
Adaptive Avionics System for Multi-agent Computing
Resource Sharing under Failures

Chitoshi Tamaoki Visiting Scholar, Department of Aerospace Engineering, Pennsylvania State Univer-
sity, University Park, Pennsylvania, United States, 16802, and M.S. student, University
of Stuttgart, Institute of Aircraft Systems, Stuttgart, Germany, cft5405@psu.edu

Thanakorn Khamvilai Assistant Research Professor, Department of Aerospace Engineering, Pennsyl-
vania State University, University Park, Pennsylvania, United States, 16802,
thanakorn.khamvila@psu.edu

Eric Johnson Professor, Department of Aerospace Engineering, Pennsylvania State University, Uni-
versity Park, Pennsylvania, United States, 16802, eric.johnson@psu.edu

Johannes Reinhart Ph.D candidate, Institute of Aircraft Systems, University of Stuttgart, Stuttgart, Ger-
many. johannes.reinhart@ils.uni-stuttgart.de

Bjoern Annighoefer Professor, Institute of Aircraft Systems, University of Stuttgart, Stuttgart, Germany.
bjoern.annighoefer@ils.uni-stuttgart.de

ABSTRACT

In the foreseeable future, the collaboration and information sharing between unmanned aerial
vehicles (UAVs) and conventional aircraft is expected to improve the efficiency and effectiveness of
aviation operations. The scope of this article is a proof-of-concept demonstration of a multi-vehicle
self-adaptive avionics system where computing resources can be shared across multiple vehicles
with the same mission. This increases the flexibility and adaptivity to changing multi-vehicle
missions, and failure tolerance of the whole system of interconnected vehicles. Furthermore, it
allows optimized usage of resources. Those new features will be achieved by Plug and Fly Avionics
(PAFA), a self-organizing avionics platform, developed by the Institute of Aircraft Systems at the
University of Stuttgart. To demonstrate the concept, a scenario with a sudden loss of a mission
device is simulated. Two separate mission devices with PAFA are used to operate a single drone on
which one of the computers is mounted. When the mounted mission device fails, the other mission
device detects the failure and seamlessly takes over the mission task to continue the flight. The
flight test was successfully conducted and the drone had safely recovered from the incident.

Keywords: Distributed computation, Adaptive avionics system

Nomenclature

PAFA = Plug & Fly Avionics
PSU-GUST = Penn State/Georgia Tech UAV Simulation Tool
GCS = Ground Control Station
FCS = Flight Control System

1Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

EuroGNC
Navigation

ControlGuidance
2024Bristol, UK June 11th-13th

CEAS-GNC-2024-058

mailto:cft5405@psu.edu
mailto:thanakorn.khamvila@psu.edu
mailto:eric.johnson@psu.edu
mailto:johannes.reinhart@ils.uni-stuttgart.de
mailto:bjoern.annighoefer@ils.uni-stuttgart.de


1 Introduction
The sharing of computing resources can be an important aspect of future aviation, owing to its

adaptability, flexibility, and enhanced ability to withstand failures. Rather than relying on centralized
computers, interconnected devices are able to share their computational resources. This enables the
dynamic allocation of functions, allowing for optimal operation based on the current circumstances.
Such adaptive and flexible operation provides increased tolerance for failures, ensuring the continuous
functioning of aviation systems in the event of hardware or software malfunctions. This leads to more
reliability for future aviation.

In recent years, there has been increasing research on cooperative and self-adaptive UAVs aimed at
improving failure tolerance. One notable study by Ziquan Yu et al. [1] proposed a theoretical approach
to fault-tolerant cooperative control. This approach involves healthy neighbor UAVs to detect software or
hardware malfunctions and provide support through information sharing. The assistant is integrated into
the control loop. Another study by Corey Ippolito et al. [2] conducted a collaborative flight test using
polymorphic control systems. These systems utilize polymorphic reconfiguration to recover from critical
situations, such as sensor malfunctions during landing. During the flight test, a ground vehicle equipped
with onboard sensors determined the position of an aircraft with sensor malfunction during landing.
Additionally, Anawat Pongpunwattana et al. [3] developed effective real-time planning and cooperation
algorithms for autonomous team decision-making. These algorithms adapt the configuration of the
UAVs to changing circumstances. Xiangwang Hou et al. [4] performed automatic task allocation among
drones using distributed algorithm and confirmed its effectiveness. In their demonstration scenario,
computational energy minimization problem was solved with constraints of latency and reliability.

The above mentioned studies showed the effectiveness of self-adaptive system for increased failure
tolerance, flexibility to circumstances and optimum usage of resources in the application field of UAVs.
In this particular study, Plug & Fly Avionics (PAFA) platform [5] [6] is utilized that is under development
by the Institute of Aircraft Systems at the University of Stuttgart. Unlike current systems, PAFA features
dynamic reconfiguration during its operation period, enabling greater flexibility in the distribution of
functionalities across devices. This seamless and immediate reconfiguration eliminates any downtime
for critical operations, making it a significantly important feature for aviation applications.

So far, the PAFA concept was considered only for using shared computing resources within a
single vehicle. We suggest broadening this concept by sharing computing resources between multiple
cooperating vehicles or multiple computing units. This will be advantageous for future aviation scenarios,
where autonomous flying vehicles will cooperate to fulfill common mission tasks, such as object detection
[7], more efficient forest fire fighting [8], infrastructure monitoring application [9]. By sharing computing
resources, the system of cooperating vehicles becomes more flexible, adaptive and may continue its
mission despite failures. To prove the capability of PAFA in such situations, a drone flight test was
conducted as part of this study.

In chapter 2, the state of art of PAFA is presented, along with its technical features. In chapter 2.1,
a concept to increase failure tolerance through the collaboration of interconnected devices and dynamic
reconfiguration is proposed. This concept is to be proven with a drone flight test, in which a critical
device loss is simulated. In chapter 3, its technical realization is described. The preparation and results
of this flight test are discussed in chapter 5. Finally, in the last chapter, the conclusion and outlook are
provided.

2 State of the Art of Plug & Fly Avionics
Current integrated modular avionics (IMA) is a computing platform for software-based system

functions. It offers a more efficient, flexible, and cost-effective approach to avionics systems, providing

2Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Sensor1

Receive

Preprocess

Preprocess

Controller

Send

Actuator

Rou�ne Table0 ms 50 ms 150 ms 400 ms

(a)

Planning
Intelligence

Virtual 
Qualifica�on
Authority

Verifica�on
Execu�on 
Unit

Live
Execu�on 
Unit

Rou�ne
Table

Comm.
Table

Communica�on Layer

Par��oning OS

ExecutorExecutor

New 
Conf.

e.g.
MotorStatus

Alloca�on +
Configura�on-
genera�on

Safety Analysis +
Requirements+
Qualifica�on

Switch

Releaser

Test

(b)

Fig. 1. (a) Example of combination of basic task blocks, (b) Abstract illustration of partitions of PAFA

benefits in terms of modularity, scalability, reliability, and maintainability compared to traditional separate
and complex system architecture. However, the system is configured once during integration and may
not change while the aircraft is in flight. This limitation reduces the flexibility of functionalities over
computing devices, necessitating significant configuration effort, and making it error prone due to the
large number of manual configuration parameters involved.

The situation with a vast number of configuration parameters is often referred to as the software
complexity crisis[10]. The only solution to this issue is the concept of autonomic computing. In this
framework, computing systems manage themselves autonomously. To achieve this self-management, four
key aspects need to be considered: self-configuration, self-optimization, self-healing, and self-protection.

The Institute of Aircraft Systems at the University of Stuttgart currently develops novel type of
avionics platform, called Plug & Fly Avionics (PAFA). The platform possesses two notable features [5]:
automatic allocation of configuration parameters, and seamless in-operation reconfiguration to realize
the four key aspects for autonomic computing concept in aviation. The PAFA platform is designed to
be self-organizing, automatically allocating configuration parameters based on a portable application
specification [11] including the intended function, communication requirements between functions, and
prescribed redundancy and safety levels. During this process, the platform determines message paths
and function hardware distribution. In order for new configurations to take effect, they must be applied
to all participating devices. The switching mechanism within one cycle allows for a seamless transition
between old and new configurations, ensuring a smooth and uninterrupted operation. The PAFA concept
is specifically designed for safety criticality and aviation certification.

The executable unit of each device in PAFA consists of basic task blocks and configuration. Each
basic task block has its own function to execute and can have inputs and outputs that can be connected
to other task blocks. Each task block undergoes testing and qualification for the required safety level.
When combined, multiple task blocks can perform a specific system function for the device, as shown in
Figure 1(a). A group of task blocks working together to execute a system function is referred as cluster.
Clusters of task blocks within a device can communicate with other clusters across devices through
send and receive blocks. The schedule of execution and the connections of inputs and outputs for the
task blocks are described in a routine table. Each device is configured with a specified routine table to
perform the assigned system functions. The inter-device and inter-cluster communication is controlled by
a communication table, which contains information such as the IP address or CAN ID of the target device,
message length, and buffer. The send and receive blocks in the routine table refer to this communication
table to establish communication.

The platform architecture is designed with a partition-based approach, consisting of four main
partitions: Live Execution Unit, Planning Intelligence, Virtual Qualification Authority, and Verification
Execution Unit, as shown in Figure 1(b). The Live Execution Unit is responsible for executing the current
configuration, which includes task blocks performing according to the routine table and communication
table. On the other hand, the Planning Intelligence partition is responsible for automatically allocating

3Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



functions and generating new configurations through optimization methods. This allows for the real-
time generation of new configurations that are best-effort for the current system status. The Virtual
Qualification Authority is responsible for qualifying the newly generated configurations from the Planning
Intelligence. In the background, the Verification Execution Unit runs with a new configuration with its
outputs are passivated to verify the proper operation of the new configuration. If the configuration in the
Live Execution Unit is deemed inappropriate for the current situation in an airplane, a switching occurs
between the Live Execution Unit and the Verification Execution Unit within a single execution cycle.
This means that the Verification Execution Unit takes over the position of the Live Execution Unit, while
the former Live Execution Unit becomes the Verification Execution Unit. Through this process, the
new configuration can be seamlessly applied. The communication is supported by PAFA middleware.
This abstracts communication, such that individual components can communicate with any of available
communication technologies (currently for PAFA ethernet/Wifi or CAN). PAFA is currently developed
with C programming language. The switching is technically implemented with changing the pointer to
the new configuration at the beginning of an execution cycle.

The compilation of all necessary essential information for automated allocation in PAFA can be
accomplished using a GUI tool based on Web technology, as discussed in [12]. However, a significant
challenge lies in developing a qualification method to assess the safety level of newly generated config-
urations in Planning Intelligence [6] [13]. This aspect of development is particularly challenging as it
involves considering the overall safety level of PAFA.

2.1 Concept
PAFA stands out for its dynamic reconfiguration capability, which greatly enhances optimized

resource usage. Initially, the PAFA concept has only been explored for utilizing shared computing
resources within a single vehicle. The effectiveness of this concept in an unmanned multicopter is
shown in [11] as a part of PAFA developement. If PAFA can be mounted on hardware components as
middleware, micro-controllers without operation system can be also a part of PAFA platform. In that
study, each motor is equipped with a micro-controller with ARM Cortex-M7 core which enables the
motor as a part of PAFA system on the UAV. However, we propose expanding this concept to include
resource sharing between multiple collaborating vehicles as shown in Figure 2. With its ability to detect
failures and optimize configurations, PAFA enables the system to recover from failures by redistributing
critical functions across different hardware components. This is particularly beneficial for multi-vehicle
systems like drone swarms, where all drones are connected through PAFA and actively share information.
In the event of a device failure within the swarm, the system’s configuration is updated, allowing other
devices to assist the affected drone. Consequently, the failure tolerance of the swarm is significantly
increased.

2.2 Use-Case to Demonstrate the Concept
To demonstrate in-flight dynamic reconfiguration of inter-connected devices, a use-case scenario was

derived. In this scenario, a drone equipped with a Flight Control System (FCS) autonomously navigates
itself based on waypoints generated by other mission devices. Although PAFA is capable of redistribution
of tasks to micro-controllers which are often used for flight controllers with high execution frequency, in
this particular study, only the mission relevant tasks are the targets of reconfiguration.

The drone and its FCS are solely responsible for stabilizing and following the waypoints provided
by the mission devices. The mission devices have an interface to receive telemetry information from
the drone and create new waypoint commands to guide its movement. To showcase the collaboration
of interconnected devices, we utilize two mission devices equipped with PAFA. One is mounted on the
drone (referred to as mission device 1) and the other is located on the ground (referred to as mission

4Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Drone1 Drone2

Drone3

PAFA PAFA

PAFA PAFA

Drone1 Drone2

Drone3

PAFA PAFA

PAFA PAFA

Reconfiguration

Fig. 2. The concept of resource sharing among multiple collaborating flying vehicles using PAFA. The square
markers depict system functions assigned to each vehicle, and the lines represent signal routes. In the initial
phase (left), drone 1 and drone 2 communicate with drone 3 individually. In the subsequent phase (right),
drone 3 encounters a malfunction in its communication with drone 2. Consequently, tasks and signals are
reallocated to establish a new communication route, ensuring the preservation of system function within the
entire swarm.

device 2). This placement of the mission device 2 on the ground is intentional. It serves to lessen the
difficulty and workload associated with the flight test, while also enhancing safety at the experiment.

In the first phase, new commands are generated by mission device 1, while mission device 2 monitors
its activity. In the second phase, mission device 1 is intentionally disabled, and mission device 2 detects
this change and sends a request for a reconfiguration to ensure the mission continues. Consequently,
mission device 2 takes over the responsibility of generating commands.

3 Technical Realization
A hexacopter drone was prepared to demonstrate the concept. The basic configuration of the devices

and function allocations are depicted in Figure 3. The drone is equipped with various components,
including motors, sensors, Pixhawk with PX4, a Raspberry Pi 4B, and a Raspberry Pi 3B. An essential
software component utilized in this setup is Penn State/Georgia Tech UAV Simulation Tool (PSU-GUST)
[14][15]. PSU-GUST is a high-level dynamics simulation tool that enables the simulation and the
development of multi-rotor UAVs. An onboard version of PSU-GUST is utilized, which can optimize
the flight path to given flight plans and has an interface to a low-level flight controller PX4. The
Raspberry Pi 4B hosts PSU-GUST, as well as "PSU-GUST Comm", an interface of PSU-GUST for a
third-party software such as PAFA. It also hosts PAFA Reconfigurator which sends new configurations
to PAFA-participating devices and a reconfiguration command to initiate the switch mechanism. This
reconfigurator is implemented in Python programming language. This is one of the functions of Planning
Intelligence partition. This partition is still under development and there is only an experimental Python
implementation. As for mission devices, the executable of PAFA is hosted by Raspberry Pi 3B on the
drone, acting as mission device 1. The mission device 2, also equipped with PAFA, is hosted on a Linux
laptop. The Linux operation system on the laptop and two Raspberry Pis is to reduce the implementation
difficulty, especially aimed to support the parallel running of PAFA Reconfigurator and PSU-GUST with
different programming language implementations. Due to the availability in the laboratory, two different
kinds of Raspberry Pi are used. It is representative of a mission computer, that in a real use case could
be also airborne on another flying vehicle. All the devices are interconnected via a single WiFi network
(G-type with 2.4 GHz), and communication between them is established using IP addresses and ports.
The WiFi network is used to facilitate communication between the Raspberry Pi 4B and mission device
1 for the sake of simple development.

The entire message paths are illustrated in Figure 4. The communication between PSU-GUST and
PAFA is facilitated by the PSU-GUST Comm, which is connected to PSU-GUST via a PSU-GUST

5Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Drone

Linux Laptop

Raspberry Pi 4B

Pixhawk Raspberry Pi 3B

WiFi Network

PAFA PAFA

PAFA

PSU-GUST-CommPSU-GUST

PAFA Reconfigurator

Fig. 3. The configuration of devices and functions assigned to them. All devices are interconnected via a
WiFi network except the line which represents a physical connection.

datalink. The connection between PSU-GUST Comm and PAFA is established using UDP to establish
asynchronous inter-process communication. Firstly, the raw telemetry data from the drone is transmitted
from PX4 to PSU-GUST, where it undergoes data processing such as Kalman filter for state estimation.
The processed data is then forwarded to PSU-GUST Comm, which distributes it to PAFA over UDP. In the
case of command data, PAFA sends the new command back to PSU-GUST through UDP. Additionally,
PAFA engages in communication with other devices PAFA is mounted on, supported by the PAFA
communication method. This method is facilitated by send and receive blocks that serve as interfaces
for communication. During the configuration process, the PAFA reconfigurator also employs the PAFA
communication method to send a new configuration.

4 System Mechanism
This chapter provides a detailed explanation of the system mechanism used for the demonstration,

which is also demonstrated in Figure 5. While PAFA has the capability for automatic allocation of
functions based on device-function capability assessment, for the purpose of safety, two prescribed and
tested configurations were utilized for the demonstration, as PAFA lacks operational Virtual Qualification
Authority.

4.1 Step 1
Firstly, PX4 and PSU-GUST are activated prior to the activation of mission critical functions, such

as PAFA, as they are capable of stabilizing the drone on their own. Following this, PSU-GUST Comm
is activated to establish the interface between PSU-GUST and PAFA. Once the communication between
PSU-GUST and PSU-GUST Comm is confirmed, PAFA is started on both mission devices. These
activation processes are manually carried out on the Linux laptop using terminal windows over SSH
connection. At this stage, no configuration is assigned to them. After ensuring proper activation, the
PAFA Reconfigurator is executed by hand to send the initial configurations, including routine tables and
communication tables and a reconfiguration command, as depicted in Figure 5(a). Each configuration

6Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Drone Linux Laptop

Raspberry Pi 4B Raspberry Pi 3B

PSU-GUST

PAFA Reconfigurator

PAFAPAFA

GUST

UDP

PAFA- Communication

PAFA- Communication

Datalink

-Comm

PSU-GUST

Fig. 4. The communication paths between functions. The physical connections depicted in Figure 3 are not
shown here.

information is transmitted separately and stored in the RAM of the mission devices. Upon completion of
this configuration process, a reconfiguration command is sent to both mission devices to make the new
configuration effective.

4.2 Step 2
The first configuration is illustrated in Figure 5(b). All the processes in this step are automatically

executed after the reconfiguration command in step 1. The main task of Raspberry Pi 3B as mission
device 1 is generation of new commands. It is equipped with four task blocks that are executed based
on the routine table. The feedback transfer block serves as an interface to receive telemetry data from
PSU-GUST Comm. It receives this data as a UDP message and transfers it to the command generation
block. The command generation block determines whether a new command needs to be generated based
on the received telemetry data. In our case, the command represents a waypoint coordinate. If the drone
is still en route to the latest waypoint, the command generation block does not generate a new command.
When a new command is generated, it is passed on to the command transfer block. The command transfer
block converts the new command into a UDP message, which is then sent to PSU-GUST Comm. The
transferred command in PSU-GUST Comm is transmitted to PSU-GUST via the PSU-GUST datalink,
and the drone begins to pursue the new waypoint. The send block transmits the message to the mission
device 2. The target IP address is specified by the communication table sent in step 1. The message sent
by the send block is a counter, which will be further explained later.

On the other hand, the laptop as mission device 2 has been assigned the task of monitoring. This
is achieved through the use of a receive block and a watchdog block. The received message within the
receive block is then transmitted to the watchdog block. The role of the watchdog block is to monitor
the activity of the command generation block on another mission device. Although it is possible to send
a message status along with the message content, the watchdog block is unable to detect any loss of
messages as the receive block continuously transfers the message within its buffer. To avoid this problem,
the command generation block on mission device 1 sends a counter that increments at each cycle. If
the device is terminated for any reason and does not send new messages, the counter within the buffer
remains the same. If the watchdog block does not receive a new counter within a specific period of time,

7Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



it will conclude that the command generation block is not functioning correctly and thus a new swarm
configuration is required. The same decision is made when the message status is not appropriate.

4.3 Step 3
In order to simulate a mission device loss during the demonstration, the mission device 1 on the

drone will be intentionally terminated. This termination is triggered by sending a "signal kill" command
using the keyboard shortcut "ctrl + C". Subsequently, no new counter information is transmitted to the
mission device 2. As a result of this termination, the watchdog block promptly detects the failure.

4.4 Step 4
After the prescribed time-out period elapses, the watchdog block sends reconfiguration request as a

UDP messsage to the PAFA reconfigurator.

4.5 Step 5
The PAFA reconfigurator receives a UDP message containing the request and performs the identical

configuration process as described in step 1. In order to proceed with the flight mission, the feedback
transfer block, command generation block, and command transfer block are allocated to mission device
2. Since there is currently only one mission device, no send block is utilized. This new configuration is
loaded while the old configuration remains operational. If PAFA on mission device 2 has other tasks that
are executed in parallel, they are not affected by this loading configuration process.

4.6 Step 6
After all the new configuration is sent, the PAFA reconfigurator sends the reconfiguration command.

This command switches the execution configuration of the second mission device with PAFA within one
cycle. The mission device 2 is now responsible for generating new command and the drone continues its
original mission.

5 Flight Test and Results
In order to ensure safety during the demonstration, the mission was designed to involve ascending

and descending to predetermined altitudes. When the drone reaches the specified altitude, a mission
device generates a new altitude command that is then sent to PSU-GUST as a waypoint. For the test
flight, the high altitude command is set at 4 feet, while the low altitude command is set at 2 feet. The
system frequency is set as 1 second, although more than 100 times faster processing is possible. This is
to make it easy to monitor the system behavior.

The devices utilized for the flight test are presented in Figure 6. Starting from the left, there is a GCS
laptop equipped with an antenna module and a gaming controller. The laptop runs PSU-GUST for GCS,
which enables the visualization of telemetry and waypoints of the drone, as well as access to settings.
The gaming controller, connected to the GCS laptop, allows the GCS operator to guide the drone with the
assistance of PSU-GUST easily and stably. In the bottom middle, there is a radio controller operated by
a safety pilot. The safety pilot’s role is to intervene in drone control when the autopilot does not perform
as expected. The drone itself is depicted in the upper middle. It is equipped with a Raspberry Pi 4B,
which hosts PSU-GUST, PSU-GUST Comm, PAFA Reconfigurator, and a Raspberry Pi 3B as mission
device 1 with PAFA. The laptop on the far right serves as mission device 2 with PAFA and is also used
to operate vehicle functions via SSH connections.

8Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Drone Linux Laptop

Raspberry Pi 3B

PAFAPAFA

New Configuration
Reconfiguration Command

Raspberry Pi 4B

PSU-GUST

PAFA Reconfigurator

-Comm

PSU-GUST

(a)
Drone Linux Laptop

Raspberry Pi 3B

feedback

command

command

send

PAFA

transfer

generation

transfer watchdog

receive

PAFA

Raspberry Pi 4B

PSU-GUST

PAFA Reconfigurator

-Comm

PSU-GUST

(b)

Drone Linux Laptop

Raspberry Pi 3B

watchdog

receive

PAFA

feedback

command

command

send

PAFA

transfer

generation

transfer

Raspberry Pi 4B

PSU-GUST

PAFA Reconfigurator

-Comm

PSU-GUST

(c)
Drone Linux Laptop

Raspberry Pi 3B

watchdog

receive

PAFA

Request for 
Reconfiguration

Raspberry Pi 4B

PSU-GUST

PAFA Reconfigurator

-Comm

PSU-GUST

(d)

Drone Linux Laptop

Raspberry Pi 3B

watchdog

receive

PAFA

Raspberry Pi 4B

PSU-GUST

PAFA Reconfigurator

-Comm

PSU-GUST

New Configuration

Reconfiguration Command

(e)
Drone Linux Laptop

Raspberry Pi 3B

PAFA

feedback

command

command

transfer

generation

transfer

Raspberry Pi 4B

PSU-GUST

PAFA Reconfigurator

-Comm

PSU-GUST

(f)

Fig. 5. Visualizations of the sequential steps in the process. (a) Step 1, (b) Step 2, (c) Step 3, (d) Step 4, (e)
Step 5, and (f) Step 6

5.1 Results
The flight log for vertical movement is shown in Figure 7. Due to the common coordinate system in

aviation, the negative value indicate positive altitude. The safety pilot manually lifted the drone off the
ground and ensured it was stable in the air. Once the PAFA was activated on both mission devices, the first
reconfiguration was carried out to simulate a failure-free scenario as described in chapter 4.1. The first
two cycles of movement in the log (yellow area on the left) represent this scenario. After observing the
up-down maneuvers, producing two peaks in the graph, the mission device 1 on the drone was manually
terminated. Due to this failure, the drone did not follow the sinewave pattern anymore, resulting in the
plateu between 20 and 30 seconds in the blue area. Upon detection of this failure by the watchdog on
mission device 2, a reconfiguration request was automatically sent to the PAFA Reconfigurator. The
new configuration was successfully transmitted to mission device 2. The plateau between 20 and 30
seconds in the blue area area represents the termination of mission device 1, the detection of the failure,
and the subsequent reconfiguration of mission device 2. Since mission device 2 operated without any

9Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.



Fig. 6. The devices used for the flight test. From left to right: Ground Control Station (GCS) laptop, gaming
controller connected to the GCS laptop, drone, radio controller for the safety pilot, and Linux laptop.

issues during this time period, other functions remained intact and operational if they were configured
and running concurrently. The drone regained its mission capability, as evidenced by the multiple cycles
of up-down maneuvers after the plateau period depicted in the log (yellow area on the right).

-6

-5

-4

-3

-2

-1

0

0 10 20 30 40 50

Z-
P

o
si
�

o
n

 (
fe

et
)

Time (s)

Flight test log for ver�cal movement

Fa
ilu
re

o
cc
u
re
d

N
o
Er
ro
r

R
ec
o
ve
re
d

(a) (b)

Fig. 7. (a) Flight test log for Z-axis position. The negative values indicate positive altitude due to its coordinate
system. Mission device 1 was terminated after two cycles of up and down maneuvers. After a time-out and
reconfiguration, the drone successfully resumed the maneuver. (b) Photograph captured during the flight
test. A video is published with the following link: https://youtu.be/MPfDm9BYCQY

6 Conclusion and Outlook
The collaboration and information sharing among UAVs are expected to play a key role to enhance the

mission capability of vehicles and increase failure tolerance. To achieve this, a standardized middleware
is essential to facilitate inter-device communication and dynamic reconfiguration of connected devices.

10Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://youtu.be/MPfDm9BYCQY


PAFA enables easy device connectivity and seamless in-flight reconfiguration. This allows for self-
detection and self-healing of the entire system on the PAFA platform.

In this article, an in-flight reconfiguration of two interconnected mission critical devices equipped
with PAFA is demonstrated. During the demonstration, one device on a drone was terminated and lost
its ability to create a new waypoint command. The other devices detected this and was reconfigured to
take over the command generation position. As a result, the drone was able to continue its mission.

Although the technical possibility of the application of PAFA to multiple UAVs are performed in
this study, several improvements are required to utilize PAFA in the real UAV application field. In this
demonstration, PAFA was only applied to guidance function which is a mission relevant function and not
for safety critical function such as flight controller. However, as demonstrated in [11], the idea of PAFA
can be applied to more safety critical functions. Generally, such functions are scheduled periodically.
If the system function needs to meet real-time requirements, one configuration could already account
for redundancies, to allow for a seamless continuation of functionality in the event of a failure. The
reconfiguration mechanisms by PAFA could then, in a following step, restore redundandacies by utilizing
different, still functioning, computing resources.

Another open point is the communication method. In this study, WiFi network was used to facilitate
the communication between components, since PAFA is utilized for CAN and communication over IP
networks. Depending on timing constraints and safety targets, more reliable or robust communication
methods might be required. Moreover, for the real application of swarm drones, another close distance
communication must be used which does does not require central network provider.

Also, a sophisticated error detection mechanism is to be developed. In this demonstration, only
time-managed error detection was implemented. Among with very low execution frequency (1Hz), it
took nearly 9 seconds to conduct the reconfiguration. However, in a safety critical error situation, there
is not sufficient time to detect the error. Logical approaches are required to reduce the required time to
detect the error.

In the future, the use-case can be expanded to larger swarm of devices, including not only flying
vehicles but also ground station devices, thus creating an avionics cloud. This will further increase failure
tolerance and enhance overall system performance.

Acknowledgements
The authors would like to thank the members of the Pennsylvania State Unmanned Aerial Research

Laboratory for enabling flight tests.

References
[1] Ziquan YU, Youmin ZHANG, Bin JIANG, Jun FU, and Ying JIN. A review on fault-tolerant cooperative

control of multiple unmanned aerial vehicles. Chinese Journal of Aeronautics, 35(1):1–18, 2022. ISSN: 1000-
9361. DOI: https://doi.org/10.1016/j.cja.2021.04.022.

[2] Corey Ippolito, Sungmoon Joo, Khalid Al-Ali, and Yoo Hsiu Yeh. Polymorphic control reconfiguration
in an autonomous uav with ugv collaboration. In 2008 IEEE Aerospace Conference, pages 1–14, 2008.
DOI: 10.1109/AERO.2008.4526291.

[3] Anawat Pongpunwattana, Richard Wise, Rolf Rysdyk, and Anthony J. Kang. Multi-vehicle coopera-
tive control flight test. In 2006 ieee/aiaa 25TH Digital Avionics Systems Conference, pages 1–11, 2006.
DOI: 10.1109/DASC.2006.313717.

11Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://doi.org/https://doi.org/10.1016/j.cja.2021.04.022
https://doi.org/10.1109/AERO.2008.4526291
https://doi.org/10.1109/DASC.2006.313717


[4] Xiangwang Hou, Zhiyuan Ren, Jingjing Wang, Shuya Zheng, Wenchi Cheng, and Hailin Zhang. Distributed
fog computing for latency and reliability guaranteed swarm of drones. IEEE Access, 8:7117–7130, 2020.

[5] Bjoern Annighoefer, Johannes Reinhart, Matthias Brunner, and Bernd Schulz. The concept of an auto-
nomic avionics platform and the resulting software engineering challenges. In 2021 International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 179–185, 2021.
DOI: 10.1109/SEAMS51251.2021.00031.

[6] Bjoern Annighoefer, Johannes Reinhart, Matthias Brunner, and Bernd Schulz. Requirements and concept for
a self-organizing plugfly avionics platform. In 2021 IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC), pages 1–10, 2021. DOI: 10.1109/DASC52595.2021.9594505.

[7] Jinwen Hu, Lihua Xie, and Jun Xu. Vision-based multi-agent cooperative target search. In 2012
12th International Conference on Control Automation Robotics Vision (ICARCV), pages 895–900, 2012.
DOI: 10.1109/ICARCV.2012.6485276.

[8] Juan Jesús Roldán-Gómez, Eduardo González-Gironda, and Antonio Barrientos. A survey on robotic tech-
nologies for forest firefighting: Applying drone swarms to improve firefighters’ efficiency and safety. Applied
Sciences, 11(1), 2021. ISSN: 2076-3417. DOI: 10.3390/app11010363.

[9] Bardienus P. Duisterhof, Shushuai Li, Javier Burgués, Vĳay Janapa Reddi, and Guido C. H. E. de Croon.
Sniffy bug: A fully autonomous swarm of gas-seeking nano quadcopters in cluttered environments. In
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 9099–9106, 2021.
DOI: 10.1109/IROS51168.2021.9636217.

[10] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer, 36(1):41–50, 2003.
DOI: 10.1109/MC.2003.1160055.

[11] Matthias Brunner, Johannes Reinhart, Bernd Schulz, Erik Preissing, Stefan Moennikes, and Bjoern An-
nighoefer. Hardware-independent self-discovery of peripherals and modules of a self-adaptive avionics
platform. In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), pages 1–10, 2022.
DOI: 10.1109/DASC55683.2022.9925770.

[12] Bjoern Annighoefer, Matthias Brunner, Julian Schoepf, Bastian Luettig, Matthieu Merckling, and Peter
Mueller. Holistic ima platform configuration using web-technologies and a domain-specific model query
language. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), pages 1–10, 2020.
DOI: 10.1109/DASC50938.2020.9256726.

[13] Bjoern Annighoefer, Marc Riedlinger, and Oliver Marquardt. How to tell configuration-free integrated
modular avionics what to do?! In 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), pages
1–10, 2017. DOI: 10.1109/DASC.2017.8102064.

[14] Eric Johnson and Sumit Mishra. Flight Simulation for the Development of an Experimental UAV.
DOI: 10.2514/6.2002-4975.

[15] Eric N. Johnson and Suresh K. Kannan. Adaptive trajectory control for autonomous helicopters. Journal of
Guidance, Control, and Dynamics, 28(3):524–538, 2005. DOI: 10.2514/1.6271.

12Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

https://doi.org/10.1109/SEAMS51251.2021.00031
https://doi.org/10.1109/DASC52595.2021.9594505
https://doi.org/10.1109/ICARCV.2012.6485276
https://doi.org/10.3390/app11010363
https://doi.org/10.1109/IROS51168.2021.9636217
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/DASC55683.2022.9925770
https://doi.org/10.1109/DASC50938.2020.9256726
https://doi.org/10.1109/DASC.2017.8102064
https://doi.org/10.2514/6.2002-4975
https://doi.org/10.2514/1.6271

	Introduction
	State of the Art of Plug & Fly Avionics
	Concept
	Use-Case to Demonstrate the Concept

	Technical Realization
	System Mechanism
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	Flight Test and Results
	Results

	Conclusion and Outlook

