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ABSTRACT

Nowadays, many space missions require highly accurate pointing for Earth observation or cosmic
vision purposes. However, the vibration environment from a spacecraft’s structure and reac-
tion wheels can cause disturbances in its line-of-sight stability and severely impact image quality.
Additionally, these effects are not known precisely due to limitations in ground testing, and this
uncertainty leads to significant challenges in control. This paper tackles these problems by creating
a control design and verification framework. Modern scientific literature explores three solutions:
high-fidelity nonlinear modelling, advanced control design methods, and optimized verification
campaigns. Respectively, they provide a reliable testing environment, directly handle structural
dynamics, and guarantee system stability. While the three approaches are usually studied sepa-
rately, we propose a novel combination using a payload isolation platform. A robust H∞-based
cascade control loop is designed for a Sentinel-like spacecraft and analyzed to maximize pointing
indicators in a realistic mission scenario and then validated using a worst-case uncertainty con-
struction method via multi-frequency gain maximization. The synergy of the framework offers a
robust solution for precise pointing in flexible spacecraft and enables further mass reductions in
the future of space exploration.
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Nomenclature

𝜙, 𝜃, 𝜓 = Euler angles (roll, pitch, yaw)
𝝉𝐹
𝐴

= Torque acting in point A (or COG) and frame F
𝜔𝐹

𝐵𝐴
= Angular velocity of B compared to A in frame F

f𝐹
𝐴

= Force acting in point A (or COG) and frame F
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G(𝑠) = System
J = Inertia matrix
K(𝑠) = Controller
𝑚 = Mass
q𝐵𝐴 = Rotation quaternion from frame A to B
r𝐹
𝐵𝐴

= Position vector from point A to B in frame F
R𝐵𝐴 = Rotation matrix from frame A to B
𝑠 = Laplace variable
v𝐹
𝐵𝐴

= Velocity of B compared to A in frame F−1

W(𝑠) = Weighing function

1 Introduction
Nowadays, there are many ongoing and proposed missions involving spacecraft where extremely

accurate pointing is required, either for cosmic vision or Earth observation purposes. These applications
usually require rigid vehicles, otherwise, a number of disturbing effects would severely impact image
quality and line-of-sight stability, such as flexible appendages and internal microvibration sources [1].
Flexible appendages tend to be prevalent in complex missions, as payload mass restrictions can often
only be met with low-stiffness structures. Their vibration characteristics are imprecisely known because
the gravity environment on Earth does not allow for rigorous testing. This uncertainty of frequency and
damping of the flexible modes and potential coupling between axes leads to major challenges in attitude
determination and control system (ADCS) design [2]. Additionally, manufacturing imperfections in
reaction wheels generate residual harmonic microvibrations which can be amplified on interaction with
the structure of the spacecraft, perturbing the onboard instrumentation’s line-of-sight stability or even
leading to structural failure. As a result, accurately predicting spacecraft microvibrations due to onboard
internal disturbance sources is a formidable multi-disciplinary engineering challenge [3]. The proposed
work aims to tackle the control problem of stabilizing the flexible system while also aiming to increase
pointing performance.

In the scientific literature on flexible spacecraft, there are many notable proposals to solve this
challenge, such as sliding mode attitude tracking control [4], integrated spacecraft design with structured
H∞ control design [5], or even the predictive control of flexible spacecraft [6]. As one of the first
high-precision flexible spacecraft in orbit, JAXA’s Advanced Land Observing Satellite proved to be an
important source of hardware data and engineering experience, especially when it comes to assessing
state-of-the-art sensor and actuator characteristics [7]. On the topic of vibration isolation and suppression,
an investigation of space applications of active-passive platforms yielded promising articles by Preda that
combine robust microvibration mitigation with pointing performance analysis [8], as well as the use of
Stewart Platform in cascade control structures [9]. It has been noted that literature on the verification of
controllers for flexible spacecraft is rather lacking, with very few published articles in the field. This is
the gap that this project is trying to fill, by building on the body of research accumulated over the years
on the topics that have previously been discussed. Important publications include the work of Wang on
verification [10] and robustness analysis [11], as well as the work of Gasbarri [2] on worst-case analysis.

Based on these findings, it was determined that the best approach to achieve higher pointing precision
in flexible spacecraft is the analysis and validation of advanced controllers in a nonlinear simulation
environment. The main contribution of this paper is the space application of a novel verification method
using multi-frequency worst-case analysis [12], building on the previous publication of the research
group on the parameter uncertainty analysis of linear controllers for the pointing problem [13], and
proposing a cascade control loop using robust methods. Section 2 covers the modelling aspects of a
flexible spacecraft in orbit, taking into account flexible appendages, mechanical spinning devices, and
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the coupling between the satellite body and the payload platform. Section 3 presents a full attitude
determination and control system (ADCS) chain via the design of an H∞-based controller that satisfies
predefined pointing performance requirements and offers acceptable disturbance rejection characteristics.
Finally, section 4 showcases the V&V framework that makes use of the developed high-fidelity nonlinear
simulation environment.

2 Modelling the Spacecraft
To describe and analyze the dynamics of the nonlinear system, a realistic mathematical model was

built in Simulink. The resulting system achieves high fidelity in modelling the dynamics of an Earth-
observing spacecraft while still retaining a high simulation speed due to the efforts made to increase
efficiency. To numerically solve the differential equations, the Bogacki-Shampine method is used with a
fixed time step of 1 ms. Throughout the paper, Sentinel-2B, a European Earth observation satellite is used
as a reference spacecraft for both orbit modelling and system characteristics. This features a spacecraft
bus with a similar size and mass to the original, a rotating solar panel, and a variable-mass propellant
tank. This reference spacecraft (as well as Sentinel-2B) occupies a Sun-synchronous orbit, which is
highly inclined and circular at 790 km altitude. For accurate orbit modelling, the orbital parameters are
frequently updated from the spacecraft’s two-line orbital elements [13].

2.1 Equations of Motion
This paper uses five reference frames to describe the translational and rotational motion of the

body: Earth-Centered Inertial (ECI or I), Earth-Centered Earth-Fixed (ECEF or F), Local Vertical Local
Horizontal (LVLH or L), Body (B), and Payload (P). Four state vectors are defined in the derivation of
the equations of motion: the ECEF-frame position vector (r𝐹

𝐵𝐹
), the ECEF-frame velocity vector (v𝐹

𝐵𝐹
)

of the spacecraft, the ECEF-to-Body rotation quaternion (q𝐵𝐹), and the Body-frame angular velocity of
the spacecraft (𝝎𝐵

𝐵𝐼
). 𝝎𝐹

⊕ is the rotation rate of Earth [13].

¤r𝐹𝐵𝐹 = v𝐹𝐵𝐹 ¤v𝐹𝐵𝐹 = R𝐹𝐵

f𝐵

𝑚
− 2𝝎𝐹

⊕ × v𝐹𝐵𝐹 − 𝝎𝐹
⊕ ×

(
𝝎𝐹

⊕ × r𝐹𝐵𝐹
)

¤𝝎𝐵
𝐵𝐼 = J−1

[
𝝉𝐵 − 𝝎𝐵

𝐵𝐼 ×
(
h𝐵
𝑟𝑤 + J𝝎𝐵

𝐵𝐼

)]
¤q𝐵𝐹 =

1
2

q𝐵𝐹 ◦ �̊�𝐵
𝐵𝐹 �̊�𝐵

𝐵𝐹 =

[
0

𝝎𝐵
𝐵𝐼

− R𝐵𝐹𝝎
𝐹
⊕

] (1)

Additionally, the orientation of the spacecraft is defined to be the quaternion between the Body and
the local frames. This quaternion also serves as the basis for the Local-to-Body rotation matrix, as well
as the definition of Euler angles with an XYZ rotation order, which reduces the Yaw angle to a rotation
around the optical axis to simplify the pointing control problem.

q𝐵𝐿 = q𝐵𝐹q−1
𝐿𝐹 −→ R𝐵𝐿 −→ 𝜙, 𝜃, 𝜓 (2)

There are a number of environmental factors that have undesirable effects on the dynamics of the
spacecraft by changing its overall momentum (linear or angular). This paper will mainly focus on
external torques, which can vary greatly in magnitude. In order to preserve computational efficiency,
the main goal is not to model them as numerically accurately as possible but rather to build optimized
representations of them that match their real-world frequency and magnitude characteristics. At the
altitude of the spacecraft, the main disturbing effects are gravity gradient, magnetism, and drag [13].
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2.2 Structural Dynamics
A major source of disturbance to the spacecraft comes from its structural dynamics, as the solar panel

attached to the side of the satellite acts as a flexible appendage. In this project, the panel is considered
to be a flexible beam element with a rigid single-point connection to the spacecraft. This description of
the flexible body results in a linear state-space model, following the derivation of pure flexion dynamics
from Chebbi et al [14]. Using the approach, a linear model was derived for the x-y bending modes of
the beam element representing the solar panel, and the final model was verified against the Satellite
Dynamics Toolbox of Alazard et al [15–17].

The linear model is integrated into the nonlinear simulation environment by dropping the purely
rigid components from the structural model as they are already represented in the spacecraft equations of
motion. The frequency response of the resulting flexible system resembles a high-pass filter with a cutoff
frequency of roughly 17 rad/s. This is ideal for control purposes as the frequency is well within the bounds
of available spacecraft actuators. There are three more resonant frequencies for the appendage (at roughly
109, 311, and 1383 rad/s). The largest frequency bending mode is uncontrollable, but fortunately has a
low magnitude and can still be simulated with the current time step, so its effect on control performance
can still be evaluated [13].

2.3 Reaction Wheels
On most modern spacecraft, the primary instruments for attitude control actuation are reaction

wheels. They are essentially torque motors with a high inertia rotor which can spin in either direction and
can provide one axis of control. In the model, we are using one reaction wheel for each of the spacecraft’s
principal axes, as well as an additional fourth wheel for redundancy (NASA Standard configuration) [13].

Since the microvibration behaviour of reaction wheels has a much higher frequency than orbital
or even attitude dynamics, modelling them to high fidelity would be severely detrimental to simulation
speed. However, some empirical models are able to approximate these high-frequency microvibrations
with a harmonic series expansion of reaction wheel dynamics [18, 19]. To account for time delays in the
state estimation and the control process (assumed 0.01 s) a 5th order Padé approximant is included in the
control-oriented model with a safety factor of 10 on the duration [20].

2.4 Active-Passive Payload Isolation Platform
A Stewart-Gough platform is a parallel manipulator device with linear actuators and universal joints

that allow for the 6-DOF control of the payload plate. Their use in space applications is supported by a
large research interest due to their inherent capability to not only provide articulation between different
subsystems but also isolate microvibrations. This has the added benefit of merging two functionalities in
the same mechanical system, decreasing both the complexity and the mass of the vehicle. The platform
should be supported by at least 6 struts (a hexapod platform), where the configuration of the struts
also influences the degree of cross-coupling in the device, which should be taken into consideration
during the design process. The mathematical model of the isolation platform is largely inspired by the
work of Hanieh and Preumont. Their work also involved the construction of a hardware demonstrator,
whose frequency-domain characteristics should be matched as closely as possible. The goal is to build
an idealized model of the hexapod device with struts capable of active-passive isolation. First off, the
hexapod should follow a cubical structure with all struts being orthogonal to each other in the neutral
position. This reduces the effects of cross-coupling between them to the smallest degree possible [21, 22].

The equations of motion for the payload plate are expressed in terms of relative dynamics, considering
the rotating frame of the spacecraft Body and the arising Coriolis, Euler, and centrifugal forces. Rotational
dynamics are also expressed in the body frame, J𝐼 is the mass moment of inertia matrix of the payload
plate, approximated as a flat equilateral triangle. Calculating the forces f𝐵

𝑃
and torques 𝝉𝐵

𝑃
acting on the
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payload plate is done by the summation of actuator forces f𝑎 with the stiffness and damping reactions
of the struts. Then, the resulting forces and torques can be reduced to the payload frame through the
transform matrix J𝐵𝑃 and Jacobian matrix J𝑃 that arise from the inverse kinematics solution for hexapod
robots. Despite the complexity of the dynamical equations, the kinematics are relatively simple with
similar formulas used in the EOM of the spacecraft body as well [9, 21].

¥x𝑃 =

[
¤v𝐵
𝑃𝐵

¤𝝎𝐵
𝑃𝐵

]
=

[
1
𝑚𝐼

f𝐵
𝑃
+ g𝐵 − ¤v𝐵

𝐵𝐹
− 2𝝎𝐵

𝐵𝐼
× v𝐵

𝑃𝐵
− ¤𝝎𝐵

𝐵𝐼
× r𝐵

𝑃𝐵
− 𝝎𝐵

𝐵𝐼
×
(
𝝎𝐵

𝐵𝐼
× r𝐵

𝑃𝐵

)
J−1
𝐼

(
𝝉𝐵
𝑃
− 𝝎𝐵

𝑃𝐵
× J𝐼𝝎

𝐵
𝑃𝐵

) ]
¤x𝑃 =

[
¤r𝐵
𝑃𝐵

¤q𝑃𝐵

]
=

[
v𝐵
𝑃𝐵

1
2q𝑃𝐵 ◦ �̊�𝐵

𝑃𝐵

] [
f
𝝉

]𝐵
𝑃

= J𝐵𝑃J𝑃 [f𝑎 − 𝑐𝐼𝛿ℓ𝑖 − 𝑘 𝐼 (ℓ𝑖 − ℓ0)]
(3)

The linear actuators of the struts are saturated at ±0.05 N and have a 0.01-sec delay which is reduced
in the control-oriented linearized model with a 5-th order Padé approximant. The actuators themselves
are driven by electric motors with a cutoff frequency of 100 rad/s that form a 6x6 diagonal matrix to
represent all struts, and body-frame forces and torques are converted to strut forces with the use of a
decoupling matrix based on the force Jacobian and the force transform matrices.

G𝐼
𝐴𝑐𝑡 (𝑠) = G𝑆𝑡𝑟𝑢𝑡 (𝑠)D(𝑠)G𝐼

𝑃𝑎𝑑𝑒 (𝑠) D𝐼 = (J𝐵𝑃J𝑃)−1 (4)

3 Designing the Control Loop
Consider that the inputs to the spacecraft are body-frame forces and torques in all three directions,

and the outputs are the accelerations and the angular accelerations of the spacecraft body along the same
axes. In the simplest, rigid case for a spacecraft of mass 𝑚 and moment of inertia J at rest in inertial
space. Then, this model can be combined with the derived linear model for the structural dynamics
(G 𝑓 𝑙𝑒𝑥 (𝑠)) to serve as a basis for the control-oriented model. Then, the model is reduced to only the
rotational modes, and the linearized reaction wheel torques with transient behaviour related to motor
dynamics (G𝑅𝑊𝐴 (𝑠)), but free of vibrations and friction.

+− K(𝑠) G𝑃𝑎𝑑𝑒 (𝑠) G𝑅𝑊𝐴 (𝑠) +− J−1

G𝑟𝑒𝑑
𝑓 𝑙𝑒𝑥

(𝑠)

1
𝑠2

𝜽 ,𝝎(𝜽 ,𝝎)𝑟𝑒 𝑓

Fig. 1 Linearized system model with time delay and actuator dynamics

For the isolator loop, the final model is an expansion of G𝐼
𝐹
(𝑠) with actuator dynamics and time

delay characteristics, as presented in fig. 2. It allows the design of a collocated controller by defining the
outputs as the position and orientation of the payload plate while system inputs are the overall forces and
torques acting on the payload plate instead of individual strut forces.

3.1 Guidance and Navigation
To estimate the states, four states are measured and then mixed with normally distributed random

noise. ECEF position is measured with GPS, Body-frame velocity with integrated accelerometer, body-
frame angular velocity with a drifting gyro, and Euler angles with a star tracker. With these sensor
measurements, we estimate all other states of the system by plugging them into the equations of motion.
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+− D−1(𝑠) M−1
𝐼
(𝑠) 1

𝑠2

𝑐𝐼 𝑠 + 𝑘 𝐼 J𝑇
𝑃
(𝑠)

G𝐴𝑐𝑡 (𝑠)
x𝑃f𝑎

Fig. 2 Linearized isolator plant model for control design

To handle sensor drift, the integrators driven by the gyro and the accelerometer are periodically reset
with lower frequency measurements from the GPS and star tracker. The isolator loop includes a virtual
sensor that attempts to recreate the precision characteristics of an optical sensor that returns position and
attitude measurements for the payload plate. Then, we implemented a quaternion-based algorithm for
smooth trajectory generation, which relates the current line-of-sight vector of the spacecraft r𝐹

𝐵𝐹
to the

desired target vector r𝐹
𝑇𝐹

through a single rotation. The angular velocity reference is calculated using the
inverted kinematic model of the spacecraft and numeric differentiation [13].

r𝐿𝑇𝐵 = R𝐿𝐹

(
r𝐹𝑇𝐹 − r𝐹𝐵𝐹

)
i3 = [0 0 1]𝑇 q𝐵𝐿 ∼

[
1 + i3 · r̂𝐿𝑇𝐵 i3 × r̂𝐿𝑇𝐵

]
(5)

3.2 Outer Loop Design
Generally speaking, in closed-loop control design there is a trade-off between performance and

robustness. The closer a controller gets to zero in reducing errors in the loop, the more sensitive it
becomes to disturbances, noise, delay, and uncertainty. In recent years, there has been an increase in
robust control publications for flexible spacecraft across Europe, a technique that offers to find a balance
in this trade-off and increase reliability for future missions [5, 23].

G𝑆𝐶 (𝑠)+
+G𝐴𝑐𝑡 (𝑠)

W𝑑 (𝑠)

W𝑢 (𝑠)

W𝑒 (𝑠)

W𝑛 (𝑠)

−
+

u

d

n

v

e𝜃

eu

Fig. 3 Augmented plant for robust control design

In robust control, one of the most important applied methods is H∞-based loop shaping, where the
main design goal is the minimization of the H∞ norm of the system in order to attenuate the effect of
disturbances on its performance. This norm also provides a measure of system robustness as 𝛾. In the
design of the controller, various weights are added to the input and output signals of the plant model.
The result is called an augmented plant (fig. 3) and is the major component of the loop-shaping process.
These weights are used to prescribe desired characteristics in noise suppression, disturbance rejection,
control effort, and control performance (fig. 4). During the tuning process, performance is iteratively
evaluated by the step response and frequency-domain characteristics of the linearized closed-loop, as
well as the pointing performance in the high-fidelity nonlinear environment for a simple scenario. The
main goal is to decrease the pointing error below 2 arcsec in roll and pitch, and to find the solution that
provides the most pointing stability within that range.
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Fig. 4 Weights used in the design of H∞-based controller

The closed-loop system that hinfsyn produced has a 𝛾 of 50. Since there is no explicit modelling
uncertainty in the design process, 𝛾 does not give upper bounds for the Delta block, merely for the
transfer from the disturbance inputs to the performance outputs. Since this transfer is scalable, a high
𝛾 can also be worked around by further scaling of the tuning weights. More concerning is the number
of controller states (51). To reduce numerical complexity and improve computational performance, this
must be drastically cut back. It was found that control performance is not decreased if 32 states with
the lowest Hankel singular values are eliminated from the controller block. The final, 19-state H∞-based
controller can then be tested in a closed-loop to evaluate time-domain performance.

3.3 Inner Loop Design
The inner loop is chosen to be driven by an H∞-based robust controller, however, there is an

important change from the robust control design presented in the previous section. For the isolator loop,
the controller is tuned to mimic a reference system in its closed-loop behaviour. This reference system is
also an integral part of the augmented plant (fig. 5) with its own filters.

G𝐼
𝑟𝑒 𝑓 ,𝑑𝑖𝑎𝑔 (𝑠) =

100
𝑠2 + 20𝑠 + 100

G𝐼
𝑟𝑒 𝑓 ,5(𝑠) =

100
𝑠2 + 4𝑠 + 100

(6)

The rest of the filters are various low-pass and high-pass filters, as well as zero gains for off-diagonal
elements (fig. 6). Similarly to the previous design, the filter parameters were tuned using a combination
of intuitive initial values selected based on desired system performance and iterative tuning based on
the achieved disturbance rejection and reference tracking characteristics. There were two main goals
in the tuning process. First, to diminish the cross-coupling effects from X-displacement to Pitch and
Y-displacement to Roll. Second, to bring the cutoff frequency of the pointing loop beyond 17 rad/s in
order to actively control at least the first flexible mode of the system and achieve at least -40 dB/decade of
attenuation for higher frequencies. The control synthesis algorithms concluded with a final 𝛾 of 1.0058,
and the final controller had 81 states, which was reduced to the 18 largest ones in terms of Hankel singular
value.
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Fig. 5 Augmented plant for isolator control loop design
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Fig. 6 Tuning weights of isolator control loop

4 Verification & Validation
Since the current robust control method only deals with uncertainty in an implicit manner, there

needs to be a way to ensure the robustness of closed-loop control to known uncertain behaviours. One
way of verification and validation is to use 𝜇-analysis techniques, which rely on advanced approaches to
LFT modelling (linear fractional transformation) and a significant effort in model reduction. However,
even with reduction, these methods generate high-order models, which severely complicate the process of
verification. As a result, it is standard practice in the aerospace industry to use Monte Carlo simulations
to test the performance of a robust controller. This method essentially evaluates a large number of
simulations with random dynamics, in order to provide statistical guarantees for the worst-case behaviour
of the closed-loop system. However, while large iterations (approx. 1000) would be required for a hard
proof, typical simulation numbers are much lower (around 300) due to computational costs, which can
render the results of the analysis unreliable [10, 11].
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4.1 Methodology
To expand the capabilities of the V&V process without resorting to a Monte Carlo campaign whose

drawbacks have been detailed in the previous sections, a worst-case uncertainty construction method is
used that was developed by Patartics et al. It maximizes the gain of a system at multiple user-defined
frequencies and is currently applied in the analysis of flutter suppression in flexible aircraft [12, 24].

4.1.1 Modelling for Uncertainty
Considering the varied dynamics of reaction wheels, it was determined that their model should

be adjusted with dynamic uncertainty. First, Δ(𝑠) is created with Matlab’s ultidyn function which
generates a fourth-order LTI model with a gain bound of 1. Then, a filtering function 𝑊𝑈𝐶 (𝑠) is defined
that produces a roughly 1 dB variance in the DC gain and a 5 dB/decade variance in the roll-off of the
reaction wheel model.

+
+𝑢

𝑊𝑈𝐶 (𝑠)Δ(𝑠)

𝐺 (𝑠)
𝑦

Fig. 7 Block diagram of dynamic uncertainty applied to some plant G(s)

Parametric uncertainty is also introduced to the mass and inertia of the system, as well as the flexible
characteristics. This is in line with the recommendation made by several authors in V&V publications,
and in this project, it is achieved by the uncertainty of the tank mass and panel rotation angle [10, 11].
The ranges for the damping ratio and frequency are in line with SZTAKI’s usual assumptions, and the
rotation angle was calculated based on the uncertainty in the exact rotation angle of the panel (table 1).

Table 1 Uncertain parameters for multifrequency worst-case uncertainty construction

Parameter Value Range
Tank mass multiplier 0.5 0-1
Panel rotation angle 0 -0.2 - 0.2 rad

Panel damping ratio multiplier 1 0.90-1.10
Panel frequency multiplier 1 0.98-1.02

4.1.2 Worst-Case Construction Algorithm

M(𝑠)

𝚫(𝑠)

u

v

y

z

Fig. 8 Interconnection of an uncertain system for upper LFT

Consider the block diagram in figure 8, with the stable MIMO LTI system M(𝑠) and its corresponding
MIMO uncertainty block 𝚫(𝑠). There, M(𝑠) is an augmented version of the nominal system model with
widened output and input channels to tie the effect of uncertainty into the model. The exact description of
how this uncertainty is acting in the system dynamics is described by 𝚫(𝑠), which has two components.
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The first one is parametric uncertainty, which is the main type of uncertainty introduced to the system
so far. It describes deviations in the value of certain physical parameters. The second one is dynamic
uncertainty, which represents unmodelled behaviour in the system. Examples include high-frequency
vibrations or residual dynamics from model reduction. The most important criterion is that uncertain
dynamics must be stable and unit norm-bounded, but they can be weighted to adjust their magnitude.
Partition the system model so that the upper left block has compatible dimensions with the uncertainty
block,

M =

[
M11 M12

M21 M22

]
. (7)

The upper LFT of M and 𝚫 is then defined as F𝑢 (M,𝚫) = M22 + M21𝚫 (I − M11𝚫)−1 M12, and
the uncertain system is P (𝚫, 𝑠) = F𝑢 (M(𝑠),𝚫(𝑠)). Now, assume the following: 𝚫(𝑠) ∈ ∆, P (𝚫, 𝑠) is
robustly stable (i.e. stable for ∀𝚫(𝑠) ∈ ∆), given are a set frequencies [𝜔𝑘 ]𝑁𝜔

𝑘=1 and worst-case gain lower
bounds [𝐿𝑘 ]𝑁𝜔

𝑘=1. Then, define the function 𝐽 : ∆ → R that it is the sum of gains at the given frequencies:

𝐽 (𝚫(𝑠)) =
𝑁𝜔∑︁
𝑘=1

�̄� (F𝑢 (M( 𝑗𝜔𝑘 ),𝚫( 𝑗𝜔𝑘 ))) . (8)

The worst-case uncertainty sample construction problem is to find 𝚫𝑚 (𝑠) ∈ ∆ for which 𝐽 (𝚫𝑚 (𝑠)) is
maximized. The function 𝐽 has a theoretical upper bound, which is the sum of the worst-case gain lower
bounds at the given frequencies: 𝐽𝑈 =

∑𝑁𝜔

𝑘=1 𝐿𝑘 . It is clear, that 𝐽 (𝚫(𝑠)) ≤ 𝐽𝑈 , ∀𝚫(𝑠) ∈ ∆. If the system
is only subjected to dynamic uncertainty, then it is possible to find a 𝚫𝑚 (𝑠) that 𝐽 (𝚫𝑚 (𝑠)) = 𝐽𝑈 , based on
the boundary Nevanlinna-Pick interpolation [25]. However, in the case of mixed uncertainty with both
dynamic and parametric components, it is generally not possible to find such a 𝚫𝑚 (𝑠), because parametric
uncertainty couples the frequencies together and different values of the same parameter may be required
to achieve the lower bound at each frequency.
The worst-case uncertainty construction method applied in this section addresses these issues by using a
nonlinear optimization method that performs an efficient search of the full range of parametric uncertainty
as well as a boundary Nevanlinna-Pick interpolation of dynamic uncertainty [12, 24].

4.2 Performance of the Closed Loop
Analyzing the performance of a closed-loop control system with the worst-case uncertainty con-

struction method is an iterative process which offers increased speed and reliability compared to random
sampling-based Monte Carlo methods. First, an uncertain model is constructed with both parameter
and dynamic uncertainty. Then, the uncertain transfer function of the cascade loop from the 3 reference
angles to the 6 pointing angles is converted to an LFT model that is passed to the optimization script
along with two parameter sets: the relevant frequencies and the input-output pair where the effect of
uncertainty should be maximized. The selected channel can either correspond to reference tracking or
disturbance rejection.

The result is an exact parametrization of the uncertain block, which is used to update the high-fidelity
nonlinear simulation environment and evaluate pointing performance. To speed up the process, the most
interesting frequencies are selected iteratively by first checking the step-tracking characteristics of the
adjusted closed-loop and shifting the set of frequencies as needed. Usually, most pessimistic models are
reached when the frequencies are placed in the peaks and inflection points of the Bode magnitude plot.

The H∞ loop has proven itself to be robust enough against uncertainty in the multi-frequency analysis.
Using the method, the magnitude of disturbances on the roll and pitch outputs increased by 35 dB and
20 dB, respectively, which translates to a major time-domain rise in the oscillations in all axes. Step
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tracking is slightly affected in the form of some lightly dampened oscillations in the roll and pitch loops.
It is clearly visible on the plots that the worst cases found by the method (in red) produce far worse
performance than random samples (in grey), further motivating the use of the algorithm. One exception
would be the disturbance rejection of the yaw loop, which was optimized for settling time instead of
overshoot. This was a deliberate choice, as long-term errors have a larger impact on dynamics compared
to transients.

Fig. 9 Bode magnitude plots of the cascade loop in nominal (blue), worst (red), and random cases (grey)

Fig. 10 Step response of the H∞ outer loop in the nominal (blue), worst (red), and random cases (grey)
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Three pointing performance indicators are assessed in the nonlinear environment, according to the
ECSS. Absolute performance error (APE) is the first and simplest one, and it is generally used in the
control design of all pointing systems. It is the absolute difference of the current line-of-sight vector from
the desired one in terms of pointing angles. Using a 10 sec measurement window, the mean performance
error (MPE) and relative performance error (RPE) can be defined, with MPE being equivalent to the
windowed-time error signal, and RPE arising as the difference between APE and MPE [26]. Using
a scenario to track two points in South Holland with a 15-second transient stage between the precise
segments, both loops have very low susceptibility to uncertainty, highlighting the importance of robust
control. For the control loop, the most significant effect is perhaps a 29% increase in APE and 10% in
RPE for roll reference tracking, and the effect of uncertainty seems to be diminishing with time as the
controller brings system dynamics close to nominal for all cases, even with large initial errors.

Fig. 11 Simulation results for worst cases (grey) and nominal case (blue) with the cascade H∞ loop

Table 2 Worst-case pointing indices of output channels for Roll tracking in the outer and inner H∞ loops

Worst cases APE𝑎𝑣𝑔 [%] MPE𝑚𝑖𝑛 [%] MPE𝑚𝑎𝑥 [%] RPE𝑎𝑣𝑔 [%]
𝜙 29.1943 -6.749 77.511 10.5943
𝜙𝑖 -5.4575 -2.6953 -6.3912 -0.3264
𝜃 6.1577 -2.3725 9.8517 -0.5488
𝜃𝑖 8.315 -5.8852 15.7487 -0.7847
𝜓 -17.2412 -30.6985 -5.6572 -10.1902
𝜙 -4.0103 -0.7906 2.9481 -5.4492
𝜙𝑖 4.5953 2.1361 0.1395 5.2307
𝜃 -2.8671 -4.93 -0.6716 -7.1753
𝜃𝑖 -1.1565 -7.8672 0.6591 -2.6894
𝜓 -1.7688 -4.0452 2.3889 -2.4326
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Table 3 Worst-case pointing indices of output channels for Pitch tracking in the outer and inner H∞ loops

Worst cases APE𝑎𝑣𝑔 [%] MPE𝑚𝑖𝑛 [%] MPE𝑚𝑎𝑥 [%] RPE𝑎𝑣𝑔 [%]
𝜙 7.3854 12.127 11.7233 0.6467
𝜙𝑖 6.3038 3.2714 10.4044 0.8901
𝜃 -1.2012 39.8143 -1.6015 3.2027
𝜃𝑖 -6.0763 -7.4852 -3.5371 -2.8062
𝜓 17.7994 2.0899 40.7737 1.7107
𝜙 -2.978 -0.8368 -3.6655 -5.6737
𝜙𝑖 1.5117 1.1538 0.5031 1.9138
𝜃 -5.046 -0.111 -5.2367 -4.6331
𝜃𝑖 1.2504 1.2171 1.1474 2.5651
𝜓 -2.792 -7.1414 0.8685 -4.3276

5 Conclusion
The main research objective of the project is to find a way to improve the pointing precision of

flexible spacecraft. When looking at reference tracking characteristics in the high-fidelity simulator, the
outer loop achieved roughly 1 arcsec error with a cutoff frequency of 1 rad/s, and it was determined that
even for the worst-case mixed uncertainty cases the robust controller can converge to this error level.
The inner loop showed no increase in pointing error when exposed to uncertainty, keeping a steady 0.4
arcsec windowed-time error with a cutoff frequency of 20 rad/s. As a result, the control design process is
deemed successful, and the developed V&V framework was able to significantly increase the reliability
of the designs.

A drawback of the current model is the relative difficulty in calculating accurate reaction forces,
stemming from the complex nonlinear dynamics of the system and the numerical conditioning problem
of small-scale isolator movements and large-scale orbital perturbations on the spacecraft. While it has
been determined that the current mass of the isolator platform is not large enough to cause significant
disturbances to the cascade control loop, there is an ongoing effort to remedy this issue through the
creation of a combined mechanical model of the entire spacecraft. This way, the orbital dynamics of the
spacecraft CoG can be decoupled from the internal mechanics of the system, allowing for more precise
simulations and lower susceptibility to numerical errors.

Another further goal is the exploration of other methods in robust control. One way forward would
be mixed-sensitivity loop shaping, which promises a better way to specify performance and robustness for
various frequency ranges. Currently, this would be done by including Pittelkau functions in not just the
validation, but also the design process, which increases the required manual tuning effort exponentially.
Another approach would be to combine the design process and the reduction of the inner and outer
loops into a single step, using structured H∞-based design. This promises to improve the numerical
conditioning and cross-operability of the system, leading to an easier implementation for real hardware.

In essence, the answer to the main research question can be explained in three parts. First, even if
the structural dynamics and onboard microvibration sources are weak, single-loop control design has to
take the flexible modes into account because system performance is greatly limited by the bandwidth and
saturation limits of actuators. A cascade control loop with a vibration-isolated payload solves this issue by
expanding the frequency range of the controller and offloading control requirements from the main loop
to the isolator, leading to more relaxed control in the outer loop and higher pointing performance in the
inner loop. Second, purely frequency-domain validation processes are not sufficient to prove robustness,
as time-domain performance is vastly more important considering the standard precise pointing indices.
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Nonlinear high-fidelity modelling techniques offer significant improvements in the validation of control
design by the reliable evaluation of system behaviour in identified worst cases. Third, there are plenty
of articles focusing separately on high-fidelity modelling, advanced control, or verification&validation
techniques, but individually these fields contain significant blind spots. Only their synergistic combination
can provide a robust framework for the control engineering of flexible space structures.
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