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ABSTRACT

This paper proposes control tuning strategies for an ensemble of scenarios. Each of these scenarios
might correspond to a different open-loop plant and/or an operating condition. Overfitting is
prevented by ensuring that the closed-loop requirements are satisfied when the values prescribing
such scenarios are perturbed. To this end we first model the perturbed scenarios as sample sets of
finite size. Relaxed chance-constrained optimization is then used to seek controllers with varying
degrees of robustness. For instance, we can deliberately eliminate a given number of scenarios
from the dataset in order to obtain a riskier controller with a better performance, or we might
seek a conservative controller that satisfies the closed-loop requirements with an acceptably high
probability for as many perturbed scenarios as possible. The scenarios for which the requirements
are not met, by either physics-based limitations or choice, are optimally chosen while the controller
gains are searched for. The design of a feedback control system having a non-collocated sensor-
actuator pair with time domain requirements is used for illustration.

Keywords: Data-driven control, chance-constrained optimization, uncertainty, robustness, outlier elimination.

1 Introduction
Consider a dynamical system whose performance depends on the decision variable \ ∈ Θ ⊂ R=\

and the parameter X ∈ Δ ⊂ R=X , which might correspond to an uncertain parameter and/or an operating
condition. This system is considered requirement compliant when A: (\, X) ≤ 0 for all : = 1, . . . =A ,
where A: : R=\ × R=X → R is called a Limit State Function (LSF). These functions are assumed to
be arbitrarily continuous, thereby making the framework applicable to settings in which they must be
evaluated through simulation, e.g., A1(\, X) < 0 is a settling time requirement for a non-linear closed-loop
plant with uncertain parameter X and controller’s gains \. Define the success domain of \ as

S(\) =
=A⋂
:=1
{X ∈ Δ : A: (\, X) ≤ 0} , (1)

where each of the sets in the right hand side is an individual success domain. The complement of the
success domain will be called the failure domain.

The field of optimization under uncertainty was pioneered in the 1950s by Dantzig and Charnes
[1], who set the foundation for robust- and chanced-constrained-optimization respectively. Robust
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optimization seeks a design that optimizes the worst-case system’s performance [2, 3], whereas chance-
constrained optimization [4, 5] seeks a design that bounds or minimizes the probability of failure. The
former approach prescribes the uncertainty in X as a bounded and often convex set Δ, whereas the latter
approach uses distributions or probability boxes.

In contrast to these approaches, the formulations proposed are driven by a finite number of realizations
of X called scenarios [6], and no attempt to characterize their underlying generating process is made.
Hence, this approach eliminates upfront the need to prescribe a bounding set or a distribution along with
the conservatism and subjectivity that such practice introduces to the resulting design. In particular, we
seek an optimal design \★ that satisfies the requirements for the = realizations of X in

D =

{
X(8)

}=
8=1
. (2)

Furthermore, we want to adjust the potentially high sensitivity of \★ to some of the nominal scenarios
in (2). For instance, we might consider seeking the design point \★ that places as many scenarios onto
the success domain as possible while minimizing the cost � (\), or we might deliberately choose to let a
few scenarios fall onto the failure domain in order to expand the feasible space and lower the cost. These
scenarios, called outliers, will not be chosen empirically upfront but they will instead be chosen optimally
during the search for \★. This practice mitigates the adverse effects that outliers often have on data-driven
designs. The nominal scenarios should ideally be obtained experimentally through measurements. When
experimental data is not available, they could be obtained synthetically through the simulation of an
assumed probability measure.

Insufficient and inaccurately measured data threatens the relevance of a data-driven design because
such a design might either be infeasible in practice or it might attain a cost far greater than the one
predicted. An inaccurate metrology system, model-form uncertainty, measurement noise, and a small
= make the characterization of X imprecise, inaccurate or underdetermined. The extent by which these
anomalies affect \★ will be mitigated by considering perturbed scenarios. As such, we want to prevent
\★ from overfitting the elements of D by ensuring that the vicinity of each X(8) is also in S(\★). The
robustness gains resulting from this practice often yield a loss in performance. The framework proposed
enables trading off robustness and performance by ignoring subsets of each perturbed scenario not
exceeding a maximum allowable probability of failure.

2 Perturbed Data
The pursuit of a robust design entails creating a model for the perturbed scenarios. These models,

which should be set by the analyst according to the application at hand, must contain the unknown true
value(s) of X(8) without being overly large. Otherwise they will lead to conservative designs that will
underperform in practice.

One model class is given by compact sets. Denote as X(8)B = {X : ‖X − X(8) ‖ ≤ ℓ(8)} the set in the
uncertain parameter space corresponding to the norm ‖ · ‖ for ℓ(8) ≥ 0. This set leads to the sequence

DB =

{
X
(8)
B

}=
8=1
. (3)

Another model class is given by distributions. Denote X(8)
3
= 5X (8) (X(8)) as the joint density of the 8th

perturbed scenario having X(8)B as the support set. These distributions lead to the sequence

D3 =

{
X
(8)
3

}=
8=1
. (4)
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As such there exists a known probability measure for each perturbed scenario inD3 . The elements of (3)
and (4) can be set according to the accuracy of the metrology system (when the scenarios were measured
by system identification techniques with quantified measurement error), or according to expert opinion.

The design point \ can be learnt from either the nominal scenarios in D or from the perturbed
scenarios in DB or D3 . The designs resulting from the former setting will be called nominal whereas
those resulting from the later will be called robust. As expected, nominal designs might not exhibit the
desired level of robustness, e.g., most perturbed sets might not be fully contained in S(\★) even though
D is.

Fig. 1 Closed-loop H(C) and D(C) for the = = 100 scenarios scenarios in D and \★1 . The range limits are
shown as dashed lines.

Robust models can be learned by using different strategies. The strategies below makes use of
a multi-point representation of the uncertainty models in (3) and (4). Denote X(8)? = {X(8, 9)}<

9=1 as a
collection of < parameter points scattered in X(8)B according to a predefined pattern. In the case of (3),
these points might cover uniformly either the volume of X(8)B or its surface; whereas in the case of (4),
they might be quasi-random samples drawn from X

(8)
3
. Hereafter we assume that one of such < points is

X(8) . These collections of points lead to the multi-point sequence

D? (<) =
{
X
(8)
?

}=
8=1
. (5)

The learning approaches developed below are based on (5) with a finite <. This practice might introduce
an error, e.g., X(8)? ⊂ S(\) but1 X(8)B ⊄ S(\), or not. Semi-infinite programming approaches exempt
from this error are inapplicable to general LSFs. Besides, when they are applicable, e.g., the LSFs are
polynomial and the perturbed sets are semi-algebraic, their high computational demands limit their usage
to moderately large problems [7]. Worst-case and chance-constrained formulations to robust design based
on the multi-point data sequence (5) are presented next. The elements of (3), (4) and (5) will be referred
to as perturbed scenarios.

1This error can be reduced by sequentially appending to X (8)? parameter points where previously found designs violate a
requirement.
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Fig. 2 Success and failure domains for \★1 . The top-left, top-right and bottom-left subplots show individual
success (white) and failure (black) domains. The bottom-right subplot shows the success (white) and failure
(non-white, where the darker the color the greater the number of requirement violations) domains. The
scenarios falling into the success domain are marked with a green “×”.

3 Worst-Case Design Framework
Consider the extension to the optimization program in [6] given by

min
\∈Θ, b8≥0

2
(
\, b,D?

)
+ d

=∑
8=1

b8 (6)

subject to : A:

(
\, X(8, 9)

)
≤ b8 for 8 = 1, . . . =, 9 = 1, . . . <, : = 1, . . . =A ,

where 2 is the cost, d ≥ 0 is a penalty coefficient, A: is a LSF, and X(8, 9) is an element of X(8)? in (5). The
solution to this program will be denoted as \★ and b★

8
. The interpretation of (6) is that depending on

the value of d some data points are allowed to fall onto the failure domain for the purpose of lowering
2, but this action has itself a cost as expressed by the auxiliary optimization variables b8: if b8 > 0 the
constraint A: (\, X) ≤ 0 is relaxed to A: (\, X) ≤ b8 in exchange for a cost increase of d b8. Hence, (6)
is a flexible scheme that enables the analyst to explore various solutions as d is varied from zero (no
regret for constraints violation) to infinite (infinite regret for constraints violation). The formulation (6)
is worst-case because b★

8
depends on the element of X(8)? at which the LSF takes on the greatest value.

The perturbed scenarios whose multi-point sequence has at least one parameter point in the failure
domain will be called outliers. The outliers, given by => indices in {1, . . . =}, depend on the chosen value
for d. Only the outliers contribute to the summation by taking on values proportional to the extent of
the requirement violation, thereby making (6) for => > 0 a risk-based approach [8]. Program (6) might
not have a solution for which all b8 are zero thereby making relaxation crucial. Relaxation enables the
analyst to pursue the most robust design allowed by the assumed design architecture regardless of its
ability to satisfy the requirements for all the training data, e.g., designing the PID controller that meets
the requirements for as many uncertain plants as possible. The computational complexity of (6), which
is independent of the number of uncertain parameters =X, is driven by the number of constraints = × <.
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Example 1: Consider the design of a feedback controller for an uncertain plant with three degrees of
freedom having a non-collocated sensor-actuator pair. The closed-loop requirements defining (1) are
asymptotic stability, and the system response H(C, X, \) and the control signal D(C, X, \) not exceeding
range limits to an impulse disturbance. The latter two requirements define conflicting design objectives
because fast system responses entail a greater control effort. In this setting \ ∈ R9 are the controller’s
gains, whereas X ∈ R=X are the uncertain parameters of the plant2. Specifics on the control system are
omitted due to space limitations. The instantiation of (6) used for control design is based on = = 100
uncertain plants, =A = 3 LSFs, =X = 2 uncertain parameters (so the results can be visualized), and the
cost function3

2(\, b,D?) = max
8=1,...=
9=1,...<

4−Vb8
H (

C, X(8, 9) , \
)
2
, (7)

where V > 0 is a parameter. The optimal cost, 2★ = 2(\★, b★,D?), upper bounds the norm of the response
for the non-outlying elements of D?. This setting makes (6) a non-convex optimization program having
constraints whose evaluation requires performing time simulations.

Fig. 3 Closed-loop response H(C) and control input D(C) for the = = 100 scenarios in D and \★2 .

We first synthesize two controllers for the nominal plants in D, so < = 1 in (6). The first controller
is designed by taking a large d value so as many data points as possible are placed in the success
domain. This controller, with gains \★1 and d1 = 0.1, meets the requirements for all the plants. Fig.
1 shows the corresponding response and control signals along with the range limits, whereas Fig. 2
shows the individual and overall failure domains along the scenarios in D. This figure was computed by
evaluating the closed-loop response over a dense grid of parameter points. Note that all 100 scenarios
are in the success domain but the controller is not robust (an arbitrarily small perturbation of the data
point corresponding to the active constraint will lead to a requirement violation). A second controller
was designed using d2 = 1 × 10−6. This controller with gains \★2 yields Figures 3 and 4. While all
time responses for \★1 remain within the limits, those for \★2 violate the settling time requirement for
four scenarios. These scenarios, chosen as outliers by the optimization, are hard to identified intuitively
when the success domain is non-convex. The relaxation of the requirements for four outliers makes
the volume of S(\★2 ) smaller than that of S(\★1 ) while reducing the cost from 2★1 = 3.334 × 10

−4 to
2★2 = 1.723 × 10

−4. As such, neglecting 4 outliers rendered a cost reduction of 48%.

2In contrast to standard data-driven control, the data herein correspond to different plant models rather than to input and
output signals. This setting, which decouples model identification from control design, makes the approach amenable to
model-based control.

3Note that the combination d � 1 and U > 0 leads to the trivial solution 2★ ≈ 0. As such, use U = 0.
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Fig. 4 Success and failure domains for \★2 . The top-left, top-right and bottom-left subplots show individual
success (white) and failure (black) domains. The bottom-right subplot shows the success (white) and failure
(non-white, where the darker the color the greater the number of requirement violations) domains. The
scenarios falling into the success domain are marked with a green “×”, otherwise they are marked with a red
“×”.

Fig. 5 Success and failure domains for \★3 . Previously defined conventions apply. The perturbed scenarios
are the yellow ellipsoids whereas the elements of D? are shown as a green “×”.

Next we design a controller for the perturbed sets in (3) shown as ellipsoids in Fig. 5. To this end,
we create the multi-point sequence D? having the < = 5 elements shown. The value d = 1 × 103 was
chosen in order to place as many data points as possible inside the success domain. The corresponding
controller, with gains \★3 , yields Figures 5 and 6. In contrast to \★1 and \★2 , controller \

★
3 satisfies the

requirements for all the = ×< parameter points in D?. This controller places all the perturbed scenarios
in the success domain (as shown by an independent optimization-based analysis) even though only < = 5
points were used for design. A simpler control architecture or larger perturbations might prevent this

6Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



outcome. Notice that the volume of S(\★1 ) is greater than that of S(\
★
3 ) but the robustness of the latter is

greater because only \★3 places all the perturbations inside the success domain. The notion of robustness
enforced by (6) is tightly linked to the manner by which the training data in D? spreads. As such, the
resulting controller might be less robust elsewhere. This is exemplified in Figures 2 and 5 which show
that the perturbed sets at the bottom-left and top-right are much closer to the failure domain of \★3 than to
the failure domain of \★1 . This controller achieves the cost 2

★
3 = 2.728 × 10

−4. A comprehensive analysis

Fig. 6 Closed-loop response H(C) and control input D(C) for the = = 100 perturbed scenarios in D? and \★3 .
The interval-valued function enclosing all the time signals corresponding to the < elements of X (8)? for all 8
are shown.

of the above controllers, which can be used to assess the effects of the sampling error caused by a finite
number of points < when searching for \, is presented below.

4 Chance-Constrained Design Framework

4.1 Preliminary developments
Approximations to the Cumulative Distribution Function (CDF) of a random variable and its inverse

based on a finite number of observations are presented next. Consider the sequence Z = {I8}=8=1 that
results from evaluating I(?) at the points {? (8)}=

8=1 and sorting the resulting numbers so I8 = I(? ( 9)) for
some 9 and I8 < I8+1. To make this dependency explicit we introduce the sorting operator B(·) such that
Z = B({I(? (8))}=

8=1). A continuous, piecewise linear approximation to the CDF of I(?) is

�Z (I) ,


0 if I ≤ I1
1
f

(
8 − 1 + I−I8

I8+1−I8

)
if I8 < I ≤ I8+1

1 otherwise,
(8)

where f = = − 1. The inverse CDF is approximated by

�−1Z (U) =


I1 if U = 0,
I8 + f(I8+1 − I8)

(
U − 8−1

f

)
if 0 < U < 1

I= otherwise,
(9)
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where 8 = argmin 9=1,...={fU − 9 + 1 : 9 − 1 ≤ Uf} and U ∈ [0, 1]. These approximations make standard
gradient-based algorithms applicable to the forthcoming formulation.

4.2 Chance-constrained optimization
Note that it only takes a single element of X(8)? falling into the failure domain for (6) to penalize the

relaxation of a requirement. In fact, the greatest value taken by the limit state functions at the < sampling
points prescribes the penalty term db8 in (6). In contrast, the developments below make the penalty term
independent of the realizations of A: below a threshold possibly greater than zero, thereby not penalizing
requirement violations for some elements of X(8)? . As such, a design that satisfies the requirements for,
say, 95% of all possible realizations of the distribution characterizing the perturbation incurs no penalty.
Neglecting the worst-performing elements of each X(8)? (those corresponding to the greatest cost) makes
the resulting design riskier. This practice, however, might yield to sizable performance improvements,
e.g., the value of the L2 norm in (12) for most X(8, 9) points is lower, without impacting most of the data,
e.g., the probability of failure corresponding to most distributions is not affected by such a threshold.

The approximation to the CDF in (8) along with its inverse allow solving chance-constrained pro-
grams. For instance, the chance-constrained extension of (6) is

min
\∈Θ, b8≥0

2
(
\, b,D?

)
+ d

=∑
8=1

b8 (10)

subject to: �Z̃(\,D? ,8,:) (b8) ≥ W: for 8 = 1, . . . =, : = 1, . . . =A ,

where 2 is the cost, d ≥ 0 is the penalty coefficient,

Z̃(\,D?, 8, :) , B
({
A: (\, X(8, 9))

}<
9=1

)
, (11)

and 0 � W: < 1 is the minimally acceptable probability of success for the :-th requirement. Hence, (10)
seeks a design that minimizes the sum of 2 and a penalty term while bounding the individual success
probabilities for most elements of (5) from below. This is a flexible scheme that enables the analyst to
explore various solutions as d is varied from zero (no regret for having probabilities of success below W: )
to infinite (infinite regret for having probabilities of success below W: ). Large values of dwill drive the b8’s
near zero thereby ensuring that the individual success probabilities are no less than W: . Moderately large
values of d will make some b8 > 0, therefore yielding a design for which some individual probabilities
of success are below W: . The scenarios for which b8 > 0 will be called outliers. When W: < 1 a few
points of X(8)? might fall into the failure domain regardless of the corresponding scenario being an outlier
or not. Note that evaluating the constraints of (10) by means of the empirical CDF make them piece-wise
constant, thereby precluding the usage of standard gradient-based algorithms. Note that (10) is equivalent
to (6) when W: = 1 for : = 1, . . . =A .

As in (6), the number of uncertain parameters is immaterial to (10) whereas the number of constraints
= × < is the limiting factor. The empirical probabilities driving (10) might differ significantly from the
actual probabilities when < is small. However, the computational cost of solving (10) with a large <,
which entails evaluating the LSFs<×= times for each candidate design, makes this approach impractical.
The non-zero terms in the summation quantify the extent by which the requirements are violated by the
outliers thereby making (10) a risk-based approach4. This risk, which is driven by the chosen values for
d and W: for : = 1, . . . =A , should be adjusted according to the importance of the underlying requirements

4Risk is commonly defined as the probability of an adverse outcome times the corresponding loss. In the setting above the
adverse outcome is the violation of a requirement whereas b8 is a loss measure. Hence, the dependency of the penalty term
on b makes \★ a risk-based design.
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and the manner by which the data spreads, e.g., by making the radius A (8) in (3) depend on X(8) . Worst-case
designs might differ considerably from chance-constrained designs. Whereas (6) must drive all the points
of most constellations in D? to the success domain, (10) does not. This flexibility along with a soft
notion of risk might render simpler design architectures preferable. For instance, a simple PID controller
might be able to satisfy the requirements for 95% of the plants of each of the = distributions. Doing so
for the remaining 5% might require adopting and managing a much more complex controller.

Example 2: Next we use (10) to synthesize controllers based on the same = = 100 uncertain plants,
=A = 3 LSFs, and =X = 2 uncertain parameters used previously. The perturbed scenarios are modeled as
normal distributions whose iso-likelihood set of 0.95 probability coincides with the sets shown in Fig. 5.
The multi-point sequences required to compute the CDFs and their inverses are based on < = 50 points.
Besides, we will use the cost function

2̂(\, b,D?) = max
8=1,...=

4−Vb8 �−1Ẑ8

(W), (12)

where Ẑ8 , B({‖H(C, X(8, 9) , \)‖2}<9=1) and 0 < W � 1. The optimal cost, 2̂★ = 2̂(\★, b★,D?), bounds the
W quantile of the L2 norm of the response for the non-outlying scenarios. Note that (12) and its gradient
can be readily computed from (9).

Fig. 7 Closed-loop responses H(C) and D(C) for the = = 100 scenarios in D? and \★4 . Previously defined
conventions apply.

A controller with gains \★4 was first designed using d = 1. This controller, which yields Figs. 7
and 8, meets the chance-constraints for all = = 100 plants. Even though this controller did not render
any outliers, a sample of a distribution violates the control limit requirement (see the red crosses in
the bottom-left subplot). The empirical probability of violation for this scenario was about 1/<. A
Monte Carlo analysis with 5000 simulations shows that three distributions out of the = = 100 have
failure probabilities below the 0.05 threshold. The comparison of Figures 5 and 8 shows that the failure
domain for the chance-constrained design is closer to the perturbed scenarios than that for the worst-case
controller. The optimal cost for this controller is 2̂★4 = 2.698 × 10

−4, which is slightly lower than 2̂★3 . One
last controller was designed by using the cost

2̃(\, b,D?) = E
[
‖H(C, X(8)? , \)‖2 | b8 = 0

]
, (13)
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Fig. 8 Success and failure domains for \★4 . Previously defined conventions apply.

where E[·|·] is the conditional sample mean. Hence, this controller minimizes the mean of the norm of
the <(= − =>) responses of the non-outlying scenarios. The parameter d = 1 led to a controller with no
outliers. This controller, with gains \★5 and cost 2̃★5 = 4.823 × 10

−5, yields Fig. 10. As before, samples
of one distribution violate a requirement with an empirical probability of failure of 2/< (see red crosses
in top-right subplot). However, in contrast to \★4 , the limiting requirement is the bounded response not
the control input.

Fig. 9 Closed-loop responses H(C) and D(C) for the = = 100 scenarios in D? and \★5 . Previously defined
conventions apply.

A robustness analysis of the above controllers is presented next. To this end, a Monte Carlo analysis
was carried out by evaluating the closed-loop performance for 4 × 105 simulations drawn from aGaussian
mixture of all distributions in (4). The CDFs of the Worst-case LSF and of the response are shown in
Fig. 11. Recall that the probability of a requirement violation is given by one minus the value of the
CDF at the top subplot evaluated at zero. These probabilities are very small for all controllers but for \★4 ,
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Fig. 10 Success and failure domains for \★5 . Previously defined conventions apply.

which violates the requirements with probability 0.05 intendedly. The error caused by assuming a finite
< did not invalidate the desired robustness levels. The CDFs at the bottom subplot allow comparing the
performance of various controllers. In this setting, the lower the quantile for a fixed value of the ordinate,
the better the performance. For instance, \★5 is the best performing controller when �| |H | |2 < 0.915,
whereas \★2 is so for �| |H | |2 = 0.975. Recall that the improved performance of \★2 was traded-off against
an increase in the failure probability. Unfortunately, this improvement does not extend to values of �| |H | |2
lower than 0.96. This is not the case for \★4 and \

★
5 , which traded-off a sizable performance improvement

(bottom plot) against a minor increase in the probability of failure (the CDFs cross zero above 0.999).
Note that \★4 and \

★
5 exhibit a very similar performance (the means are 4.894 × 10−5 and 4.823 × 10−5,

and the 95 quantiles are 2.699 × 10−4 and 2.710 × 10−4 respectively) even though their worst-case LSF
CDFs differ significantly.

Fig. 11 CDFs of the worst-case LSF, �max(A: ) (top), and of and | |H | |2, �| |H | |2 (bottom), for several controllers.
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5 Conclusion
This paper proposes a chance-constrained formulation for the design of robust data-driven controllers.

Overfitting is prevented by seeking designs that satisfy the requirements at not only the values of the
nominal scenarios but also at their vicinity. This framework enables the analyst to trade-off performance
against robustness by eliminating the scenarios, either nominal or perturbed, that contribute most to
degradation in closed-loop performance. These strategies can be naturally integrated to the Monte
Carlo campaigns commonly used to assess control robustness, by bridging the goals of control design,
typically evaluated using simplified LTI models, with those of control verification, typically evaluated
using high-fidelity physics-based models.
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