑦𝑖 = 𝐶𝑥𝑖 .

(10)

tHE controlled outputs are the positioning errors 𝑋 𝑖𝑒 and 𝑌 𝑖𝑒. Hence

𝐶 =

(
1 0 0
0 1 0

)
.

The objective is to compute the control commands 𝑢𝑖, for each follower UAV, that stabilize the system
and maintain the followers on the desired paths, despite the presence of wind. The proposed method is
based on L1 adaptive control. The proposed architecture is shown in Fig. 2.

Formation
Controller

Adaptive Controller

Follower UAV

Leader UAV
Path-following

Controller

Wind

Wind

Fig. 2 L1 adaptive formation control in wind.

L1 adaptive control is a suitable approach for systems subject to external time-varying disturbances,
such as small UAVs motion in wind. This is due to its fast and robust adaptation that leads to desired
transient performance for both system input and output [29].

3 L1 Adaptive Formation Control
In adaptive control design, a common practice is to linearize a nonlinear model at an operating

point to create a linear controller. This linear controller is then combined with an adaptive controller,
leveraging prior system knowledge to enhance system robustness [41].

For the equilibrium point (0, 0, 0, 𝑉 𝑙𝑎, 0), the linearized state space model of equation (10) is given
by

¤̄𝑥𝑖 = 𝐴𝑝𝑥𝑖 + 𝐵𝑝𝑢̄𝑖, (11)
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where

𝐴𝑝 =
©­­«

0 0 0
0 0 𝑉 𝑙𝑎

0 0 0

ª®®¬ and 𝐵𝑝 =
©­­«
−1 0
0 0
0 −𝑔/𝑉 𝑙𝑎

ª®®¬ .
Hence, the non-linear system of (9) can be written as follows

¤𝑥𝑖 = 𝐴𝑝𝑥𝑖 + 𝐵𝑝𝑢𝑖 + 𝑓 𝑖, (12)

where 𝑓 𝑖 (𝑥𝑖, 𝑢𝑖, 𝑡) is a nonlinear function that includes the higher order terms of the Taylor series expansion
of 𝑓 (𝑥𝑖, 𝑢𝑖) and the external disturbance 𝑑𝑖 (𝑡).

Remark 3. It is important to underline that the matrices 𝐴𝑝 and 𝐵𝑝 are uncertain because it is not
possible for the leader UAV, in real flight conditions, to maintain a constant airspeed𝑉 𝑙𝑎 and consequently
a constant heading rate 𝑤𝑙 = (𝑔/𝑉 𝑙𝑎) tan 𝜙𝑙 . This is especially true in the presence of wind.

The system of (12) can be written as

¤𝑥𝑖 = 𝐴𝑖𝑚𝑥𝑖 + 𝐵 𝜔𝑖 𝑢𝑖 + (𝐴𝑝 − 𝐴𝑖𝑚)𝑥𝑖 + 𝑓 𝑖, (13)

where 𝐴𝑖𝑚 = 𝐴𝑝 − 𝐵𝐾𝑖𝑝 are Hurwitz matrices of the desired dynamics of the system, 𝐵 is the input matrix
of the system with the nominal airspeed of the leader UAV, 𝐾 𝑖𝑝 ∈ R2×3 are the feedback matrices, and
𝜔𝑖 ∈ R2×2 are matrices of unknown parameters.

Remark 4. Choosing different desired dynamics for each follower UAV will give better flexibility
for the design of the system. However, a simpler approach would be that the desired dynamics of the
followers are chosen to be the same.

For control design, the following approximation can be used

(𝐴𝑝 − 𝐴𝑖𝑚)𝑥𝑖 + 𝑓 𝑖 = 𝐵
(
𝜃𝑖𝑥𝑖 + 𝜂𝑖𝑚

)
+ 𝜂𝑖𝑢, (14)

where 𝜃𝑖 ∈ R2×3 are matrices of unknown parameters, 𝜂𝑖𝑚 (𝑡) ∈ R2 are vectors of matched disturbances
and 𝜂𝑖𝑢 (𝑡) ∈ R3 are vectors of unmatched disturbances.

Consequently, the system of (13) can be written as follows

¤𝑥𝑖 = 𝐴𝑖𝑚𝑥𝑖 + 𝐵
(
𝜔𝑖 𝑢𝑖 + 𝜃𝑖𝑥𝑖 + 𝜂𝑖𝑚

)
+ 𝜂𝑖𝑢 . (15)

The resulting model makes it straightforward to apply L1 adaptive control.

Remark 5. The main advantage of the application of L1 adaptive control to UAV formation control
in wind is that good performance of the system can be obtained, whether the unknown wind speed is
constant or not. This is a direct consequence of what was demonstrated in [29, 42] that the L1 adaptive
controller presents a good compromise between performance and robustness in the presence of external
disturbances.

Assumption 6. The unknown model parameters 𝜃𝑖 and the external unmatched disturbances 𝜎𝑖 are
bounded, i.e., 𝜃𝑖 ∈ Θ and 𝜎𝑖 ∈ Δ, where Θ and Δ are known compact convex sets. The system input
matrices 𝜔𝑖 are assumed to be unknown (non-singular) strictly row-diagonally dominant matrices with
sgn(𝜔𝑖

𝑖𝑖
) assumed to be known. Also, it is assumed that there exists a known compact convex set Ω such

that 𝜔𝑖 ∈ Ω ⊂ R2×2.
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Assumption 7. It is also assumed that 𝜃𝑖 and 𝜎𝑖 are differentiable with bounded derivatives, i.e.
there exist finite 𝑑𝜃 and 𝑑𝜎 such that√︃

tr( ¤𝜃𝑖⊤ ¤𝜃𝑖) ≤ 𝑑𝜃 , ∥ ¤𝜎𝑖∥2 ≤ 𝑑𝜎 .

The objective is to design a state-feedback controller for every agent 𝑖 in order to ensure that the
output of each UAV tracks a given piecewise continuous bounded reference signal 𝑟𝑖 (𝑡).

4 L1 adaptive controller of MIMO systems with disturbances of
unknown bounds
In this section, based on [37], the L1 adaptive controller for SISO systems with disturbances of

unknown bounds [42] is extended to MIMO systems. This control approach draws insights from sliding
mode control to design the adaptive laws. The main advantage is that the estimation of both the
disturbances and their bounds is achieved by using a sliding surface. Consequently, the performance and
robustness of the control system improve without assuming prior information about external perturbations.

4.1 Controller Design
As shown in Fig. 3, the L1 adaptive controller consists of three components: the state predictor, the

adaptive law with fast adaptation, and the control law with a low-pass filter [29]. The state predictor
is a designed dynamic system that contains a vector of adaptive parameters. The adaptive law is used
to update adaptive parameters such that the error between the predicted state and the real state is small
enough. The control law is designed to ensure that the output tracks any given references. Using this
structure the L1 adaptive controller ensures robust tracking performance with fast adaptation.

Fig. 3 General architecture of the L1 adaptive controller.

The model in (15) is equivalent to the class of MIMO systems defined by

¤𝑥(𝑡) = 𝐴𝑚𝑥(𝑡) + 𝐵
(
𝜔𝑢(𝑡) + 𝜃⊤𝑥(𝑡) + 𝜂𝑚 (𝑡)

)
+ 𝜂𝑢 (𝑡, 𝑥),

𝑦(𝑡) = 𝐶𝑥(𝑡), 𝑥(0) = 𝑥0,
(16)

where 𝐴𝑚 ∈ R is a known Hurwitz matrix that defines the desired dynamics of the system; 𝐵𝑛×𝑚,
𝐶 ∈ R𝑚×𝑛 are known constant matrices; 𝑥(𝑡) ∈ R𝑛 is the state vector which is assumed available through
measurement; 𝑢(𝑡) ∈ R𝑚 is the control input vector; 𝑦(𝑡) ∈ R𝑚 is the output vector; 𝜔 ∈ R𝑚×𝑚 is
an unknown constant matrix; 𝜃⊤ ∈ R𝑚×𝑛 is a matrix of constant unknown parameters representing
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model uncertainties; 𝜂𝑚 (𝑡) ∈ R𝑚 is an unknown matched disturbance; and 𝜂𝑢 (𝑡, 𝑥) ∈ R𝑛 is an unknown
unmatched disturbance.

Assumption 8. The non-linear functions 𝜂𝑚 (𝑡) and 𝜂𝑢 (𝑡, 𝑥) are uniformly bounded, i.e., there exist
unknown real constants 𝐿𝑚 > 0 and 𝐿𝑢 > 0, such that for all 𝑡 ≥ 0 the following bounds hold:

∥𝜂𝑚 (𝑡)∥ ≤ 𝐿𝑚 and ∥𝜂𝑢 (𝑡, 𝑥)∥ ≤ 𝐿𝑢 .

Assumption 9. The unknown model parameters are bounded, i.e., 𝜃 ∈ Θ, where Θ is a known
compact convex set. The system input gain matrix 𝜔 is assumed to be an unknown (non-singular) strictly
row-diagonally dominant matrix with sgn(𝜔𝑖𝑖) known. Also, it is assumed that there exists a known
compact convex set Ω such that 𝜔 ∈ Ω ⊂ R𝑚×𝑚.

4.2 Controller Design
The state predictor is defined as

¤̂𝑥(𝑡) = 𝐴𝑚𝑥(𝑡) + 𝐵
(
𝜔̂(𝑡)𝑢(𝑡) + 𝜃⊤(𝑡)𝑥(𝑡) + 𝜂𝑚 (𝑡)

)
+ 𝜂𝑢 (𝑡),

𝑦̂(𝑡) = 𝐶𝑥(𝑡), 𝑥(0) = 𝑥0,
(17)

where 𝑥(𝑡) is the predicted state and 𝜃 (𝑡), 𝜔̂(𝑡), 𝜂𝑚 (𝑡), and 𝜂𝑢 (𝑡) are the estimates of the unknown system
parameters and disturbances.

The sliding surface is defined as
𝜎(𝑡) = 𝜆𝑥(𝑡), (18)

where 𝑥(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) is the state estimation error and 𝜆 ∈ R𝑚×𝑛 is a constant arbitrary matrix, chosen
such that 𝜆𝐵 is non-singular and the coefficients 𝜆(𝑖, 𝑗) : 𝑖 = 1..𝑛; 𝑗 = 1..𝑚 form a stable hyperplane.

The estimation of the matched disturbance 𝜂𝑚 (𝑡) is defined by

𝜂𝑚 (𝑡) = −(𝜆𝐵)−1 (𝜆𝐴𝑚𝑥(𝑡) + 𝜌𝜎(𝑡)) − 𝐿̂𝑚 (𝑡) 𝐵⊤𝜆⊤𝜎(𝑡)
∥𝐵⊤𝜆⊤𝜎(𝑡)∥ , (19)

where 𝜌 > 0 is arbitrary and the estimated bound 𝐿̂𝑚 (𝑡) is given by

¤̂𝐿𝑚 (𝑡) = Γ∥𝜎⊤(𝑡)𝜆𝐵∥, 𝐿𝑚0 = 𝐿̂𝑚 (0), (20)

where Γ ∈ R+ is the adaptation rate.

The estimation of the unmatched disturbance 𝜂𝑢 (𝑡, 𝑥) is defined by

𝜂𝑢 (𝑡) = −𝐿̂𝑢 (𝑡)
𝜆⊤𝜎(𝑡)
∥𝜆⊤𝜎(𝑡)∥ , (21)

where the estimated bound 𝐿̂𝑢 (𝑡) is computed by

¤̂𝐿𝑢 (𝑡) = Γ∥𝜎⊤(𝑡)𝜆∥, 𝐿𝑢0 = 𝐿̂𝑢 (0). (22)

The input gain matrix 𝜔 and unknown parameters matrix 𝜃 are estimated by

¤̂𝜔(𝑡) = −Γ Proj
(
𝜔̂(𝑡), 𝑢(𝑡) 𝜎⊤(𝑡)𝜆 𝐵

)⊤
,

¤̂𝜃 (𝑡) = −Γ Proj
(
𝜃 (𝑡), 𝑥(𝑡) 𝜎⊤(𝑡)𝜆 𝐵

)
.

(23)
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The control law is given by

𝑢(𝑠) = 𝐾 𝐷 (𝑠)
(
𝐾𝑔 𝑟 (𝑠) − 𝜈1(𝑠) − 𝜈2(𝑠)

)
, (24)

where 𝐷 (𝑠) is an 𝑚 × 𝑚 strictly proper transfer matrix; 𝐾 ∈ R𝑚×𝑚; 𝐾𝑔 = −(𝐶𝐴−1
𝑚 𝐵)−1 is the pre-filter

of the MIMO control law; 𝜈1(𝑠) is the Laplace transformation of 𝜈1(𝑡) = 𝜃⊤(𝑡)𝑥(𝑡) + 𝜔̂(𝑡)𝑢(𝑡) + 𝜂𝑚 (𝑡);
𝐻𝑚 (𝑠) = 𝐶 (𝑠I − 𝐴𝑚)−1𝐵; 𝐻0(𝑠) = 𝐶 (𝑠I − 𝐴𝑚)−1; and 𝜈2 = 𝐻−1

𝑚 (𝑠)𝐻0(𝑠)𝜂𝑢 (𝑠).
The design of 𝐷 (𝑠) and 𝐾 should lead to a strictly proper and stable filter transfer matrix

𝐶 (𝑠) = 𝜔𝐾𝐷 (𝑠) (I + 𝜔𝐾𝐷 (𝑠))−1,

with steady state DC gain 𝐶 (0) = I.

4.3 Controller Analysis
Let

𝐿 = max
𝜃∈Θ

∥𝜃∥1, 𝐻 (𝑠) = (𝑠I − 𝐴𝑚)−1𝐵, 𝐺 (𝑠) = 𝐻 (𝑠)
(
I − 𝐶 (𝑠)

)
. (25)

The L1 adaptive controller defined via equations (17)-(24) is subject to the following L1 norm
condition:

∥𝐺 (𝑠)∥L1𝐿 < 1. (26)

Moreover, the design of 𝐶 (𝑠) needs to ensure that the transfer matrix

𝐺𝑢 (𝑠) = (𝑠I − 𝐴𝑚)−1 − 𝐻 (𝑠)𝐶 (𝑠)𝐻−1
𝑚 (𝑠)𝐻0(𝑠), (27)

is a proper and stable.

In the following it is shown that the closed loop reference system, i.e. the closed-loop system with
nominal parameters, is stable. The reference system is defined by

¤𝑥𝑟 (𝑡) = 𝐴𝑚𝑥𝑟 (𝑡) + 𝐵
(
𝜔𝑢𝑟 (𝑡) + 𝜃⊤𝑥𝑟 (𝑡) + 𝜂𝑚 (𝑡)

)
+ 𝜂𝑢 (𝑡, 𝑥),

𝑦𝑟 (𝑡) = 𝐶𝑥𝑟 (𝑡), 𝑥𝑟 (0) = 𝑥0.
(28)

The reference control law is given by

𝑢𝑟 (𝑠) = 𝜔−1𝐶 (𝑠)
(
𝐾𝑔𝑟 (𝑠) − 𝜈1𝑟 (𝑠) − 𝜈2𝑟 (𝑠)

)
, (29)

where 𝜈1𝑟 (𝑠) is the Laplace transformation of 𝜈1𝑟 (𝑡) = 𝜃⊤𝑥𝑟 (𝑡) + 𝜂𝑚 (𝑡) and 𝜈2𝑟 = 𝐻
−1
𝑚 (𝑠)𝐻0(𝑠)𝜂𝑢 (𝑠).

Lemma 1. If the filter 𝐶 (𝑠) is designed such that it verifies the L1 norm condition in (26) and the
requirement in (27), then the closed-loop reference system in (28) and (29) is BIBS stable with respect
to the reference input and initial conditions.

The proof is in the appendix.

In the following, it is stated that the prediction error 𝑥(𝑡), and the estimation errors of the disturbances,
their bounds and the unknown parameters are uniformly bounded.

Lemma 2. The following bound holds for the norm of the prediction error

∥𝑥∥L∞ ≤ 𝛿, (30)
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where 𝛿 > 0 is arbitrary small. Furthermore, if the closed-loop system is stable then the prediction error
𝑥(𝑡) converges to zero, i.e.,

lim
𝑡→∞

𝑥(𝑡) = 0. (31)

The proof is in the appendix.

Next, in the following theorem the performance bounds of the L1 adaptive controller are shown.

Theorem. Given the system (16), the reference system (28) and (29) and the L1 adaptive controller
(17) to (24), we have

∥𝑥𝑟 − 𝑥∥L∞ ≤ 𝛾1, (32)
∥𝑢𝑟 − 𝑢∥L∞ ≤ 𝛾2, (33)

where

𝛾1 = 2
∥𝐺 (𝑠)∥L1

1 − ∥𝐺 (𝑠)∥L1𝐿
𝐿𝑚 + 2

∥𝐺𝑢 (𝑠)∥L1

1 − ∥𝐺 (𝑠)∥L1𝐿
𝐿𝑢 +

∥𝐻 (𝑠)𝐶 (𝑠)𝐻−1
𝑚 (𝑠)𝐶∥L1

1 − ∥𝐺 (𝑠)∥L1𝐿
𝛿,

and
𝛾2 = ∥𝜔−1𝐶 (𝑠)∥L1

(
𝐿𝛾1 + 2(𝐿𝑚 + ∥𝐻−1

𝑚 (𝑠)𝐻0(𝑠)∥L1𝐿𝑢) + 𝐶 (𝑠)𝐻−1
𝑚 (𝑠)𝛿

)
.

The proof is in the appendix.

5 Simulation Results
In this section, the simulation results for the L1 adaptive and a linear path-following controllers are

presented. The performance of the controllers was evaluated in two case scenarios: (1) in time-varying
wind and (2) in a situation where the UAV airspeeds vary under wind effect.

First, the design of a Linear Quadratic Integral (LQI) controller for the system is is presented. The
objective is to provide a comparison baseline for the performance evaluation of the L1 adaptive controller.
For the design of the LQI controller, the regulated outputs errors, denoted by 𝑒𝑖

𝐼
, are considered for the

linear system in (11). The augmented system can be written as[
¤̄𝑥𝑖

¤𝑒𝑖
𝐼

]
=

[
𝐴𝑝 0
−𝐶 0

] [
𝑥𝑖

𝑒𝑖
𝐼

]
+

[
𝐵

0

]
𝑢̄𝑖, (34)

where 𝐴 is the system dynamics matrix for the nominal airspeed.

The control laws of the system are given by

𝑢̄𝑖 = −𝐾 𝑖𝑝𝑥𝑖 − 𝐾 𝑖𝐼𝑒
𝑖
𝐼 , (35)

where 𝐾 𝑖
𝐼
∈ R2×2 are the integral feedback vectors and 𝐾 𝑖𝑝 ∈ R2×2 are the proportional feedback

vectors that are designed to obtain the same desired dynamics matrices as the L1 adaptive controller
𝐴𝑖𝑚 = 𝐴 − 𝐵 𝐾 𝑖𝑝.

The state-feedback vectors 𝐾 𝑖𝑝 were computed by the Linear Quadratic Regulator (LQR) method.
The transfer functions 𝐷𝑖 (𝑠) of the L1 adaptive controllers was chosen as 𝐷𝑖 (𝑠) = 1/(𝑠(𝑠 + 28)) and
𝐾 𝑖 = 36, which leaded to filters 𝐹𝑖 (𝑠) = 36/(𝑠2 + 8.4𝑠 + 36).

It is important to note that the same desired system dynamics and initialization parameters were used
for both linear and adaptive controllers in order to provide a fair comparison.
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The leader UAV was commanded to fly a straight-line path, defined by four waypoints, with the cross-
track error 𝑑 required to be zero. Two follower UAVs that were assigned to fly at distances (𝑋1

𝑑
= −20 m,

𝑌1
𝑑
= 20 m) and (𝑋2

𝑑
= −20 m, 𝑌2

𝑑
= −20 m), respectively. The initial positions of the leader and follower

UAVs were at the earth frame origin.

The airspeed of the leader UAV was assumed to be regulated at 20 m/s. Gravity was 𝑔 = 9.81
m/s2. It was further assumed that the maximum turn angle magnitude of each UAV is |𝜙| = 60◦ and the
commanded airspeeds are within the interval [5, 40] m/s.

Analysis in Case of no Wind
Simulation results show that both L1 adaptive and LQI controllers present satisfactory performance

when there are no wind disturbances. The trajectories of the UAVs relative to the desired path are
shown in Fig. 4. The cross-track and along-track errors, the heading error are illustrated in Fig. 5a. The
commanded airspeeds and roll angles of the followers are illustrated in Fig. 5b. It can be observed that the
L1 adaptive controller has performed slightly better than the LQI controller because it shows relatively
smaller values in peak errors. This is obviously due to its fast adaptation in the presence of changing
parameter uncertainties. The presence of peaks in the cross-track error is due to the rolling motion of the
UAVs when turning at the waypoints.

.
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Fig. 4 UAV trajectories without wind.

Analysis in Case of Time-varying Wind
In the second simulations, a time-varying crosswind was introduced. Its velocity was assumed to be

a periodic signal,𝑊𝑒 (𝑡) = 5 + 5 sin(2𝜋𝑡) m/s.

From Fig. 6 and Fig. 7a it can be noticed that the L1 adaptive controller performs better than the
LQI controller in the same wind conditions. In particular, it can be noted that the trajectory of the UAVs
are smoother and more precise with the L1 adaptive controller. Moreover, it is clearly illustrated that the
cross-track error is not completely eliminated by the LQI controller. Fig. 7b also shows that the airspeed
and roll commands exhibit less saturation with the L1 adaptive controller compared to the LQI controller.
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(b) Airspeed and roll command of the followers

Fig. 5 Performance of the UAVs without wind (L1 blue, LQI red ).

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
o
rt

h
 [

m
]

Leader

Follower1

Follower2

Desired Paths

(a) L1 controller

0 100 200 300 400 500 600

East [m]

0

100

200

300

400

500

600

N
o
rt

h
 [

m
]

Leader

Follower1

Follower2

Desired Paths

(b) LQI Controller

Fig. 6 UAV trajectories in time-varying wind.
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(b) Airspeed and roll Command the of the followers

Fig. 7 Performance of the UAVs in time-varying wind (L1 blue, LQI red ).
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Fig. 8 UAV trajectories with leader varying airspeed.
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(b) Airspeed and roll command the of the followers

Fig. 9 Performance of the UAVs with time-varying airspeed (L1 blue, LQI red ).

Analysis in Case of Leader Varying Airspeed
A practical issue in UAV trajectory control, is that maintaining a constant airspeed for the leader is

not feasible in practice, especially in the presence of wind disturbances [28].

In order to simulate this situation, a constant wind, with a speed of 10 m/s, blowing in the easterly
direction is acting on the leader UAV. Hence, it was assumed that:

• The airspeed 𝑉 𝑙𝑎 increases by 3 m/s when the leader UAV is flying downwind.
• The airspeed 𝑉 𝑙𝑎 decreases by 3 m/s when the leader UAV is flying upwind
• The airspeed 𝑉 𝑙𝑎 decreases by 1 m/s when the leader UAV is flying crosswind.

This assumption does not have a flight mechanical justification. It is used only for simulation
purposes. It was also assumed that the follower UAV is flying in an easterly wind with constant speed of
10 m/s.

It is shown in Fig. 8 that both controllers were able to keep the UAV on the desired path under
variations of the airspeed. However Fig. 9a shows clearly that the long-track errors 𝑥𝑒 and cross-track
errors 𝑦𝑒 converge quickly with the L1 adaptive controller, because of fast adaptation in the presence of
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external disturbances and unknown parameters as consequence of the time-varying airspeed of the leader
UAV. The commanded airspeeds and roll angles of the followers are illustrated in Fig. 9b. The airspeed
and roll commands exhibit less saturation with the L1 adaptive controller compared to the LQI controller.

6 Conclusion
This paper presents a robust adaptive fixed-wing UAV formation controller designed to handle wind

disturbances, explicitly accounting for the time-varying nature of wind speed. The core concept is to
model the leader-follower formation of fixed-wing UAVs as a control design problem for systems affected
by parametric uncertainties and external disturbances.

The proposed solution is based on the application of the L1 adaptive controller for MIMO systems.
By considering the variability of wind speed in real-world scenarios, such as wind shear or wind gusts,
the design becomes more realistic and the analysis more rigorous, ultimately enhancing the system
robustness. While the design primarily focused on 2D straight paths, extending it to 3D curved paths is
a straightforward endeavor.

Although the framework presented in this paper has been successfully demonstrated in simulations,
it is imperative to validate it through real flight tests. Furthermore, taking into account that in reality,
wind velocity is entirely unpredictable, being a stochastic phenomenon, offers a more realistic approach
to the problem of UAV formation control under wind disturbances.

Future research directions may also explore the design based on a cascaded L1 adaptive architecture,
with the inner controller based on L1 adaptive control. Analyzing the stability of such a system is a
main theoretical challenge. Another avenue of investigation involves integrated guidance and control,
merging both the outer-loop and the inner-loop within the same control loop of the UAVs. Moreover,
formulating UAV formation control as a control design problem in the presence of uncertainties and
external disturbances opens the door to a wide array of control methodologies for the development of
robust path-following in windy conditions.

Appendix
Proof of Lemma 1. The closed-loop reference system (28) and (29) can be written

𝑥𝑟 (𝑠) = 𝐻 (𝑠)𝐶 (𝑠)𝐾𝑔𝑟 (𝑠) + 𝐺 (𝑠)𝜃⊤𝑥𝑟 (𝑠) + 𝐺 (𝑠)𝜂𝑚 (𝑠) + 𝐺𝑢 (𝑠)𝜂𝑢 (𝑠) + 𝑥𝑖𝑛 (𝑠), (36)

where 𝑥𝑖𝑛 (𝑠) = (𝑠I − 𝐴𝑚)−1𝑥0. Then, for all 𝑡 ∈ [0, 𝜏] we have

∥𝑥𝑟𝜏 ∥L∞ ≤∥𝐻 (𝑠)𝐶 (𝑠)∥L1𝐾𝑔∥𝑟𝜏∥L∞ + ∥𝐺 (𝑠)∥L1𝐿∥𝑥𝑟𝜏 ∥L∞

+ ∥𝐺 (𝑠)∥L1 ∥𝜂𝑚𝜏
∥L∞ + ∥𝐺𝑢 (𝑠)∥L1 ∥𝜂𝑢𝜏 ∥L∞ + ∥𝑥𝑖𝑛𝜏 ∥L∞

(37)

Substituting the upper bounds of 𝜂𝑚 and 𝜂𝑢 and solving for ∥𝑥𝑟𝜏 ∥L∞ in the equation above to obtain the
following bound

∥𝑥𝑟𝜏 ∥L∞ ≤
∥𝐻 (𝑠)𝐶 (𝑠)∥L1𝐾𝑔∥𝑟𝜏∥L∞ + ∥𝐺 (𝑠)∥L1𝐿𝑚

1 − ∥𝐺 (𝑠)∥L1𝐿
+
∥𝐺𝑢 (𝑠)∥L1𝐿𝑢 + ∥𝑥𝑖𝑛∥L∞

1 − ∥𝐺 (𝑠)∥L1𝐿
. (38)

If the L1 norm condition in (26) is verified then ∥𝑥𝑟𝜏 ∥L∞ is uniformly bounded for all 𝜏 > 0, and the
proof is complete. □

Proof of Lemma 2.
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From (16) and (17), the prediction error dynamics can be written

¤̃𝑥 = 𝐴𝑚𝑥 + 𝐵
(
𝜔̃𝑢 + 𝜃⊤𝑥 + 𝜂𝑚

)
+ 𝜂𝑢 . (39)

Consider the Lyapunov function candidate

𝑉 =
1
2
𝜎⊤𝜎 + 1

2
Γ−1

(
tr
(
𝜃⊤𝜃

)
+ tr

(
𝜔̃⊤𝜔̃

)
+ 𝐿̃2

𝑚 + 𝐿̃2
𝑢

)
, (40)

whose derivative is given by

¤𝑉 = 𝜎⊤ ¤𝜎 + Γ−1
(
tr
(
𝜃⊤ ¤̃𝜃

)
+ tr

(
𝜔̃⊤ ¤̃𝜔

)
+ 𝐿̃𝑚 ¤̃𝐿𝑚 + 𝐿̃𝑢 ¤̃𝐿𝑢

)
. (41)

From (18) and (39) the derivative of the sliding surface can be written

¤𝜎 = 𝜆𝐴𝑚𝑥 + 𝜆𝐵
(
𝜃⊤𝑥 + 𝜔̃𝑢 + 𝜂𝑚

)
+ 𝜆𝜂𝑢 . (42)

Substituting into (41), we get

¤𝑉 =𝜎⊤
(
𝜆𝐴𝑚𝑥 + 𝜆𝐵

(
𝜃⊤𝑥 + 𝜔̃𝑢 + (𝜂𝑚 − 𝜂𝑚)

)
+ 𝜆(𝜂𝑢 − 𝜂𝑢)

)
+ Γ−1 (tr(𝜃⊤ ¤̃𝜃

)
+ tr

(
𝜔̃⊤ ¤̃𝜔

)
+ 𝐿̃𝑚 ¤̂𝐿𝑚 + 𝐿̃𝑢 ¤̂𝐿𝑢

)
.

(43)

Given the fact that for any scalar 𝑠, tr(𝑠) = 𝑠, hence

¤𝑉 =𝜎⊤𝜆𝐴𝑚𝑥 + tr(𝜎⊤𝜆𝐵𝜃⊤𝑥) + tr(𝜎⊤𝜆𝐵𝜔̃𝑢) + 𝜎⊤𝜆𝐵(𝜂𝑚 − 𝜂𝑚) + 𝜎⊤𝜆(𝜂𝑢 − 𝜂𝑢)
+ Γ−1 (tr(𝜃⊤ ¤̃𝜃

)
+ tr

(
𝜔̃⊤ ¤̃𝜔

)
+ 𝐿̃𝑚 ¤̂𝐿𝑚 + 𝐿̃𝑢 ¤̂𝐿𝑢

)
.

(44)

Using the property tr(𝑋𝑌 ) = tr(𝑌𝑋) for any matrices 𝑋 , 𝑌 , we obtain

¤𝑉 =𝜎⊤𝜆𝐴𝑚𝑥 + tr(𝜃⊤𝑥𝜎⊤𝜆𝐵) + tr(𝜔̃𝑢𝜎⊤𝜆𝐵) + 𝜎⊤𝜆𝐵(𝜂𝑚 − 𝜂𝑚) + 𝜎⊤𝜆(𝜂𝑢 − 𝜂𝑢)
+ Γ−1 (tr(𝜃⊤ ¤̃𝜃

)
+ tr

(
𝜔̃⊤ ¤̃𝜔

)
+ 𝐿̃𝑚 ¤̂𝐿𝑚 + 𝐿̃𝑢 ¤̂𝐿𝑢

)
.

(45)

Given 𝜂𝑚 and 𝜂𝑢 from (19) and (21) and the adaptation law (23) it can be written

¤𝑉 = −𝜌𝜎⊤𝜎 − 𝜎⊤𝜆𝐵𝜂𝑚 − 𝜎⊤𝜆𝜂𝑢 − ∥𝜎⊤𝜆𝐵∥ 𝐿̂𝑚 − ∥𝜎⊤𝜆∥ 𝐿̂𝑢 + Γ−1 (𝐿̃𝑚 ¤̂𝐿𝑚 + 𝐿̃𝑢 ¤̂𝐿𝑢
)
. (46)

Hence, the following upper bound can be derived

¤𝑉 ≤ −𝜌∥𝜎∥2 + ∥𝜎⊤𝜆𝐵∥∥𝜂𝑚 ∥ + ∥𝜎⊤𝜆∥∥𝜂𝑢∥ − ∥𝜎⊤𝜆𝐵∥ 𝐿̂𝑚 − ∥𝜎⊤𝜆∥ 𝐿̂𝑢 + Γ−1 (𝐿̃𝑚 ¤̂𝐿𝑚 + 𝐿̃𝑢 ¤̂𝐿𝑢
)
. (47)

Using Assumption 9, it follows that

¤𝑉 ≤ −𝜌∥𝜎∥2 − ∥(𝜆𝐵)⊤𝜎∥ 𝐿̃𝑚 − ∥𝜆⊤𝜎∥ 𝐿̃𝑢 + Γ−1 (𝐿̃𝑚 ¤̂𝐿𝑚 + 𝐿̃𝑢 ¤̂𝐿𝑢
)
. (48)

Considering the adaptation laws from (20) and (22), it follows that

¤𝑉 ≤ −𝜌∥𝜎∥2. (49)

Therefore, the sliding surface 𝜎, the estimation errors of the unknown parameters 𝜃 and 𝜔̃; and the
disturbance bound errors 𝐿̃𝑚 and 𝐿̃𝑢 are uniformly bounded. Consequently, the estimation errors of the
external disturbances 𝜂𝑚 and 𝜂𝑢 are also uniformly bounded.
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Since the coefficients of the sliding surface form a stable hyperplane and 𝑥(0) = 0 , i.e., the system
is initialized on the sliding surface, and given that on the sliding surface the trajectories are governed by
𝜎(𝑥, 𝑡) = 0, there always exists an arbitrarily small real 𝛿 > 0 verifying

∥𝑥∥L∞ ≤ 𝛿. (50)

This result comes from the fundamental propriety of sliding mode control, stipulating that if the system
is on the sliding surface, it stays on the nearby sliding surface despite disturbances [43].

Moreover, from (49) it can be written∫ 𝑡

0
∥𝜎(𝑡)∥2𝑑𝑡 ≤ 1

𝜌

(
𝑉 (0) −𝑉 (𝑡)

)
. (51)

Since 𝑉 (0) is bounded and 𝑉 (𝑡) is bounded and non-increasing, therefore

lim
𝑡→∞

∫ 𝑡

0
𝜎(𝑡)2𝑑𝑡 (52)

is bounded.

If the closed-loop system is stable, i.,e., 𝑢(𝑡) and 𝑥(𝑡) are bounded then ¤𝜎(𝑡) in (42) is bounded. By
applying Barbalt’s Lemma it follows that

lim
𝑡→∞

∥𝜎(𝑡)∥2 = 0 and lim
𝑡→∞

∥𝜎(𝑡)∥ = 0. (53)

Consequently
lim
𝑡→∞

𝑥(𝑡) = 0, (54)

and the proof is complete. □

Proof of the Theorem.
The control law in (24) can be written as

𝑢(𝑠) =𝐾 𝐷 (𝑠)
(
𝐾𝑔𝑟 (𝑠) − 𝜔𝑢(𝑠) − 𝜃⊤𝑥(𝑠) − 𝜂𝑚 (𝑠)

)
− 𝐾 𝐷 (𝑠)

(
𝐻−1
𝑚 (𝑠)𝐻0(𝑠)

(
𝜂𝑢 (𝑠) + 𝜂𝑢 (𝑠)

)
− 𝜈̃(𝑠)

)
,

(55)

where 𝜈̃(𝑠) is the Laplace transformation of 𝜈̃(𝑡) = 𝜔̃𝑢(𝑡) + 𝜃𝑥(𝑡) + 𝜂𝑚 (𝑡) and 𝜂𝑢 (𝑠) is the Laplace
transformation 𝜂𝑢 (𝑡). Consequently

𝑢(𝑠) =𝐾 𝐷 (𝑠)
(
I + 𝜔𝐾𝐷 (𝑠)

)−1 (
𝐾𝑔𝑟 (𝑠) − 𝜃⊤𝑥(𝑠) − 𝜂𝑚 (𝑠)

)
− 𝐾 𝐷 (𝑠)

(
I + 𝜔𝐾𝐷 (𝑠)

)−1 (
𝐻−1
𝑚 (𝑠)𝐻0(𝑠)

(
𝜂𝑢 (𝑠) + 𝜂𝑢 (𝑠)

)
− 𝜈̃(𝑠)

)
,

which leads to

𝑢(𝑠) =𝜔−1𝐶 (𝑠)
(
𝐾𝑔𝑟 (𝑠) − 𝜃⊤𝑥(𝑠) − 𝜂𝑚 (𝑠)

)
− 𝜔−1𝐶 (𝑠)

(
𝐻−1
𝑚 (𝑠)𝐻0(𝑠)

(
𝜂𝑢 (𝑠) + 𝜂𝑢 (𝑠)

)
− 𝜈̃(𝑠)

)
. (56)

Hence, the Laplace transformation of the closed loop system (16) and (56) can be written

𝑥(𝑠) =𝐻 (𝑠)𝐶 (𝑠)𝐾𝑔𝑟 (𝑠) + 𝐺 (𝑠)𝜃⊤𝑥(𝑠) + 𝐺 (𝑠)𝜂𝑚 (𝑠) + 𝐺𝑢 (𝑠)𝜂𝑢 (𝑠)
− 𝐻 (𝑠)𝐶 (𝑠)

(
𝜈̃(𝑠) + 𝐻−1

𝑚 (𝑠)𝐻0(𝑠)𝜂𝑢 (𝑠)
)
+ 𝑥𝑖𝑛 (𝑠).

(57)
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Taking the difference of (36) and (57) it follows that

𝑥𝑟 (𝑠) − 𝑥(𝑠) =𝐺 (𝑠)𝜃⊤(𝑥𝑟 (𝑠) − 𝑥(𝑠)) + 𝐺 (𝑠)
(
𝜂𝑚 (𝑠) − 𝜂𝑚𝑟 (𝑠)

)
+ 𝐺𝑢 (𝑠)

(
𝜂𝑢 (𝑠) − 𝜂𝑢𝑟 (𝑠)

)
+ 𝐻 (𝑠)𝐶 (𝑠)

(
𝜈̃(𝑠) + 𝐻−1

𝑚 (𝑠)𝐻0(𝑠)𝜂𝑢 (𝑠)
)
.

(58)

From (39) the Laplace transformation of the prediction error dynamics can be written

𝑥(𝑠) = 𝐻 (𝑠) 𝜈̃(𝑠) + (𝑠I − 𝐴𝑚)−1𝜂𝑢 (𝑠). (59)

Multiplying both terms of (59) by 𝐻−1
𝑚 (𝑠)𝐶 gives

𝐻−1
𝑚 (𝑠)𝐶𝑥(𝑠) = 𝜈̃(𝑠) + 𝐻−1

𝑚 (𝑠)𝐻0(𝑠)𝜂𝑢 (𝑠). (60)

Substituting into (58) it follows that

𝑥𝑟 (𝑠) − 𝑥(𝑠) =𝐺 (𝑠)𝜃⊤(𝑥𝑟 (𝑠) − 𝑥(𝑠)) + 𝐺 (𝑠)
(
𝜂𝑚 (𝑠) − 𝜂𝑚𝑟 (𝑠)

)
+ 𝐺𝑢 (𝑠)

(
𝜂𝑢 (𝑠) − 𝜂𝑢𝑟 (𝑠)

)
+ 𝐻 (𝑠)𝐶 (𝑠)𝐻−1

𝑚 (𝑠)𝐶𝑥(𝑠).
(61)

Solving for 𝑥𝑟 (𝑠) − 𝑥(𝑠), the following bound holds for 𝑡 ∈ [0, 𝜏]

∥(𝑥𝑟 − 𝑥)𝜏∥L∞ ≤
∥𝐺 (𝑠)∥L1

1 − ∥𝐺 (𝑠)∥L1𝐿
∥(𝜂𝑚𝜏

− 𝜂𝑚𝑟)𝜏∥L∞ +
∥𝐺𝑢 (𝑠)∥L1

1 − ∥𝐺 (𝑠)∥L1𝐿
∥(𝜂𝑢 − 𝜂𝑢𝑟)𝜏∥L∞

+
∥𝐻 (𝑠)𝐶 (𝑠)𝐻−1

𝑚 (𝑠)𝐶∥L1

1 − ∥𝐺 (𝑠)∥L1𝐿
∥𝑥𝜏∥L∞ .

(62)

Given the upper bound of 𝑥(𝑡) from Lemma 2.4, and the disturbance bounds from Assumption 9, it
follows that

∥(𝑥𝑟 − 𝑥)𝜏∥L∞ ≤ 2
∥𝐺 (𝑠)∥L1

1 − ∥𝐺 (𝑠)∥L1𝐿
𝐿𝑚 + 2

∥𝐺𝑢 (𝑠)∥L1

1 − ∥𝐺 (𝑠)∥L1𝐿
𝐿𝑢

+
∥𝐻 (𝑠)𝐶 (𝑠)𝐻−1

𝑚 (𝑠)𝐶∥L1

1 − ∥𝐺 (𝑠)∥L1𝐿
𝛿,

(63)

which leads to the bound in (32).

To show the second bound in (33), by taking the difference of (29) and (56), we can derive

𝑢𝑟 (𝑠) − 𝑢(𝑠) = − 𝜔−1𝐶 (𝑠)𝜃⊤
( (
𝑥𝑟 (𝑠) − 𝑥(𝑠)

) )
− 𝜔−1𝐶 (𝑠)

(
𝜂𝑚 (𝑠) − 𝜂𝑚𝑟 (𝑠)

)
− 𝜔−1𝐶 (𝑠)𝐻−1

𝑚 (𝑠)𝐻0(𝑠)
(
𝜂𝑢 (𝑠) − 𝜂𝑢𝑟 (𝑠)

)
+ 𝜔−1𝐶 (𝑠)

(
𝐻−1
𝑚 (𝑠)𝐻0(𝑠) (𝑠)𝜂𝑢 (𝑠) + 𝜈̃(𝑠)

)
.

(64)

Hence

𝑢𝑟 (𝑠) − 𝑢(𝑠) = − 𝜔−1𝐶 (𝑠)𝜃⊤
( (
𝑥𝑟 (𝑠) − 𝑥(𝑠)

) )
− 𝜔−1𝐶 (𝑠)

(
𝜂𝑚 (𝑠) − 𝜂𝑚𝑟 (𝑠)

)
− 𝜔−1𝐶 (𝑠)𝐻−1

𝑚 (𝑠)𝐻0(𝑠)
(
𝜂𝑢 (𝑠) − 𝜂𝑢𝑟 (𝑠)

)
+ 𝜔−1𝐶 (𝑠)𝐻−1

𝑚 (𝑠)𝐶 (𝑠)𝑥(𝑠),
(65)

and (64) can be upper bounded as

∥(𝑢𝑟 − 𝑢)𝜏∥L∞ ≤ ∥𝜔−1𝐶 (𝑠)∥L1𝐿∥(𝑥𝑟 − 𝑥)𝜏∥L∞ + 2∥𝜔−1𝐶 (𝑠)∥L1 (𝐿𝑚 + ∥𝐻−1
𝑚 (𝑠)𝐻0(𝑠)∥L1𝐿𝑢)

+ ∥𝜔−1𝐶 (𝑠)∥L1 ∥𝐶 (𝑠)𝐻−1
𝑚 (𝑠)𝐶 (𝑠)∥L1 ∥𝑥𝜏∥L∞ ,

(66)

which holds uniformly for all 𝜏 ≥ 0, leading to the bound in (33). □
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